
A Pragmatic Online Authentication Framework using Smart Cards

H. Karen Lu, Asad Ali, Kapil Sachdeva1
Gemalto

Austin, Texas, USA
{Karen.lu, asad.ali}@gemalto.com

Ksheerabdhi Krishna
Gemalto

La Ciotat, France
Ksheerabdhi.krishna@gemalto.com

Abstract - Like most security systems, designing a secure
two-factor online authentication framework is hard, but
designing one that is also intuitive to use and easy to deploy
is even harder. While a secure, but overly complex
framework may offer little security in the end since it never
gets used, an overly simplistic one that focuses merely on
usability may gain initial acceptance but will inevitably lead
to data breaches. To address this design paradox, we present
a new online authentication framework that provides
security, usability, and ease of deployment. This framework
combines the proven hardware security of smart cards and
the universal ease of web access through browsers, without
imposing the deployment and usability complexities
generally associated with conventional smart card systems.
The resulting authentication solution is applicable to existing
smart cards already deployed, intuitive for users, and
convenient for service provides to both develop and
maintain.

Keywords-Authentication; security; smart cards; usability.

I. INTRODUCTION

Internet has undoubtedly been a phenomenal success,
dominating every facet of our professional and social life.
However, this success has partly come at the expense of a
continuous barrage of security attacks against both users
and service providers. Attackers employ various
mechanisms to steal user’s credentials. Some use social
engineering to lure naïve users into revealing their
credentials [1], while others leverage network security
flaws and web application vulnerabilities to attack web
servers and their databases [2]. These attacks compromise
confidential user data. Some of this data can actually be
user authentication credentials that enable attackers to
impersonate users and gain subsequent access to
additional user data and services. This is generally
referred to as identity theft. Such theft is possible partially
because a vast majority of online service providers still
rely on username and password, a weak single-factor
authentication method. Furthermore, since users tend to
use the same password on multiple service providers [3],
it amplifies the potential damage resulting from a stolen
credential.

1. This work was completed while Mr. Sachdeva was with
Gemalto. Mr. Sachdeva is now working with HID.

The weakness of password based authentication
solutions can be addressed by using an authentication
method that relies on multiple factors for verifying a
user’s identity. For example, in addition to password, the
what-you-know factor, the authentication method may
also require a what-you-have factor in the form of a
separate physical token, or even a what-you-are factor in
the form of biometric information. While there is some
social skepticism around the use of biometric information,
the use of dedicated physical tokens to provide a second
authentication factor that compliments passwords is
gradually gaining acceptance with service providers
dealing with high value transactions [4]. In general
however, we still see a lot of not-so-secure systems in use.
One reason for this could be the inertia of status quo; it is
always hard to change an existing framework. Another
reason is what we call economies of convenience. This
notion is somewhat analogous to the economies of scale, a
microeconomic term that refers to the cost advantages that
a business obtains due to expansion. Similarly, there is
also a cost advantage to having systems that are extremely
convenient to use, even if they are not as secure.
Enterprises can then develop risk models of dealing with
data breaches, when they happen. As for the average end-
users, they generally turn a blind eye to security
vulnerabilities as long as the systems they use are
convenient, and security threats not imminent.

However, a continued increase in the intensity and
frequency of cyber attacks is beginning to challenge these
well established economies of convenience. Enterprises
will eventually mandate stronger security measures once
it makes better economic sense for them to lower the
cumulative cost of data breaches by reducing the risk
instead of managing this risk with their current models.
We can reach this watershed moment either through an
exponential increase in the number of data breaches, or by
designing security systems that are more convenient to
develop, deploy, use, and manage. It is the intent of this
paper to propose a solution for the later.

The rest of the paper is organized as follows. Section
II describes why smart cards are excellent candidates for
use as authentication tokens. Section III describes the
existing smart card infrastructure and explains how it
hinders wide spread adoption of smart cards. Section IV
introduces SConnect technology that addresses the issues
identified in Section III. Section V describes a two-factor
online authentication solution based on SConnect and

84

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Section VI offers security and usability analysis of this
solution. We conclude with Section VII.

