
An Architecture to Measure QoS Compliance in SOA Infrastructures

Alexander Wahl

alexander.wahl@hs-furtwangen.de

Ahmed Al-Moayed
Department of Computer Science

Hochschule Furtwangen University
Furtwangen, Germany

ahmed.almoayed@hs-furtwangen.de

Bernhard Hollunder

bernhard.hollunder@hs-furtwangen.de

Abstract—In the last couple of years Service Oriented Ar-
chitecture (SOA) has gained in importance and became widely
used. With increased acceptance the demand of non-functional
requirements, so-called Quality of Service (QoS) attributes,
arose. QoS attributes were applied to SOA environments,
resulting in QoS-aware SOAs. Within the QoS-aware SOAs,
compliance to the desired QoS in general is not easy to measure.
In this work, we offer a solution architecture to measure
actual data that relate to QoS attributes. Further, these data
are compared to their target state. The aim is i) to evaluate
compliance of the entire QoS-aware SOA to the desired QoS
attributes and ii) to start suitable activities. In a proof of
concept a solution architecture, based on the technique of
Complex Event Processing, is implemented. Within this proof
of concept selected QoS attributes are applied and compliance
to the SOA is measured.

Keywords-Service Oriented Architecture; Quality of Service;
QoS Attributes; Complex Event Processing;

I. INTRODUCTION

Service Oriented Architectures (SOA) are a design
paradigm to compose and structure loosely coupled com-
ponents to form distributed applications. SOA offers a way
to map business processes from the business domain to the
technical domain of computer systems. After a business
process is analyzed and its single activities are identified, the
individual activities are mapped to the technical domain by
implementing corresponding services. To execute a business
process, the services are called in corresponding sequences.

Web Services (WS) are the predominant technology to
realize the services of a SOA. They are used to imple-
ment the functional aspects of business processes, which
in brief define the input/output behavior of a component.
Additional, in many business domains it is crucial to fulfill
non-functional requirements. A non-functional requirement,
or Quality of Service (QoS) attribute, specifies how a compo-
nent is supposed to behave. Examples for QoS attributes are
robustness, security, performance, scalability and account-
ing. More detailed descriptions of QoS attributes in SOA
can be found in [1] and in [2]. Within a SOA equipped
with QoS attributes, which we call QoS-aware SOA, desired
QoS attributes are described in a formal manner. Therefore
a policy language is used typically. These so-called service
policies define the target state of the desired QoS attributes.

The crucial need to fulfill non-functional requirements is
reflected by QoS attributes applied to SOA. For example,
consider security aspects, like integrity and confidentiality,
which are applied to Web Services using WS-Security [4].
When implementing a SOA from scratch, QoS attributes can
be designed from the beginning. But many SOAs are grown,
which means that they expanded over time. Such SOAs often
integrate existing legacy applications and enhance them by
QoS attributes they were not equipped with before. Also
QoS attributes may have changed several times. So how can
compliance to QoS attributes be measured? For example,
assume a SOA of high complexity that has grown over time.
For this SOA, a roles and rights model is specified. During
runtime violations to the roles and rights specification are
observed. In consequence, the entities that caused the viola-
tions are to be fixed. Further, the SOA is to be analyzed on
compliance of all entities to the given roles and rights policy.
But how can such an analysis be performed efficiently?

An efficient solution is to monitor and analyze the QoS
attributes of a SOA at dedicated measurement points. Mon-
itoring approaches were already elaborated in several publi-
cations. Berbner et al. [5] selected Web Services (WS) based
on QoS properties guaranteed by Service Level Agreement
(SLA). They ensured compliance to a given SLA using a
monitoring component, which was not described in detail.
Zeng at al. [6] introduced a high-performance QoS moni-
toring system. In their work they focus on service monitor-
ing architecture and QoS metric computation. Artaiam and
Senivongse [7] described a JMX-based monitoring extension
of application servers for selected QoS attributes. Michlmayr
et al. [8] integrated existing client-side and server-side mon-
itoring approaches using Complex Event Processing (CEP).
Finally, Oriol et al. [9] described the monitoring of adaptable
SOA. We will go into more detail on these approaches and
the differences to our work later in Section VI.

