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Abstract— Discrete-event process simulation has long been 

able to analyze knotty problems arising in manufacturing, 

warehousing, health care, transportation (rail, air, bus, etc.), 

and service industries such as banks, restaurants, and hotels.  

These knotty problems include challenges such as reducing 

inventory, increasing production (throughput), deploying 

workers efficiently, and reducing both lengths of queues and 

time spent in those queues.  Indeed, from a historical 

perspective, the first, and still some of the most conspicuous, 

successes of simulation have been achieved in its applications 

to manufacturing.  The application of simulation described in 

this paper arose in the context of manufacturing safes from 

their raw-material shells.  Simulation, in contrast to other 

methods such as closed-form optimization, is highly capable of 

accommodating high process variability and almost 

automatically providing “best-case” and “worst-case” (as well 

as averages) for important performance metrics such as 

lengths of queues and waiting times in queues.  Additionally, 

the animation which routinely accompanies simulation helps 

non-technical managers understand the results.  In this 

context, the most painfully pressing problem was excess 

inventory, coupled with too slow and too meager output.  The 

simulation study guided engineers and managers as they 

endeavored to both reduce the inventory and increase the rate 

of output – only very rarely can these two objectives be 

achieved concurrently. 
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capacity planning, throughput, queuing analysis, inventory 
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I. INTRODUCTION 

In the roughly half-century since discrete-event process 
simulation made the transition from research curiosity to 
vital business-analytics tool, the earliest and also some of its 
most impressive successes have occurred in its applications 
to manufacturing processes (Law and McComas [1]).  For 
example, (Zülch and Zülch [2]) applied simulation to the 
design of hybrid U-shaped assembly systems, an NP-hard 
problem of assigning operations to stations within an 
assembly line.  Simulation effectively established priority 
rules for scheduling of a flow with simultaneously loaded 
stations, as documented by Hermann ([3]).  A hybrid 
approach of a genetic algorithm and simulation produced 
excellent results in a job-sequencing problem within a semi-

automated production process, as described by Mosca, 
Queirolo, and Tonelli [4]. 

The present application of simulation is to a semi-
automated manufacturing line producing safes (strong 
reinforced metal boxes, resistant to burglary, for the secure 
storage of relatively small valuables (e.g., jewelry, passports, 
stock certificates, etc.).  Severe economic challenges 
besetting this process included excessive raw material 
inventory (expensive in both space and time), insufficient 
production output achieved too slowly, and inefficient 
deployment of workers resulting in both conspicuous idle 
time and sporadic lack of a worker needed to perform a task 
of high urgency, such as repair of a malfunctioning machine.  
Discrete-event process simulation, unlike many other 
analytical techniques such as closed-form optimization, has 
several significant advantages which made it highly suitable 
for attacking these challenges: 

1. Ability to routinely accommodate high process 
variability via appropriate use of specified suitable 
probability distributions 

2. Ability to provide extreme values, in addition to 
expected values, for key performance metrics such 
as waiting time in queue, length of queue, time-in-
system, and output per working day 

3. Ability to provide, routinely and with nearly zero 
incremental effort, an animation which greatly 
helped non-technical management personnel 
understand and accept the results provided by the 
analysis. 

It has often been well and truly said that “simulation is 
like a movie, not like a still photograph.” 

The rest of this paper is structured as follows:  Section II 
presents an overview of the manufacturing process and 
Section III a description of data collection.  Section IV 
describes the construction, verification, and validation of the 
model.  Section V presents its results.  In Section VI we 
present conclusions and indicate likely directions of future 
work. 

II. OVERVIEW OF THE MANUFACTURING PROCESS 

The manufacturing process which constructs safes from 
raw materials is a semi-automated assembly line comprising 
a total of eighteen workstations, nine of which are automated 
and nine of which are manual.  The manual workstations are 
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each operated by two workers.  All eighteen workstations 
have idiosyncratic cycle times and downtime performances 
(time to failure and time to repair).  The line has limited 
space for incoming raw materials immediately upstream 
from the first workstation and a buffer of capacity three, for 
finished product, just downstream from the last workstation.  
Workflow is entirely linear along all eighteen workstations, 
with zero buffer capacity in the seventeen transits between 
the workstations.  Furthermore, material movement is done 
by an indexed conveyor, as described by Gunal, Sadakane, 
and Williams [5]; that is to say, no part movement can be 
undertaken until: 

1. All eighteen workstations have completed their 

processing cycle, and 

2. All workstations are ready to accept a new part 

(i.e., are not “down.”) 
Each workstation sends a “job over” signal when it has 

satisfactorily completed its cycle and hence is willing to “let” 
the conveyor index.  Only when that signal has been received 
from all workstations can the conveyor index (move each 
work-in-process item forward one workstation). 