II. AUTHENTICATION TOKENS

Physical tokens for multi-factor online authentication
generally use one of the two common authentication
techniques; One-Time-Password (OTP), or X.509
certificate based challenge and response. In both cases the
hardware processor of the token uses private keys to
perform cryptographic computations for generating a
“credential” that is unique for each authentication attempt,
and therefore can neither be stolen from the web server,
nor replayed by an attacker. Since the token stores the
private cryptographic keys, the strength of such an
authentication method is a function of the token’s
hardware security.

Smart cards are excellent candidates for these physical
tokens. They are tamper resistant, portable, and secure
microprocessor devices that have been widely used in a
variety of applications related to both physical and logical
security. The smart card does not usually have its own
power supply, yet it operates as a very small computer
with an embedded operating system (OS) that controls
application execution, access restrictions and
communication with the outside world. However, unlike
the mainstream personal computers, smart cards offer
much greater hardware security. It is extremely difficult
to compromise data stored inside the smart cards. This is
because smart cards are designed with a heavy focus on
security from the ground up, and this focus is maintained
throughout their lifecycle. As such, smart cards can
withstand attacks based on physical probing, logical
probing, side channel threats, fault induction and software
debugger probing [5]. A more detailed discussion of
techniques for preventing such attacks is outside the scope
of this paper.

Suffice to say that smart cards can serve as excellent
tokens of two-factor authentication. However, despite
their hardware advantage, smart cards are yet to garner
widespread adoption outside their controlled niche
markets. One reason for this lackluster acceptance is the
complexity of deploying smart card based solutions, and
the inconvenience of using them. To address these
problems this paper introduces a new two-factor online
authentication framework. It supports an X.509
certificate-based challenge-response model of
authentication using smart cards, and utilizes a unique
communication model that allows seamless access to
smart card functionality directly from web applications.
This approach facilitates easy adoption by end users as
well as service providers.

III. CURRENT SMART CARD FRAMEWORK

In order to appreciate the value of the new method,
we first have to consider how smart cards are currently

used for online authentication. This use is somewhat
restricted to environments where it is viable to create and
maintain smart card specific infrastructure. To use smart
card services, host applications must be able to
communicate with smart cards. This communication
component has been the critical piece of all authentication
systems based on smart cards, and is perhaps the reason
why smart cards have thus far not enjoyed widespread
adoption in security frameworks for ubiquitous and
loosely managed systems. In this section, we describe the
conventional smart card connectivity model with respect
to the X.509 based online authentication, and the usability
and deployment issues inherent in the existing methods.

A. Smart Card Middleware

Conventional smart cards use traditional ISO 7816
communication protocols to talk to their host devices.
These devices range from mobile phone handsets to
custom readers at public transportation terminals. In such
environments smart cards continue to be useful and well
integrated components. Conventional smart cards are also
used in online authentication applications, though their
acceptance in this market has been less successful. Two
key reasons for this are the lack of built-in smart card
reader drivers on mainstream PCs, and the need of smart
card specific middleware; both of which are barriers for
entry into the online market that demands ubiquitous
plug-n-play behavior. Although the reader driver issue is
addressed in modern computer operating systems (OSs)
through the standard USB CCID class driver for smart
card connectivity, the distribution of smart card
middleware continues to impede the adoption of online
authentication solutions.

This middleware enables application programs to
access the cryptographic functionalities of smart cards (or
other security devices) without worrying about the details
of these devices. For this purpose, PC OSs offer a device
independent cryptographic API, which is realized by
device specific implementations. Different operating
systems have their own APIs, and different devices
(including smart cards) require their own
implementations. Middleware examples include
Microsoft’s CyptoAPI, RSA Laboratories’ PKCS#11, and
Apple Computer’s CDSA. While offering similar
capabilities, they present different APIs and have
additional restrictions that may limit the functionalities of
applications developed for a specific middleware API. For
example, CryptoAPI is used within the native Windows
ecosystem [6] but not supported on Mac, Linux, or even
browsers other than IE on Windows. The PKCS#11
specification [7], though available across all major
operating systems, is natively accessible only via Firefox
browser, and is not supported by IE. Similarly, CDSA is
only supported on Mac OS X [8].