In this work, we propose a solution architecture that eval-
uates compliance of a QoS-aware SOA to the desired QoS
attributes. The solution architecture monitors the SOA at
dedicated measurement points. The thereby collected actual
data are filtered according to a filter policy and compared
to target states specified in the service policies of the SOA.

A SOA application landscape consists of several compo-

27

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Figure 1. Mechanism for the exemplary QoS attribute performance

nents like services, processes, application servers, hardware
platforms, etc. we refer to as SOA entities (SE). Dedicated
measurement points at the SOA entities are equipped with
sensor components (SC). The characteristics of the sensor
components differ depending on the measurement point. A
sensor component may be some source code attached to a
services source code, a JMX client component, or even a
GUI element, like buttons, sliders, etc. In common, these
sensor components collect actual data from the SOA entities.

A sensor component emits events that include the infor-
mation needed for further analysis. The included information
as well as the necessary number of events strongly depends
on the desired QoS attribute. The latter depends, among
others, on the number of measurement points. If several
events are needed they are combined, which generates an
abstract event, also called a complex event [10].

Figure 1 visualizes the mechanism for the QoS attribute
performance:

1) In the sensor components events including timestamps
are emitted.

2) The events are collected and filtered based on filter
policies. The filter policies thereby describe what
events emitted by which sensor components are com-
bined to a complex event.

3) A complex event is generated including the collected
events needed.

4) The complex event is processed by a complex event
processor. Incoming complex events are analyzed on
compliance to QoS attributes defined in the service
policy of the SOA.

In our example target roundtrip time is compared to the
calculated actual roundtrip time. Therefore two of four
measurement points (send request, receive request, send
response, receive response) are used.

In summary: With a grown SOA it is desirable to evaluate
compliance to specified QoS attributes. The combination of
SOA and CEP results in a highly flexible approach to detect
compliance to or violation of QoS attributes constraints by
target-actual comparison. This work offers a solution archi-

tecture that is able to perform such a target-actual compari-
son. The comparison is not limited to information extracted
from single services only, but also from whole business
processes, the application server and/or the system platform.
By filter policies analysis can be controlled to single QoS
attributes or SOA entities. The solution architecture is able
to analyze QoS attributes from technical domain as well as
from business domain. Exemplary QoS attributes are perfor-
mance, roles and rights, reliability, schedule and cost. The
solution architecture also is able to react in various ways,
reaching from display on a dashboard towards automatic
anatagonization using dedicated escalation applications.

The paper is organized as follows: The next section gives
a brief description of the requirements this architecture has
to address. Afterwards our solution architecture is described
in detail, including a statement on coverage of the given
requirements. A realization of the solution architecture and
exemplary implemented QoS attributes are described in the
proof of concept section. We then provide a discussion on
related work. Finally, a description of potential future work
and our conclusion is given.

II. ARCHITECTURAL REQUIREMENTS

In a SOA application environment, there are several
situations where it is desirable to support QoS attributes.
Remember the QoS attributes performance, schedule and
cost, which relate to an ordering process with a due time
for shipment. But how can compliance of a SOA to its
QoS attributes be shown? A flexible and powerful solution
architecture is required to measure compliance of the SOA
to its QoS attributes.

The aim is to evaluate conformance to desired QoS
attributes. Thereby, QoS attributes may relate to technical
domain, like performance, or business domain, like cost and
schedule. Ability to handle QoS attributes of both domains
is a requirement.

The solution architecture
1) needs to be able to determine the actual state of a SOA

concerning its desired QoS attributes and
2) to compare this actual situation to the defined QoS

attributes.
To sum up, the architecture performs a target-actual com-
parison on QoS attributes described in the service policies.

The actual situation concerning QoS attributes is deter-
mined based on relevant data captured from SOA entities.
The solution architecture therefore needs to provide an ap-
propriate capturing mechanism. Relevant data are to be cap-
tured by sensor components at dedicated measurement points
located at specific SOA entities. The SOA entities thereby
may be of different type (service, process, application server,
etc.), possibly distributed and under diverse governance. The
need of source code change at the SOA entity to apply the
sensor component is to be kept to a minimum to increase

28

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

acceptance, applicability and interoperability. The aim is to
minimize necessary modifications to the SOA.