Raw material arrives from a warehouse via a truck able 
to carry twenty shells.  These shells are measured against 
tolerances and reworked if necessary before proceeding to 
the first workstation (reworked shells have priority over 
newly arriving shells).  As they proceed to the first 
workstation via forklift, these shells are grouped with other 
components (lugs, stiffeners, and joint strips).  Due to in-
process space constraints, the forklift transfers shells only 
when the number of shells already waiting at the first 
workstation falls below six.  This same forklift transfers 
finished safes from the last workstation to an in-plant storage 
location.  The tasks to be done manually at the nine manual 
workstations are sufficiently dissimilar that workers (who are 
not cross-trained) are constrained to work only at their 
designated workstation. 

Factory managers were keenly aware of process 
deficiencies and highly eager to eliminate or mitigate them, 
but also wished to proceed circumspectly due to the 
following downsides: 

1. Experimental revisions to the process would entail 

lost production time. 

2. If a proposed improvement involved rearranging 

machines, and then failed to live up to its promise, 

returning the machines to their original locations 

would be costly in both time and money. 

3. Upper-level financial managers naturally wanted to 

see strong evidence of expected improvements 

before investing corporate funds. 

4. In the absence of analytical tools, any heuristic 

cost-benefit analyses of proposed changes would 

be frustratingly vague. 
As it so often has in the past, discrete-event process 

simulation, by virtue of allowing the actual system to 
continue operation while proposed improvements to it are 
studied via analysis of a model, provided an attractive 
circumvention of this seeming impasse. 

III. INPUT DATA AND ITS ANALYSIS 

The automatic workstations have essentially constant 
cycle times.  The manual ones do not; for each of them, 
actual cycle times were collected via deliberately 
unobtrusive observation (beware the Hawthorne effect, as 
cautioned by Kroemen and Grandjean [6]).  These data were 
then fitted to theoretical closed-form distributions using 
distribution-fitting software.  The techniques of using such 
software have been documented by Chung [7], and the 
specific software used, Stat::Fit® is described by Leemis [8].  
For each of the nine manual workstations, the algorithms in 
this software (Anderson-Darling, Kolmogorov-Smirnov, and 
chi-squared) recommended use of a uniform distribution.  
Likewise, times between failures and times to repair were 
fitted to all eighteen workstations using exponential and 
PERT distributions respectively.  The PERT distribution, 
like the triangular distribution, has minimum, mode, and 
maximum parameters, but also two advantages over the 
triangular:  it is differentiable throughout the interior of its 
range, and it has less probability mass in its tails – the 
converse of the latter being a criticism frequently directed 
against indiscriminate use of the triangular distribution. 

Other needed data were readily available.  The carrying 
capacity of the supply truck, and its travel time between the 
warehouse and the assembly line, were readily observable; 
the same was true for the forklift travel times and capacity.  
Experience indicated 10% of the shells must be sent to 
rework before entering the processing line.  Furthermore, the 
shift schedules, including break times, followed by the 
assembly-line workers and the three mechanics of the 
maintenance department (required to repair failed 
workstations) were known. 