85

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

To further complicate matters, the user may need to
manually install these browser/OS specific middleware on
all the machines he intends to use. For example, to use
Firefox browser with a smart card, the user needs to
download and install the PKCS#11 library. Such manual
installations severely restrict the portability of smart
cards. While the two-factor authentication credentials are
stored in a device which you can carry in your wallet, the
use of these credentials is not portable. Furthermore, since
middleware of a particular smart card may not be
available for all browser/OS combinations, it restricts the
online authentication solution to a limited number of
platforms.

B. X.509 Authentication

The X.509 certificate based authentication utilizes a
user’s digital certificate along with the corresponding
private key. Using public key cryptography [9] the user
can demonstrate that he is indeed the holder of the private
key. This can be done by a user storing his private key
and using it in calculating response to a server challenge
when needed. Unlike passwords which a user can
remember, certificates and private keys are blobs of data
that need to be securely stored in digital form. To ensure
flexibility and inter-operability, the security industry has
specified architectures for the storage and use of these
credentials either from the operating system of host
computer or from an external security device such as a
smart card. Since hardware tokens and even software
security devices present different interfaces and use
different protocols, these architecture specifications
provide a common bridge for accessing the cryptographic
capabilities of these devices. For example, certificate
access, document signature and encryption, and card
holder validation can now be done in a device neutral way
from a given platform. The middleware mentioned earlier
implements some of these specifications. A web browser
can use this middleware to accomplish SSL/TLS mutual
authentication with the client certificate and private key
stored in a smart card. However, the smart card
middleware is a local resource; web applications cannot
use it to access smart cards in a platform neutral way.

C. Online Authentication Usability

Even if the hurdle of middleware installation is
overcome, there can be usability issues. Smart card
functionality is accessed via the cryptographic interfaces
of web browsers. These interfaces are agnostic to the
underlying credential store (smart card, host computer,
etc.) and therefore, provide broad abstractions. However,
abstractions by their very nature are written at a high
level, and seldom address all the specificities of a target
device. Because of this, security mechanisms based on
smart card conventional connectivity are generally seen as
road blocks to application efficiency and often

abandoned. Furthermore, certain web browsers, such as
IE, require the user to propagate certificates from his
smart card to web browser’s persistent certificate store.
This makes the smart card based online authentication
non-portable by limiting its use to only those computers
to which such propagation has been done.

Let us look at another usability aspect by considering
the following example:
1. A user browses to a website that requires certificate

based authentication.
2. The web browser displays a list of certificates

propagated from the user’s smart card.
3. Since each certificate has a specific use, the user is

asked to select the appropriate certificate.
4. Once the user selects the certificate he is prompted for

a PIN.
5. The user enters the PIN and authenticates

successfully.
While this appears simple, Steps 2, 4, and 5 present a

user interface challenge. They present the user with a UI
that is specific to the browser, host operating system and
the smart card middleware. The web application has no
control over the way the user interacts with these UI
elements. For example, the tasks of canceling the
certificate selection, requesting smart card insertion,
physically removing the smart card, or abandoning the
PIN entry, could provide inconsistent responses.
Furthermore, the experience of accessing the same web
site varies with each web browser and operating system.

The current smart card connectivity model is therefore
not a panacea for achieving a seamless marriage between
security and usability. While the notion of carrying your
credentials in a secure portable device is a fascinating
idea, it fails to germinate into a viable solution that
utilizes these credentials for online authentication. We
address these issues through a new smart card
connectivity method called SConnect, and then show how
it can be used to design a smart-card-based online
authentication framework.

IV. SCONNECT

SConnect [10] is a connectivity bridge between a
smart card and a web application. A web application
typically consists of two major components: a server part
that executes on a remote web server; and a client part
that executes in the local web browser. The server part of
the application implements server side business logic,
interacts with backend systems, and generates dynamic
HTML content to serve the client. The client part of the
application renders web content, implements client side
logic, interacts with the user, and executes scripts,
typically JavaScript. To access the functionality of a
smart card connected to a host computer, a web
application must communicate with the smart card.
SConnect enables this communication, without requiring

86

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

the installation of any conventional smart card
middleware.

