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Abstract—This paper presents a new framework for solving dif-
ferent kinds of mapping problems, the Generic Modular Mapping
Framework (GEMMA). It is geared towards high flexibility for
dealing with a large number of different challenges. To this end it
has an open architecture that allows the inclusion of application-
specific code and provides a generic rule-based mapping engine
that allows users without programming knowledge to define their
own mapping rules. The paper provides a detailed description
of the concepts inherent in the framework and its current
architecture. Additionally, the evaluation of the framework in
two different application cases, simulation model composition and
testbench setup, is described.
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I. INTRODUCTION

Recently, several of our research challenges could be
reduced to a common core question: How can we match data
from one or more data sources to other data from the same
and/or different data sources in a flexible and efficient manner?
A search for an existing tool that satisfied our application
requirements did not yield any results. This sparked the idea
of a new common generic framework for data mapping. The
goal in designing this framework was to create an extensible
and user-configurable tool that would allow a user to define the
rules for mapping data without the necessity for programming
knowledge and that yet still has the possibility to include
application-specific code to adapt to the needs of a concrete
application.

The results of our efforts so far and a first evaluation based
on our existing research challenges are presented in this paper.

This paper is structured as follows: Section II provides
information regarding related. Section III provides a detailed
description of the framework, its core concepts and its archi-
tecture. Next, Section IV describes the application cases that
have been used to drive and evaluate the framework so far.
Finally, Section V concludes the paper.

II. RELATED WORK

The related work divided into two major categories: on
the one hand, record linkage and data deduplication tools
and frameworks, and on the other hand semantic matching
frameworks for ontologies.

Record linkage as established by Dunn in his seminal
paper [1] and formalised by Felligi and Sunter [2] deals with
the challenge to identify data points that correspond with each
other in large data sets. Typically, this involves databases of
different origin and the question, which of the data on one side
essentially are the same on the other side even if their name
does not match precisely. The same approach is also called
data deduplication [3] where the goal is to identify and remove

redundancies in separate data sets. An overview of existing
tools and frameworks can be found in [4]. The research work
in that area focuses on efficient algorithms for approximate and
fuzzy string matching since the size of the data sets involved
often leads to an explosion of the run times. These tools [5]
often include phonetic similarity metrics or analysis based on
common typing errors, i.e., analysis based on the language of
the input data. Furthermore, they concentrate on the matching
of the string identifiers whereas our framework is more open
and flexible in that regard and also includes the possibility
to base the matching on available semantic meta-information.
The goal in record linkage is always finding data points in
different sets representing the same real-world object. Our
framework was developed with the goal to match data from
different sources that is somehow related but not necessarily
referencing the same object.

Semantic matching is a type of ontology matching tech-
nique that relies on semantic information encoded in ontologies
to identify nodes that are semantically related [6]. They are
mostly developed and used in the context of the semantic
web [7], where the challenge is to import data from different
heterogeneous sources into a common data model. The biggest
restriction to their application is that these tools and frame-
works rely on the availability of meta-information in the form
of ontologies, i.e., formal representations of concepts within a
domain and the relationships between those concepts. While
our framework can include semantic information, as shown in
Section IV-A, it is not a fixed prerequisite.

In conclusion, we can say that our framework tries to fit
into a middle ground between record linkage and semantic
matching. We use methods applied in both areas but we leave
the user the flexibility to choose, which of the features are
actually needed in a mapping project.

III. GENERIC MODULAR MAPPING FRAMEWORK

The Generic Modular Mapping Framework (GEMMA) is
designed to be a flexible multi-purpose tool for any problem
that requires matching data points to each other. The following
subsections will introduce the artefacts that make up the core
idea behind GEMMA, describe the kind of mapping rules that
can be implemented, show the generic process for the usage
of GEMMA and describe the software architecture and the
current GEMMA implementation.

A. Artefacts
GEMMA is centred around a set of core concepts that are

depicted by Figure 1. In an effort to increase the flexibility of
GEMMA, the core concepts have been defined in an abstract
fashion.

The following artefacts are used:
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Figure 1. Overview of relevant artefacts

• Node - Something that has properties that can be
mapped to some other properties.