Next, the solution architecture needs to provide a con-
figurable filter component to filter the data according to
defined filter policies. The filter policies define i) on which
QoS attributes target-actual comparison is to be performed
ii) what data are to be captured and iii) where the data are to
be captured. For a filter policy a declarative language ,e.g.,
WS-Policy [3], is to be used to enable modification the filter
behavior without the need of recompilation.

The relevant data captured at the SOA entities can be
seen as a kind of events that contain the appropriate data
for further analysis. The solution architecture needs to be
able to combine desired events to a more abstract event, as
described before in the performance example.

Another requirement is to offer a flexible mechanism
that allows to react on specified conditions. Appropriate
activities thereby include execution of applications for active
antagonization (e.g., cancellation of request execution) as
well as the compilation of statistics (e.g., display of statistics
on QoS attribute conditions).

Finally, the solution architecture should be based on
standards and well-known frameworks. By using standard
frameworks and products the applicability to and the inter-
operability of different environments is increased.

III. SOLUTION ARCHITECTURE

A. Description of solution architecture

In this section, an architecture that meets the requirements
in the previous section will be presented. Figure 2 gives a
basic overview of the solution architecture, which consists
of four components: i) the QoS-aware SOA, ii) the filter
component, iii) the analysis and statistics component and
iv) the escalation component. The QoS-aware SOA is al-
ready existing. It is to be enhanced and monitored by the
other three components to enable a target-actual analysis on
desired QoS attributes.

In a QoS-aware SOA, the desired QoS attributes are
defined by service policies, which describe the target states.
To determine the actual state of QoS attributes, sensor com-
ponents are applied to SOA entities at specific measurement
points. The sensor components are responsible for emitting
events with collected actual data. The data was read and
composed from the SOA entities and sent to the monitor
and filter component.

The monitor and filter component has two tasks: i) to
observe the SOA environment and to collect the emitted
data from the sensor components; ii) to filter the received
data according to filter policies.

The term policy is used in both, QoS-aware SOA and
monitor and filter component. It is to be interpreted depend-
ing on the context: Within a SOA, the term policy refers to
service policies, for example W3C standard WS-Policy [3],
that specify the target non-functional behavior of a certain

Figure 2. Basic overview on the solution architecture

Web Service. Within the monitor and filter component, the
term policy defines the behavior of data filters.

The analysis and statistics component compares actual
data to service policies of the SOA environment. To do
that, the filtered data are compared with the service policy.
This component also creates statistics on QoS attribute
conformance or violation. If an escalation is desired, this
component will trigger the next component to perform the
appropriate escalation.

Finally, the escalation component provides desired ac-
tivities, like solutions to solve service policy violations on
the SOA environment. The activity strongly depends on the
objectives, as will be shown later by example in Section V.

B. Why does the architecture meet the requirements?

First, the solution architecture is able to collect data from
the SOA entities. For example, with performance it is able
to collect timestamps data whenever a SOAP message is
initiated or received (see Figure 1). The architecture attaches
sensor components to SOA entities like e.g., Web Services.
These components collect data and send them as an event
to the filter component. Once an event is received, the filter
component checks its filter policy in order to decide what
to do with such an event.

Second, our architecture keeps code modifications to SOA
entities to a minimum. Ideally, none of their source code
will be changed. As mentioned before, the monitor and
filter component must be able to collect data from the
SOA environment. Therefore, data from the SOA entities
needs to be sent to the monitor and filter component. There
are different ways to put this into effect. Either new code
fragments must be added to the SOA entities, or realized
by sensor components, like SOAP message handlers, that
work as proxies for the incoming and outgoing SOAP
messages. The sensor component could be based on different
technologies, such as JMX or even ESB events components.
Also, a network sniffer could be used as a sensor component

29

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

to analyze network traffic for a certain request or response.
In summary: Several options do exist to implement the
handler approach. The decision, which one to use, strongly
depends on different factors; for example, to which extend
the SOA entities are allowed to be modified.

All the sensor components have in common that they
are attached to measurement points within the SOA. The
measured data then need to be transferred to the monitor
and filter component. Therefore, events are created and
emitted at the sensor components. All incoming events at
the monitor and filter component are filtered according
to the filter policy. The events that the policy allows are
forwarded to the analysis and statistic component. Other
events will be ignored. Optional, all incoming events are
saved permanently.

At the analysis and statistics component the events that
passed the filter are further processed. If needed, the events
are combined to complex event. Analysis is performed on the
complex events. The solution architecture described here is
able to handle both, single events as well as complex events.