A. SConnect Architecture

The SConnect architecture is composed of two parts: a
web browser extension; and a library. The web browser
extension extends the standard computer and smart card
interface layer (called PC/SC) to enable client
applications written in JavaScript to communicate with
the smart card. The SConnect library provides a
JavaScript API for developers to write web applications
that connect to and access smart cards. The library uses
the browser extension to communicate with smart cards.
Figure 1 illustrates the architecture of a SConnect-based
web application, with the two shaded boxes representing
the two parts of SConnect. Typically the client side
JavaScript code in the web application resides on a web
server and is downloaded to run in the web browser on
demand. Some common code, which interacts with smart
cards using the SConnect library, is referred to as smart
card module, and is different for each type of smart card.
In the conventional approach such differences between
smart cards are handled by installing different middleware
components, a process that is both difficult to maintain
and cumbersome to use. By contrast SConnect allows
such support by simply downloading a different
JavaScript file, a process that is completely transparent to
the user.

To ease development, SConnect hides browser
dependent complexities from web application developers.
The SConnect library provides utility functions that
handle the detection, installation, and update of SConnect
browser extension. This extension is less than 500KB and
is available for most common web browsers on Windows,
OS X, and Linux operating systems.

B. SConnect Security Features

While the openness of SConnect that allows direct
access to smart cards is a bonanza for web application
development, it also broadens the attack surface.
Malicious applications can potentially use the same
interface to connect to the smart card and use its
cryptographic services to impersonate the card holder. To
mitigate such potential risks, SConnect deploys a set of
security measures to protect the end user and service
provider. These measures include digital signature of the
browser extension, enforcement of HTTPS, user consent,
server verification, and a control mechanism called
Connection Key.

Digital Signature: The SConnect browser extension is
digitally signed using a code signing key issued by a
trusted certificate authority, such as VeriSign. A signed
extension instills confidence in users by validating the
source of the extension.

Enforcement of HTTPS: To ensure secure
communication with a remote web server and to prevent
Man-in-the-middle (MITM) attacks, SConnect mandates
HTTPS connection between the browser and the remote
web server before a web application is allowed to access
the smart card. SConnect rejects connection requests from
non-HTTPS connections.

User Consent: The first time a user visits a SConnect-
enabled website, SConnect displays a warning message
box informing the user that the website is trying to access
the smart card. The user must make a conscious decision
to allow or deny such access. SConnect can save this
decision for future reference if so desired by user.

Server Verification: During SSL (or its predecessor
TLS) handshaking, the browser receives and examines the
server website’s SSL certificate. If this certificate is
invalid, the browser presents a warning to the user.
However, most users ignore such warnings and continue
anyway, thereby exposing themselves to malicious
websites and MITM attacks. To mitigate this risk,
SConnect does additional server SSL certificate
verification when a web application tries to access the
smart card. This verification consists of verifying the
signatures of the certificate chain, ensuring that the root
CA is trusted by the browser, checking the validity
period, and matching the Common Name in the certificate
with the URL of the website. If SConnect determines that
the certificate is invalid, it will not allow any connection

Card Reader #3

PC/SC Software / Hardware

SConnect
Browser Extension

Web
Browser

Internet

PC

SConnect Library

Smart-Card-based Web Application

Smart Card Modules

Server

Smart card reader

Card Reader #2

Figure 1. SConnect-based web application architecture.

87

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

between the website and the smart card, even if the user
has accepted the browser connection.

Connection Key: While the server verification ensures
the identity of a website, it does not make any claims
about its trustworthiness. That determination has
traditionally been left at the user’s discretion - a task that
is made even harder by the promiscuous approach to
issuance of SSL certificates followed by some certificate
authorities, even for the Extended Validation Certificates
[11]. To address such risks, and also to introduce a
licensing policy, SConnect employs the Connection Key.
The authority that issues smart cards can decide which
web portals can access these cards and, hence, can issue
the Connection Key to only these portals. Examples of
such smart card issuing authorities can be governments
that issue smart cards to their citizens and want to control
at which government service portals that citizens can use
these cards.