• Mappable - Something that can be mapped to some
other thing according to specified mapping rules.
Orphan mappables are mappables whose owning node
is not known or not relevant to the problem.

• Mapping - The result of the application of mapping
rules, i.e., a relation between one FROM mappable and
one or more TO mappables. Note that the semantic
interpretation of a mapping highly depends on the
application scenario.

• Mapping rule - A function that specifies how map-
pings are created, i.e., how one mappable can be
related to other mappables.

• Mappable or node detail - Additional attribute of
a mappable or a node in the form of a {detail
name:detail value} pair. Details are optional and can
be defined in the context of a specific application
scenario.

To illustrate these abstract definitions, Figure 2 provides a
simple example, where real-world objects depicted on the left
hand side are represented on the right hand side in the form
of our GEMMA concepts.

Figure 2. Simple example

In this context, the abstract concept definitions provided
above are interpreted as follows:

• Node - A computer with input and output ports

• Mappable - An input or output port of a computer

• Mapping - The connection between ports

• Mapping rule - Output ports must be connected to
input ports according to some specified criteria such
as having the same port name or the same data type.

• Mappable detail - Every port has a detail called
direction, which defines if the port is an input of output
port of the computer

B. Mapping rules

One goal of GEMMA is to allow a large degree of freedom
regarding the definition of the mapping rules, so that the
framework can be used flexibly for very different kind of
application scenarios. So far, the following kinds of mapping
rules have been identified and are supported by GEMMA:

• Name matching, e.g., map a mappable to other map-
pables with the exact same name.

• Fuzzy name matching, or other forms of approxi-
mate string matching [8], e.g., map a mappable to
other mappables with a similar name (similarity can
be based on the Levenshtein distance (LD) [9], i.e.,
”map” can be matched to ”mop” if we allow an LD
of 1).

• Details, e.g., map a mappable with value of detail
X=x to other mappables with values of details Y=y
and Z=z or more concretely, map a mappable with
detail direction=”output” to mappables with detail
direction=”input”.

• Structured rewriting of search term based on
name, details and additional data, e.g., construct
a new string based on the properties of a map-
pable and some given string parts and do a name
matching with the new string (e.g., new string
= ”ABCD::” + $mappable.detail(DIRECTION) +
”::TBD::” + $mappable.detail(LOCATION) would
lead to a search for other mappables with the name
”ABCD::Input::TBD::Front”).

• Semantic annotations such as user-predefined poten-
tial mappings (bindings) using mediators as described
in [10], e.g., map a mappable whose name is listed as
a client of a mediator to all mappables whose name
is listed as a provider of the same mediator.

And, of course, any combination of the above mentioned
kinds of rules can be used. For example, structured rewriting
could also be applied on the target mappables, which would
in effect mean defining aliases for every mappable in the
mappable database in the context of a rule.

Additionally, it is planned that several rules can be selected
and prioritized for a mapping configuration with options for
defining their application, e.g., only if the rule with the highest
priority does not find any matches then rules with a lower
priority are evaluated.
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C. Process

The process for the usage of GEMMA is generic for all
kinds of applications scenarios and consists of five steps:

1) Import
2) Pre-processing
3) Matching
4) Post-processing
5) Export

The mapping process is configured using an XML con-
figuration file that defines which parsers, rules, resolvers and
exporters (see III-D for a detailed explanation of the terms)
will be used in the mapping project. The open character
of GEMMA allows implementing different data parsers for
importing data, resolvers for post-processing of the mappings
and data exporters for exporting data.

Import loads data into the framework. GEMMA provides
the interfaces DataParser, MappableSource and NodeSource
to anyone who has the need to define a new data parser for an
application-specific configuration of GEMMA. All available
parsers are registered in an internal parser registry where the
Run Configuration can instantiate, configure and run those
parsers, which are required by the configuration file. The data
will then be stored in the mappable database.

Pre-processing of data involves selection of mappables
that will require matching using whitelists and/or blacklists
and structured rewriting of, e.g., mappable names based on
mappable details as already discussed in Section III-B. Pre-
processing will be user-defined in a set of rules in a file
that can be edited with a standard text editor and does not
require programming knowledge. The set of rules which should
be applied in one mapping project will be defined by the
configuration.