IV. MODEL CONSTRUCTION, VERIFICATION, AND 

VALIDATION 

Simio® simulation software, thoroughly documented by 
Thiesing and Pegden ([9]) and Kelton, Smith, and Sturrock 
([10]) was used to build the simulation model of the 
manufacturing plant.  This simulation software tool, both 
powerful and easy to learn and use, provides canonical 
constructs for entities, material-handling vehicles, conveyors, 
workstations, and workers.  In the model, in accordance with 
current practice, shells arrive from the upstream plant via 
truck to storage, from whence they are moved to the first 
workstation by forklift.  The shells then move sequentially 
among the eighteen workstations via the indexed conveyor.  
Then the truck returns the finished safes to the originating 
plant.  The model also includes downtimes and repair 
operations (undertaken by specialized workers) at the 
workstations, plus workstation changeover times required 
when a new type of shell is about to enter the production 
line.  Currently, such a changeover is restricted to occur only 
at the start of a new work shift, with the changeover being 
done during the scheduled time between successive work 
shifts.  Simio® allows the modeler to represent process logic 
such as this in a “drag-&-drop” flowchart, shown in Figure 1 
(Appendix).  Additional examples of Simio® modeling 
constructs which proved very useful in this model were 
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“Material,” to conveniently track raw-materials usage and 
needs for replenishment, and “Monitor,” which can trigger 
appropriate logic within the model when the value of a state 
variable (e.g., an inventory level) crosses a certain threshold 
value in a specialized direction (downward, upward, or 
both). 

Verification was undertaken first; then validation was 
undertaken.  Techniques described by Hugan ([11]) were 
used; these techniques included structured walkthroughs, 
step-by-step  examination of the animation (which Simio® 
automatically built as the simulation model was built), and 
close monitoring of the output metrics:  queue lengths and 
inventory levels in the model versus those observed in 
practice, percentage of time workstations were idle waiting 
for other workstations to complete their cycle so the 
conveyor could index, frequency of trips made by the truck 
and the forklift, and utilization levels of the mechanics 
assigned to repair malfunctioning workstations.  After 
adjustments to the model and correction of errors, the final 
model coordinated to 5% tolerance with system observations 
and historical data. 

 

V. RESULTS OF THE SIMULATION MODEL 

After completion of verification and validation, the 
model representing the current system was run for 20 
replications of 24 hours each.  Results agreed with currently 
observed values of performance metrics within 4%.  At this 
point, the client managers accepted the model as valid and 
credible, opening the door to evaluation of one or more 
potential improvements.  Both managers and analysts, based 
on extensive industry experience, were cognizant of the 
possibility of synergy:  “Change A may produce negligible 
improvement; change B may produce negligible 
improvement, yet change A+B may produce significant 
improvement.” 

To investigate various potentials for improvement, 
Simio® (and many other simulation software tools similarly) 
provides an Experiment option permitting concurrent 
evaluation of many Scenarios.  In each Scenario, different 
values for model parameters (ranging widely among, for 
example, downtime frequency, downtime duration, buffer 
sizes, numbers of workers, cycle times, operational policy 
changes, etc.) may be specified.  The multiple Scenarios are 
then run on a “one-click” basis and specified performance 
metrics (e.g., average and maximum length of queue and/or 
time in queue) easily compared via automatically generated 
graphs and tables.  This approach proved both more flexible 
and quicker to implement than the perhaps more traditional 
“define a fitness function and run an optimization loop.” 

Having already noticed (1) the low utilization of the 
delivery truck (recall it is responsible both for bringing shells 
from the warehouse to the production line being modeled 
and also for carrying completed safes back to the warehouse) 
and (2) chronically high work-in-process [WIP] levels, the 
first potential improvement modeled was “have the truck run 
twice as frequently with half the load sizes” – loads were 
reduced from 20 to 10 in both directions.  For this first 
attempt at improvement, the carrying capacity of the forklift 

remained at 3.  The following “before & after” 
improvements were observed: 

 

TABLE 1.  SUMMARY OF FIRST IMPROVEMENT ATTEMPT 

Performance Metric Before Load 

Reduction 

After Load 

Reduction 

Average incoming 

shells in queue 

5.69±0.14 3.99±0.12 

Average outgoing 

safes in queue 

6.93±0.20 3.76±0.06 

Type 1 safes 

produced 

58.9±4.08 69.7±2.21 

Type 2 safes 

produced 

26.10±4.30 45.8±2.29 

Utilization of forklift 64.93±1.13% 57.04±0.50% 

Utilization of truck 8.19±0.29% 20.80±0.36% 

 
The confidence level for these intervals is 95%; note that 

no two of the before-versus-after intervals, considered 
pairwise, overlap. 