The Connection Key uniquely binds to the SSL
certificate of the website that deploys SConnect-based
applications. This ensures that only websites with valid
Connection Keys can access the smart card. The
Connection Key itself does not contain any secret. It
includes a set of attributes such as Common Name (the
website domain name), issuer name, issue date, expiration
date, and hash of the website’s SSL certificate. This
information is then signed using the SConnect extension
issuer’s private key, Kpriv. The corresponding issuer
public key, Kpub, is encoded within the SConnect browser
extension. SConnect can therefore verify the Connection
Key and ensure that the common name in the Connection
Key matches the domain name the web browser is
currently connected to.

These measures ensure a greater level of trust between
the end user and service provider so that the openness of
SConnect architecture can be utilized in online
applications without reducing the security associated with
conventional middleware approaches. The next section
describes how this open, yet controlled access is used to
design a secure two-factor online authentication
framework.

V. TWO-FACTOR AUTHENTICATION

We propose a smart-card-based user authentication
method for online access that does not rely on the
conventional middleware for connecting to the smart card.
Instead it uses SConnect. The authentication is based on a
classical challenge-response protocol that uses X.509
certificate and the corresponding private key stored in the
user’s smart card. What makes this method unique is the
benefit it brings to service providers and users alike. Web
applications based on this authentication method are easy
to develop, deploy, use and maintain.

The authentication software consists of two parts: a
server part that resides and runs on the web server; a

client part that is dynamically downloaded from the web
server, but is executed in the web browser. The server
component is responsible for authenticating the user,
managing login sessions, logging events, and interacting
with certificate authorities or issuers for verifying X.509
certificates. The client component renders the user
interface in the web browser for user interaction. It also
uses the SConnect extension to connect with the smart
card and use its cryptographic services.

When authenticating a user to an online server, located
on domain D, the authentication involves the following
cryptographic operations:
1. The online authentication server with domain D

generates a random challenge C = {r, D}, which is
unique for each authentication request. This challenge
is generated by combining a random sequence of bytes
r, with the domain of the server, D. The server sends
this challenge C to the smart card through the web
browser and SConnect.

2. SConnect compares the domain D encoded in the
challenge C with the current domain Db that the
browser is connected to. If D = Db , SConnect
forwards the challenge to the smart card. Otherwise,
SConnect rejects the connection. The authentication
fails.

3. If SConnect forwards the challenge C to the smart
card, the card digitally signs the challenge using the
private key Kpriv. The resulting signature is the
response R:

 R = sign{C} = RSAEncrypt {SHA-1(C) }Kpriv
4. The response R is sent back to the authentication

server along with the X.509 user certificate read from
the smart card. The server verifies the signature using
the public key, Kpub , retrieved from the user’s
certificate. The computation as follows:

 Hb = Decrypt {R} Kpub
 = RSADecrypt { RSAEncrypt {SHA-1(C)} Kpriv} Kpub

 H = SHA-1(C)
5. SHA-1() is a cryptographic hash and the chance of

collision is therefore extremely small. When Hb = H,
the authentication server concludes that the user’s
smart card does indeed hold the private key. The user
is authenticated. Otherwise, the authentication fails.

Appending the current domain to the challenge in step

1 helps defend against the Man-In-The-Middle and the
chosen protocol attacks. (See Section VI.) The
authentication is accurate since it is based on
cryptography and there is no uncertainty involved. Figure
2 illustrates the message flow of this authentication
process.

The user logs in to a website through the
authentication server. This connection is over HTTPS
protocol, and the web browser performs server
authentication as part of the SSL handshake process. The

88

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

rest of the numbered steps in user authentication are listed
below.

1. The following details the steps in the above
sequence:The user clicks the “Login” link in the web
page.

2. The authentication client, running in the browser,
prompts the user to insert his smart card into a smart
card reader attached to the host computer.