Compliance to desired QoS attributes are detected either
based directly on the events or on complex events. This
method enables the system to measure compliance of a
SOA to a single quality attribute. Moreover, several complex
events again can be combined with events or complex
events. With this mechanism, the solution architecture is
also able to measure compliance to combinations of several
QoS attributes. For example, if several QoS attributes in
combination have impact on other QoS attributes.

The architecture is based on standards, frameworks and
products. However, some components, like sensor compo-
nents, need to be implemented from scratch.

The escalation component is an important part in this
architecture. It provides a way to initiate appropriate esca-
lation measures as well as a way to start a certain activity
in case of a service policy violations. The functionality of
this component strongly depends on the kind of violation
and predefined objectives of the escalation component.

In a nutshell: The provided solution architecture fulfills
all the requirements specified in Section II. It is able to
monitor diverse entities of a SOA application landscape.
Changing the source code within the SOA landscape is kept
to a minimum by using sensor components to the monitored
component. Events emitted by the sensor components are
collected by a monitor and filtered by an adjustable filter.
The filtered events are further analyzed to measure com-
pliance of the SOA to QoS attributes, which are described
in a services’ policy. Also based on these events statistics
are generated. This architecture is based on standards and
well-known frameworks. Finally, the architecture offers an
escalation component, which is used to trigger desired
activity in case of compliance to or violation to a services’
policy.

IV. SOLUTION ARCHITECTURE DETAILS

For each of the four systems of the solution architecture
we will in detail describe the input and output data, the
performed tasks and the entities within the systems.

A. SOA Application Landscape

The SOA application landscape consists of several entities
that we named SOA entities. But what are these entities?
Obviously, there are the different kinds of services, like
component service, composite service, workflow service,
etc. In addition to that there are processes, realized by
appropriate combinations of services. An entity of the
SOA application landscape is also the application server
itself. Finally, the platforms (operating system, hardware
components, etc.) are such entities, too. Typically, these
SOA application landscapes are huge and grown distributed
systems. In consequence, these systems are highly complex,
and so is the communication structure within.

B. Monitor and Filter Component

All the SOA entities are to be interlinked with a monitor
and filter system to determine the actual states of the QoS
attributes of the entire SOA entities. The applied sensor
components collect actual data, encapsulate these data in
events and finally emit these events. The sensor components
are situated within the SOA application landscape, but they
are part of the monitor and filter component. The sensor
components detect and indicate changes in state of the SOA
entities. As a simple example: At the time a service receives
a request, for example a SOAP message, its state changes.
This change in state is detected by the sensor component,
which is situated prepending to the service. With rights
and roles the sensor component will then determine the
user principal of the SOAP message. Afterwards an event
that contains (besides other information) the principal is
generated and emitted. At a more global view each SOA
entity equipped with such a sensor component emits a
corresponding event once a SOAP message is received.
Received events are optionally stored before the further
processing, like the filter mechanism. Because of the storage
the system is enabled to perform retrospective analysis.

The received events are filtered according to the desired
filter behavior. The filter behavior is described by the filter
policies in a declarative manner, for example using XML.
For example: Suggest a SOA equipped with sensor com-
ponents for performance and for rights and roles. In the
filter policy, the desired QoS attribute (rights and roles) and
its corresponding sensor component IDs are described. For
each received event the sensor component ID is compared to
the ones specified within the filter description. If matching,
the event is forwarded to the corresponding subsequent
processing unit, as described later. So in our example events
related to rights and roles pass the filter, events related to

30

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

performance do not pass. The output of the monitor and
filter component are events.

C. Analysis and Statistics Component

The output events of the monitoring system is the input
for the analysis and statistics system. Within this component
the input event vectors are further processed. For each
event vector, respectively the corresponding QoS attribute,
an event processor is provided. With the example stressed
before two event processors are provided - one for roles and
rights and one for performance.