The second step toward improvement stemmed from the 
observation that the three maintenance workers (both in 
observed practice and in the runs of the model made thus far) 
had very low utilizations.  Therefore, the model was run with 
the reduced loads of 10 shown above and only one 
maintenance worker instead of three.  In view of the low 
worker utilizations, this revision of the model was run with 
replications of length 500 hours, versus 24 hours.  
Utilizations of the three workers were 2.2%, 2.67%, and 
2.58%; when only one worker was allocated to maintenance 
work, (1) The significant improvements achieved by the 
reduction in truck load size (more than 20% for both types of 
safes) were maintained, and (2) The single worker’s 
utilization remained extremely low at 7.86%. 

Neither of these enhancements required any capital 
investment; indeed, the second one actually reduced staffing 
requirements.  As the next and third step forward, the client 
managers and simulation analysts noted that whereas the 
current assembly line was completely linear, it could 
potentially be reconfigured in a “U” shape.  This 
reconfiguration would surely entail expense, but held two 
enticements whose generic attractiveness has been confirmed 
by Groover ([12]): 

The distance traveled by the forklift between the last 
workstation and the truck, when carrying completed safes, 
would be reduced from 30 meters to 7 meters (of relatively 
minor importance). 

Three workstation pairs -- 8 and 12; 6 and 14; and 4 and 
15 would be much closer together, making it practical to 
cross-train those pairs of assembly-line workers (of major 
importance). 

A model animation snapshot of this revised layout of the 
assembly line appears in the Appendix (Figure 2). 

This new scenario presented an interesting modeling 
challenge readily handled by Simio® logical expressions 
incorporated into the model logic.  Specifically, the 
challenge can be characterized as follows:  Suppose each of 
two workers, A and B, are busy on a task.  Working alone, 
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worker A will need x minutes, and has already worked y 
minutes (y < x) when worker B finishes his task on another 
machine and joins worker A.  Worker A’s remaining time 
now decreases from (x – y) to (x – y) / 2.  Indeed, 
observation of the actual work undertaken at the manual 
workstations, plus discussion with the client managers, 
supported the assumption (underlying this computation) that 
the participation of a second worker involves negligible 
overlap or redundancy of work.  In this scenario, the 
following improvements appeared: 

1. Worker 4 utilization increased from 31% to 67%, 

more than double 

2. Worker 8 utilization increased from 39% to 73%, 

nearly double 

3. Worker 14 utilization increased from 68% to 77%, 

slightly more than a 10% improvement 

4. Ninety safes of type 1 were produced 

5. Fifty safes of type 2 were produced 
Notably, all of improvements (1) – (3) brought the 

utilization in question nearer the traditional 80% which is a 
good theoretical compromise between low utilization and 
excessively long queues and wait times therein. 

The fourth and final improvement undertaken during this 
study involved enhancement of the changeover procedure.  
Whenever a new part type (change from safes of type 1 to 
safes of type 2 or vice versa) occurred, the workstation must 
be empty to make required tooling adjustments.  Between 
any two shifts, half an hour is dedicated to these 
changeovers.  The enhancement consisted of having a 
“deliberately empty workstation” during assembly – that is, 
“don’t load the first (new type) part on the assembly line 
until the conveyor has indexed once.”  Thus, each 
workstation gets a “breathing spell” cycle slightly shorter 
than eight minutes, and a changeover requires less than five 
minutes (providing slack).  When the modified schedule was 
incorporated into the model, the number of type 1 safes 
remained ninety, and the number of type 2 safes produced 
rose from fifty to sixty. 

VI. CONCLUSIONS AND FURTHER WORK 

A sequence of three successive improvements to the 
process under study, the second and third building upon the 
previous, significantly improved productivity, inventory 
levels, and worker utilization percentages.  Furthermore, the 
client is now persuaded of the analytical capabilities and 
powers of discrete-event process simulation, and hence has 
already begun to explore its use in additional “continuous 
improvement” endeavors. 

Further explorations are planned, including optimizing 
the inventory for other components of the safes (e.g., lugs, 
stiffeners, and joint strips).  Also, further financial analyses 
are planned to optimize the costs of operating the assembly 
line. 
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APPENDIX 

 

 
 

Figure 1.  Shift Changeover Logic; Loading New Shell Type at Start of a Shift 

 

 

 
 

Figure 2.  Model Animation Showing the Revised “U”-Shape of the Assembly Line 
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