3. The user inserts his smart card into the smart card
reader.

4. The authentication client prompts the user to enter his
PIN in order to use the smart card.

5. The user enters his PIN to the smart card through the
web browser user interface or a hardware PIN pad.

6. The authentication client sends the user PIN to the
smart card using SConnect communication link.

7. The smart card verifies the PIN, and sends success or
failure status back to the browser.

8. If the PIN verification is successful, the client sends a
HTTP request to get a challenge from the server. The
server responses with a random challenge C that
consists of a random number and the server’s domain.

9. The authentication client sends the challenge to
SConnect browser plug-in. The latter compares the
domain in the challenge with that of the web server to
which the browser session is connected. If the two
domains are different, SConnect rejects the connection

to the smart card. If the two domains are the same,
SConnect sends the challenge C to the smart card.

10. The smart card digitally signs the challenge using its
private key.

11. The smart card then sends this signature, R, and its
X.509 certificate back to the authentication client,
which forwards this information to the authentication
server.

12. The authentication server verifies the certificate, its
issuer, and its revocation status.

13. It also verifies the signature response, R, sent from the
card using the public key embedded in the X.509
certificate.

14. If all is good, the server sends a success message to
the web browser. Otherwise, the server sends a failure
message.
This authentication workflow is simple from the user’s

perspective. As evident from Figure 2, the user simply
inserts his smart card and enters the PIN. All the details of
the X.509 challenge-response handshake for user
authentication are hidden from the user. Since there is no
classical middleware installation involved, the solution
deployment is equally simple for service providers. The
challenge for organizations currently using middleware-
based smart card authentication solutions is to decide if or
not to replace the system with this new approach.

Performance-wise, once the user has inserted the
smart card, the time for login is comparable with
username/password login, because loading the post-login
page typically consumes most of the time.

This proposed method is a two-factor authentication:
the what-you-have factor in the form of smart card token
(step 3); and the what-you-know factor in the form of user
PIN (step 5). It verifies that the user’s smart card indeed
holds the private key corresponding to the X.509
certificate. This challenge-response mechanism proves the
identity of the user, not whether he has an account at a
particular website. The binding of this user identity to a
particular account and its access through a given web
session are left at the discretion of the service provider
web portal.

VI. SECURITY AND USABILITY ANALYSIS

We have presented an authentication framework that
is significantly different from the middleware-based
authentication architecture used by conventional smart
cards. In this section we analyze this framework with
respect to protocol security and user behavior.

A. Protocol Security

Our authentication method allows a user to login to a
remote web server by proving his digital identity to the
server using his smart card. From the security perspective,
the authentication relies on four complimentary steps to
authenticate the user to the server:

End user Smart card Browser Auth server

HTTPS

4. User is requested to enter PIN.

5. User enters PIN.

9. Send Challenge to card.

7. PIN verified.

11. Signature and certificate sent to
server through browser.

8. Get challenge

2. Prompt end user to insert his smart card.

3. Card inserted.

1. User wants to login.

14. Success or failure.

12. Check certificate status

6. Send PIN to the card.

10. Sign challenge.

13. Verify signature

Figure 2. Authentication sequence.

89

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

1. Server authentication during SSL handshaking, which
is done by the web browser.

2. Server verification done by SConnect.
3. Connection key verification done by SConnect.
4. Certificate-based client authentication (as the user

authentication).
The first three steps represent a layered approach to

authenticate the server. This ensures that the user is
interacting with the intended server. Step 1 validates the
server’s SSL certificate and establishes a secure
communication channel with the server. Step 2 is an
additional check on Step 1, in case the user ignores the
browser warning about an invalid certificate. Step 3
ensures that smart card connectivity is only exposed to
websites with valid connection keys. If a website satisfies
these three security checks, SConnect allows it to
communicate with the smart card. This significantly
reduces the attack surface that a typical web application is
subjected to. We get the benefits of an open application
development model with easy on demand deployment, but
without the risk of MITM and other attacks, which we
will discuss in more detail below.