Within the event processors the events are combined to
complex events and analyzed according to the QoS attributes
requirements. In a first step, the service policies (located
in the SOA) of the SOA entities are read by the event
processors. As described above, the service policy contains
the description of the target state for a QoS attribute. Next,
from the event vector the events that correspond to the SOA
entity are extracted and combined for further analysis. Based
on these complex events the actual state concerning the QoS
attribute is determined. In the performance example stressed
before, the actual message transfer times and the processing
time of a SOA entity are determined by four events. The
filtered events of the same SOA entity ID and message ID,
which corresponds to receiving a request and sending the
response, are combined to a complex event. The processing
time can now be determined from the complex event by
subtraction of the timestamps. Finally, the result (actual
state) is compared to the target state. The result indicates
compliance to or violation of target state. In either case,
statistics can be generated, like performance violation per
time unit or a list of principals for each SOA entity.

In a nutshell, the analysis and statistics system is a
collection of event processors and generated relations. For
each quality attribute a dedicated event processor is needed,
since combination of used events and attached additional
information is individual for each quality attribute. From
the results of the event processors desired relations are gen-
erated. The outputs of these components are QoS attributes
compliance or violation vectors and the generated relations.

D. Escalation Component

The final component of our solution architecture is the
escalation component. The component in essence is a col-
lection of individual application that establishes certain
activities based on the output of the analysis and statistic
component. These activities are highly individual. For ex-
ample, on performance violation an application that issues
a ticket to a ticketing system might be started. Or a kind
of management application that upscales resources for the
SOA application landscape. Another option is an information
cockpit application. On compliance of actual states to target
states the cockpit indicates green condition, on violation red
condition. Additional information, like performance status

of the last hour, may also be displayed by gaining access
the corresponding statistics.

Relationship among event and escalation activity can be
1-by-1 or 1-by-n. This means that for an individual result
of the analysis and escalation system, like a QoS attribute
violation, several escalation activities may be issued. For
example, on performance violation a ticket is issued and
the resources available to the SOA application landscape
are upscaled. By these examples it also becomes obvious
that the escalation system does not necessarily influence the
SOA application landscape. Issuing a ticket does not directly
influence the SOA, but resource upscaling does.

V. PROOF OF CONCEPT

In the following, we will describe our proof of concept
implementation of the prior described solution architecture.

A. System Overview

The solution architecture in general is realized based
on several established frameworks and standards. For the
SOA application landscape we used the Enterprise SOA
(eSOA) showcase by q-ImPrESS [11]. For the monitor and
filter component as well as for the analysis and statistics
component GlassFishESB with IEP runtime component [12],
[13] is used. IEP includes an implementation of CEP. The
event processors are implemented using NetBeans and IEP
design time component. At runtime the event processors
are hosted at the GlassFishESB application server. To store
events the default setting of the IEP component, Apache
Derby, is used.

The eSOA showcase is a set of exemplary applications
from the domain of order and supply chain management
forming a non-trivial service oriented system. It implements
simulators for customer-relationship-management (CRM),
product data management (PDM), pricing, inventory, order
and shipment. The showcase is based on Web service
technology and Java. For communication SOAP messages
are used.

Sensor components are applied to the Web services of the
eSOA showcase. In detail, we implemented SOAP message
handlers for some exemplary QoS attributes, as we will
describe later. On server-side the sensor components are
positioned before the individual Web services, as can be
seen in Figure 1. Before, in this case, means that the SOAP
message handler is positioned between the client and the
Web service. In consequence, a SOAP request first passes the
SOAP handler before it is received by the Web service. And
a response of the Web service first passes the SOAP handler
before it is received by the client. In addition, subsequent
means that a request message first passes the SOAP handler
and is then sent to the Web service. A response message
first passes the SOAP message handler and is afterwards
forwarded to the client. On client-side the situation is vice-
versa, if a client-side sensor component is needed.

31

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

All sensor components have in common that they emit
events. The characteristics of the events depend on the
QoS attributes. The emitted events are collected by the
IEP component of GlassFishESB. Further, these events are
filtered using corresponding event processors. For the filter
policy description XML is used. The filter policy thereby
consists of the QoS attribute to pass the filter.

After passing the filter the events are processed by the
analysis and statistics component. The analysis is performed
by event processors. An event processor basically consists of
an input stream and some processing entities that end in an
output stream. For each QoS attribute a corresponding event
processor is implemented. The individual event processors
are designed and executed using the IEP design time and
runtime components.

B. Exemplary quality attribute implementations

In our proof of concept, we implement selected QoS
attributes. In a first step, we implemented the QoS attribute
of performance. In more detail: Based on SOAP message
handlers (client-side and server-side) we determined request
and response transmission time, service calculation time and
roundtrip time.