Matching involves running queries on the mappable
database to find suitable matches for each mappable that
is selected for mapping. The queries are derived from the
mapping rules. A mapping is a one to (potentially) many
relation between one mappable and all the matches that were
found.

Post-processing or match resolving is an optional step that
is highly driven by the specific application as will be shown in
Section IV. It potentially requires the interaction with the user
to make a selection, e.g., a mapping rule might say that for a
mappable only a one-to-one mapping is acceptable but if more
than one match was found then the user must decide, which
of the found matches should be selected. Post-processing also
allows the user to apply the graphical user interface to review
and validate the generated mapping results and thereby to
check the completeness and correctness of the defined rules
and to manipulate mappings manually, e.g., remove a mappable
from a mapping if the match was not correct.

Export is also highly application-specific. Exporting in-
volves transformation of the internal data model into an
application-specific output file. Similar to the DataParser inter-
face, a generic MappingExporter interface allows the definition
of custom exporters that are registered in a exporter registry
where they can be accessed by the run configuration as dictated
by the configuration file.

D. Architecture and implementation

As already stated before, the Generic Mapping Framework
is designed as a flexible answer to all sorts of mapping prob-
lems. This is represented in the architecture of the framework,
which is depicted in Figure 3 in a simplified fashion. GEMMA
modules can be categorized either as core or as application-
specific. Core components are common for all GEMMA
usage scenarios whereas the application specific components
have to be developed to implement features that are very
specific to achieve a certain goal. For example, data parsers
are application-specific as applications might need data from
different sources whereas the mappable database and query
engine is a core component that is shared. Table I provides a
brief description of the most important modules in GEMMA
and their categorization.

TABLE I. GENERIC MAPPING FRAMEWORK MODULES

Module Description Core Specific
Data Parser Reads data (nodes and/or mappables)

into the internal data model and feeds
the mappable database

x

Generic Mapper Generates mappings between map-
pables based on rules

x

GUI Interface for loading configuration,
displaying mappings as well as allow-
ing user-decisions and displaying of
data based on resolver

x

Issue Logger Logs mapping related issues x
Mappable Database Stores mappables and allows searches x
Resolver Resolves mappings based on applica-

tion specific semantics
x

Rule Manager Reads mapping rules and provides
rules information to other components

x

Run Configuration Holds the configuration that defines
which parsers, exporters and rules are
used in the current mapping project

x

Specific Exporter Exports the internal data model into a
specific file format

x

Standard Exporter Exports the internal data model into
an XML file

x

The implementation of GEMMA was done in Java. As far
as possible, open source libraries and frameworks have been
used. The choice for the mappable database, for example, fell
on Apache Lucene [11]. Lucene is is a high-performance, full-
featured text search engine library. The choice of Lucene might
seem odd because we are not using it for its originally intended
purpose, indexing and searching of large text files, but it offers
a lot of the search capabilities like fuzzy name matching that
we need and is already in a very stable state with a strong
record of industrial applications.

IV. EVALUATION

The evaluation so far has been done using two application
cases, simulation model composition and testbench setup.

A. Simulation model composition

The description of the application case simulation model
composition requires the introduction of the bindings concept
as presented in [10]. The purpose of bindings is to capture
the minimum set of information required to support model
composition by an automated binding or connecting mecha-
nism. For example, for the outputs of a given component, we
wish to identify the appropriate inputs of another component
to establish a connection.
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Figure 3. Generic mapping framework architecture

Figure 4. Bindings concept

To this end [10] introduces the notions of clients and
providers. Clients require certain data; providers can provide
the required data. However, clients and providers do not know
each other a priori. Moreover, there may be multiple clients
that require the same information. On the other hand, data
from several providers may be needed in order to compute
data required by one client. This results in a many-to-many
relation between clients and providers. In order to associate the
clients and the providers to each other the mediator concept
is introduced, which is an entity that can relate a number of
clients to a number of providers, as illustrated in Figure 4.
References to clients and providers are stored in mediators
in order to avoid the need for modifying client or provider
models.