Man-In-The-Middle
As the name suggests, Man-in-the-Middle (MITM)

acts as a middle person on the network, intercepting
messages between a server and a client to gain access to a
user’s account at the server. For example, the attacker
poses as a server S to an unsuspecting client, and then
impersonates as the same client to the actual server S.
MITM attacks are typically handled through SSL mutual
authentication. The smart card stores the client certificate
and the corresponding private key. The web browser has a
direct access to the client certificate and the operations
that use the private key. The smart card specific
middleware discussed earlier in Section III-A makes such
access possible. While this approach certainly provides a
more robust security model, it is at the expense of
usability.

In our proposed authentication method, client
authentication is done at the application level, after the
SSL handshake and SConnect have verified the server.
Although this two-step approach to mutual authentication
by itself is vulnerable to MITM, the potential risks are
mitigated by the security checks performed by SConnect.
Assume an attacker, a malicious website www.bad.com,
is acting as MITM between a client and a legitimate
server www.good.com through, for example, DNS
poisoning or some other means. This MITM attack is
addressed as follows:
1. SConnect server verification will fail since the

browser has connected to www.good.com, while the
common name in SSL server certificate is
www.bad.com. SConnect will catch this mismatch
even if the user has ignored the browser warning.

2. SConnect uses the web browser’s root certificate store
to verify the validity of an SSL certificate. In case the
attacker uses a self-signed certificate whose issuer
certificate is not in the root certificate store, or uses a
fake certificate for www.good.com, SConnect server
verification will catch the error because it cannot
verify the certificate. It will reject the connection even
if the user has ignored the browser warning.

3. In the unlikely event that the attacker obtains a valid
SSL certificate issued by a trusted CA in the name of
www.good.com and the corresponding private key,
SConnect will refuse access to smart card unless the
attacker also presents a valid Connection Key. The
attacker may copy the Connection Key issued to the
actual www.good.com, but it still cannot pass the
Connection Key verification because the thumbprint
of its SSL certificate is different from that of the fake
www.good.com SSL certificate.
This layered approach to security allows our

authentication framework to offer mutual authentication
using a two-stage protocol. While it may not be as secure
as a monolithic mutual authentication protocol such as
SSL, it offers an excellent balance between security and
convenience.

Chosen Protocol Attack
In a chosen protocol attack, the attacker lures the user

into using his authentication credential at a malicious
website when the same credential can be used on a
legitimate website [12]. For example, a user has an
account at an online bank, www.bank.com, which
supports the smart-card-based authentication. An attacker
could lure the user into authenticating to a malicious
website using the same smart card. During the
authentication process, the attacker can login to the user’s
account at the bank by forwarding the challenge from the
bank to the smart card and the response from the smart
card to the bank. In order to do so, the attacker must have
a valid SSL certificate and a valid Connection Key. This
could happen if an otherwise legitimate website either
turns malicious or is temporarily compromised.

The domain information added to the server challenge
will prevent such an attack. For example, the domain
name www.bank.com is a part of the server challenge for
user authentication. The attacker website forwards the
challenge to the smart card. There are two possibilities.
First, if the attacker changes the domain name to its own,
SConnect verification will pass and the smart card will
generate a response. However, the response verification
on www.bank.com server will fail and so will the
authentication. This is because the domain name in the
response is different from the actual domain name of
www.bank.com. Second, if the attacker does not change
the domain name, the SConnect verification will fail
because the domain name in the challenge is different

90

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

from the current domain. SConnect will reject the
connection to the smart card.

B. User Behavior

Modern web browsers check the SSL server certificate
when establishing an HTTPS connection with a given
website. The purpose of this check is to ensure that the
SSL certificate is issued by a trusted certificate authority,
the certificate’s Common Name (CN) matches the
website’s URL, and that the certificate has not expired. If
any of these assertions fails, the browser informs the user
that the certificate is not valid and recommends that user
not connect to the given website. However, this is only a
recommendation, and browsers will still proceed with the
connection if the user ignores this warning. Surprisingly,
such warnings are not rare. A survey of Internet use
published in 2007 found that roughly two-third of all SSL
certificates used for secure connections generated
warnings [13]. No wonder users have become accustomed
to seeing these SSL warnings and casually ignore them.
Our authentication framework uses SConnect server
verification to strictly enforce what browsers merely
recommend.