Also from the technical domain, roles and rights are
implemented. In brief: The individual Web Services of
eSOA are called by clients. Each client has an individual
identification. The right and roles model defines which Web
Service may be called by a certain client. The motivation for
this scenario is the analysis of a grown SOA on conformance
to given right and roles model. The task is to generate a
statistic on principals of service requests.

Different sensor components are implemented for this
task. A first kind of sensor component is a SOAP message
handler at server-side prepending to a Web service. Within
this SOAP message handler the principal of the incoming
request is determined from the SOAP message context.
Then, an event including this information on the principal
is emitted to the corresponding event processor. In brief,
an IEP component is a JBI module, that is added to and
deployed with a composite application. The event processor
appears as a Web Service that, in our case, uses SOAP
for communication. At the sensor component, respectively
our SOAP message handler, the created event, in essence,
is a SOAP message. The structure of the SOAP message
is defined in the JBI modules WSDL. Emitting the event
means, that this SOAP message is sent to the Web Service
exposing the event processor.

With regards to righs and roles, one concrete example
would be the SOAP request from the client is processed
by the SOAP handlers handleRequest() method. From the
MessageContext the principal of the SOAP request is de-
termined using method getUserPrincipal(). Next, a SOAP
message including the principal is generated and sent to the
event processors Web Service. At the event processor the

principal is compared to a database that contains the roles
and rights model, and any violation is indicated.

An alternative kind of sensor component uses the JMX
interface of the application server to extract the information
on principal of request on hosted services. Both kinds of
sensor components do solve the task, and either can be
used depending on existing restrictions. The advantage of the
second is that it does not touch services at all, but accesses
to application server management console is needed.

Another exemplary QoS attribute is from the business do-
main: schedule. With this a due date for shipment is agreed.
Motivation for this scenario is, for example: Shipment of
a placed order is guaranteed within 24 hours, otherwise a
certain discount is allowed. The task is to ensure this in
due time. If the due time is exceeded, statistics on time
overruns are to be generated and discount is to be given out.
Again, the Web services are equipped with SOAP message
handler as sensor components. From the SOAP messages
the information on order ID, actual time and due time is
extracted. With that information time overruns are detected
and statistics are generated at the analysis and statistics
component. On violation an application within the escalation
component automatically allows a discount.

VI. RELATED WORK

In 2005, an architecture based on Web services including
comprehensive QoS support was described by Berbner et
al. [5]. Within it particular Web services are composed to
workflows. Thereby, the selection of Web service is based
on their QoS properties that they guarantee in Service Level
Agreement (SLA). To ensure compliance to given SLAs a
monitoring component is mentioned, but not described in
detail.

The design and implementation of a high-performance
QoS monitoring system was presented by Zeng et al. [6].
Their two main issues on the monitoring system are the
service monitoring architecture and the QoS metric compu-
tation. Within their work a QoS observation metamodel with
three types of monitoring context, one on processes and two
on services, was developed. So the measurement points for
QoS monitoring are limited to the services and processes.
Our work is a more general approach, since we do not limit
ourselves to services and processes, but support any SOA
entity as described before.

A JMX-based monitoring extension of Java system ap-
plication server for the QoS attributes availability, accessi-
bility, performance, reliability, security and regulatory was
described by Artaiam et al. [7]. They also give a detailed
description of QoS attributes metrics. However, they are
limited to service-side monitoring, which means QoS mon-
itoring of services within the application server (GlassFish).
Client-side QoS monitoring is not included. Our approach
explicitly enables both, server-side and client-side monitor-
ing.

32

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

The integration of an existing client-side monitoring ap-
proach and a server-side monitoring using CEP to monitor
SLA was elaborated by Michlmayr et al. [8]. For CEP the
open source implementation ESPER is used. For monitoring
at client side so-called QoS monitoring schedules are used
that specify that certain services are monitoring in certain
time intervals. On server side a .NET technology is used,
which i) is a limitation to certain server infrastructure and ii)
also limits the service implementation to .NET technology,
as is mentioned by the authors. The described solution archi-
tecture of the authors also includes a notification mechanism
to subscribers on detected SLA violations. Their approach is
similar to our approach. However, they use ESPER, focus on
.NET technology and monitor at dedicated points in time.
In contrast, our work uses the IEP component. Although
our proof of concept uses Java, it is also applicable to other
technologies, like .NET. Next, we use continuous monitoring
rather than dedicated points in time. And finally, we provide
a mechanism to trigger activities.