VII. CONCLUSIONS

Achieving usable security is very challenging. While
smart cards offer unparalleled hardware security, their
applicability has been restricted to tightly controlled
environments where smart card infrastructure can be
managed. This paper introduced a new online
authentication framework that is different from other
smart-card-based authentication solutions. It works within
the existing smart card infrastructure, but still offers a
truly plug-n-play experience users have come to expect
from web applications. Instead of relying on pre-installed
middleware, the new framework uses a browser based
approach to access smart card services. This not only
provides a more familiar user interface, but also allows
online service providers to deploy and update their service
offerings without requiring the user to install a new
application. Our future work for enhancing this
authentication framework will focus on practical issues
such as; Connection Key revocation, management of
SConnect browser extension updates, and handling of
SConnect browser extensions that are issued by different
authorities.

With this technology, we foresee a new trend in the
development of smart card based Internet security
solutions that go well beyond user authentication.
Additional security services such as email encryption,
document signature, secure transactions, etc. can be
delivered on demand using the familiar web browser
interface.

REFERENCES

[1] “Gmail, Yahoo Mail join Hotmail; passwords exposed”,

ComputerWorld,
http://www.computerworld.com/s/article/9138956/Micros
oft_confirms_phishers_stole_several_thousand_Hotmail_
passwords. (last access 07/13/2011).

[2] Byron Acohido, Hackers breach Heartland Payment credit
card system. USA Today,
http://www.usatoday.com/money/perfi/credit/2009-01-20-
heartland-credit-card-security-breach_N.htm, January
2009. (last access 07/13/2011).

[3] Carrie-Ann Skinner, One-Third Use a Single Password for
Everything, PCWorld,
http://www.pcworld.com/businesscenter/article/161078/o
nethird_use_a_single_password_for_everything.html,
March 2011. (last access 07/13/2011).

[4] Frederik Mennes, Best Practices for Strong Authentication
in Internet Banking, ISSA Journal, December 2007.
http://www.issa.org/Library/Journals/2007/December/Me
nnes-
Best%20Practices%20for%20Strong%20Authentication%
20in%20Internet%20Banking.pdf. (last access
07/13/2011).

[5] Smart Card Alliance, “What makes a smart card secure?,”
A Smart Card Alliance Contactless and Mobile Payments
Council White Paper, CPMC-08002, October 2008.
http://www.smartcardalliance.org/resources/lib/Smart_Car
d_Security_WP_20081013.pdf. (last access 07/13/2011).

[6] Microsoft, Cryptographic Service Providers,
http://msdn.microsoft.com/en-us/library/ms953432.aspx.
(last access 07/13/2011).

[7] RSA Laboratories, PKCS#11: Cryptographic Token
Interface Standard,
http://www.rsa.com/rsalabs/node.asp?id=2133. (last
access 07/13/2011).

[8] Apple, Mac OS X Security Framework.
[9] C. Adams and S. Lloyd, Understanding PKI: concepts,

standards, and deployment considerations, Addison-
Wesley Professional; 2nd edition, Nov. 2002.

[10] Kapil Sachdeva, H. Karen Lu, and Ksheerabdhi Krishna,
“A browser-based approach to smart card connectivity,”
IEEE Workshop on Web 2.0 Security and Privacy,
Oakland, California, May 21, 2009.

[11] CA/Browser Forum, Guidelines for the Issuance and
Management of Extended Validation Certificates, Version
1.0, 7 June 2007,
http://www.cabforum.org/EV_Certificate_Guidelines.pdf.
(last access 07/13/2011).

[12] R. Anderson, Security Engineering, 2nd edition, Wiley
Publishing, Inc., 2008.

[13] C. Jackson and A. Barth, ForceHTTPS: protecting high-
security web sites from network attacks, Proceedings of
WWW 2008, Apr. 2008, Beijing, China.

91

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