Monitoring of adaptable SOA was described in Oriol et al.
[9]. The focus is on dynamic adoption of a QoS-aware SOA.
Within the QoS-aware SOA QoS attributes are stated using
SLA. The current QoS values are monitored by a monitor
component and compared to the stated SLA at an analyzer
component. SLA violations are shown to a decision maker
component, which is able to perform adjustments within
the SOA. In contrast to our work, this approach focuses on
adjustments within the SOA. Our approach is more general.
In our solution, architecture adjustments are just one aspect
of possible escalation activities.

VII. CONCLUSION

By the combination of SOA system, monitor and filter
component, analysis and statistics component and escalation
system a versatile and powerful tool is available to analyze
SOAs on compliance to the defined QoS attributes. Using
this solution architecture compliance analysis is not limited
to services and processes, but also includes other SOA
entities, like application server and platform. This enables
for several QoS attributes yet not supported, especially QoS
attributes, like in our schedule example. With the escalation
component a variety of activities can be carried out. These
activities may be of more passive nature, like to issue a
ticket. Or of active nature, like enabling for a self-scaling
SOA. The boundaries of the given approach have not been
yet explored.

Our perspective is to enrich the existing systems with
additional QoS attributes that are not yet supported. There-
fore, it is necessary to determine which QoS attributes are
requested from both, the technical and the business domain.
And which of these QoS attributes can be formalized and
further supported. A related question is the use of alternative
description languages for QoS attributes.

We will also implement additional tools to support de-
velopers with an interest for our approach. The generated
tools are to be added to different IDEs. A tool chain to
define additional QoS attributes, to equip Web Services with
these, and to deploy such Web services is implemented. Also
additional components to ensure compliance to these QoS
attributes will be provided.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
giving us helpful comments. This work has been partly sup-
ported by the German Ministry of Education and Research
(BMBF) under research contract 17N0709.

REFERENCES

[1] “Web services quality factors v1.0,” http://www.oasis-open.
org/committees/download.php/38611/WS-Quality Factors
v1.0 cd02.zip, accessed at 27. Aug 2010

[2] L. O’Brien Lero, P. Merson, and L. Bass, “Quality attributes
for service-oriented architectures,” in Systems Development in
SOA Environments, 2007 (SDSOA’07)

[3] “Web Services Policy 1.5,” http://www.w3.org/TR/ws-policy

[4] “Web Services Security v1.1,” http://www.oasis-open.org/
committees/tc home.php?wg abbrev=wss

[5] R. Berbner, O. Heckmann, and R. Steinmetz, “An Architec-
ture for a QoS driven composition of Web Service based
Workflows,” in Networking and Electronic Commerce Re-
search Conf. (NAEC’05)

[6] L. Zeng, H. Lei, and H. Chang, “Monitoring the qos for web
services,” in Proceedings of the 5th Int. Conf. on Service-
Oriented Computing (ICSOC’07)

[7] N. Artaiam and T. Senivongse, “Enhancing service-side qos
monitoring for web services,” ACIS Int. Conf. on Software
Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (SNPD’08)

[8] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“Comprehensive qos monitoring of web services and event-
based sla violation detection,” in Proceedings of the 4th Int.
Workshop on Middleware for Service Oriented Computing
(MWSOC’09)

[9] M. Oriol, J. Marco, X. Franch, and D. Ameller, “Monitoring
Adaptable SOA-Systems using SALMon,” in Workshop on
Service Monitoring, Adaptation and Beyond

[10] D. Luckham, The power of events, 5th ed. Boston, Mass.
[u.a.]: Addison-Wesley, 2007.

[11] Q-ImPrESS, “Enterprise SOA Showcase.” http://www.
q-impress.eu/wordpress/software/, accessed at 27. Aug 2010

[12] S. Microsystems, “Glassfish application server.” https://
glassfish.dev.java.net/, accessed at 27. Aug 2010

[13] Oracle, “Intelligent event processing (iep).” https://open-esb.
dev.java.net/IEPSE.html, last accessed at 27. Aug 2010

33

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