Figure 5. Assembled ice-accretion simulation based on [12]

After the bindings concept was introduced we can now turn
to the description of the application case. Generally speaking,
the application case is the automatic creation of connections
between different model components in a model. Typically in
modelling tools, to create a connection between one port of
one component to another port of another component requires
the user to draw each connection as one line from one port
to the other port. If the components’ interfaces or the model
structure change, then all of the connections have to be checked
and some of them have to be redrawn. If we consider a large set
of models that have to be changed frequently or if we want to
create the models dynamically, then the effort for creating and
maintaining the connections between the components in the
models becomes a serious issue. The goal of our application
case is the formalization of the often implicit rules which the
user applies to create the connections to automate this process.

Consider the model depicted by Figure 5, which is a
part of the model from the public aerospace use case in the
CRYSTAL project [12]. It consists of component models such
as flight scenario profile, ice accretion dynamics, and tables
for temperature or liquid water content. All of the component
models must be interconnected. For example, the temperature
profile component requires the current aircraft altitude, which
is provided by the flight scenario component; the ice accre-
tions dynamics component requires the current aircraft speed,
which is also provided by the scenario component, etc. The
individual models were built using the Modelica tool Dymola
and exported as Functional Mockup Units [13] (FMUs) in
order to be integrated, i.e., instantiated and connected, in a
co-simulation environment.

However, assume that the models were created without this
specific context in mind. They neither have agreed interfaces,
nor do the name and type of the component elements to be
connected necessarily match. In order to be able to find the
counter parts, i.e., to know that the input of the ice accretion
instance should be connected to the appropriate output of the
scenario model instance, a dedicated XML file captures some
additional information as shown in Figure 6. This way we
can capture such interrelations without modifying the models.
This data is used as follows: whenever the model ”IceAccre-
tionDynamics” is instantiated, bind its input port ”aspeed” to
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the output ”port p v”, which belongs to the instance of type
”ScenarioMissionProfile1”.

Whenever there will be another model that requires the
same data, i.e., current aircraft speed, an additional client entry
is added to the same mediator shown in Figure 6. Similarly,
whenever there is another model that outputs this data, its
corresponding element is referenced in a new provider entry.
This approach in particular pays off as soon as there are several
models that require or provide the same data. Their connection
is then resolved whenever they are instantiated in a specific
context model such as the one depicted in Figure 5.

Figure 7. Mapping generator for simulation model composition

In our setting, the bindings specification XML file and the
model XML file are application specific sources that are inputs
to our generic mapping framework as depicted by Figure 7.
The information read from these sources by the application
specific parsers is put into the core module mappable database.
Two rules, provided by Figures 9 and 10 in pseudocode, are
used to query the mappable database to find suitable matches
for each mappable. The matching results are then given to
the resolver module. This module is aware of the bindings
concept and is able to resolve chains of matches and generate
a binding for each client and, if necessary, involve the user
when an unambiguous mapping is not possible automatically.

Figure 8. Input and output artefacts of simulation model composition mapper

In the end, the mapping framework uses a list of FMUs,
a description of the simulation model consisting of instances
of classes implemented in the FMUs and a description of the
bindings in the form of an XML file. The output is then the
complete simulation model with all the connections between
the simulation instances as sketched by Figure 8.

B. Testbench setup
The testbench setup application case is driven by the needs

of test engineers. They are given a hardware System under Test

(SuT), a formal definition of the interfaces of the SuT and other
equipment and a description of the specified logic of the SuT,
which should be tested. Unfortunately, the formal interface
definition has been finalized after the specification of the logic,
which means that the signal names in the logic description
and the signal names in the formal interface definition, which
has been implemented in the SuT, do not match. Today, a
significant amount of manual effort is required to discover the
correct formal signal name for every logical signal. To ease
this, GEMMA has been configured as shown by Figure 11.

Figure 11. Mapping generator for testbench setup

The goal of the application case is to find a mapping
between the name of a signal used in the description of the
SuT logic and the corresponding formal interface signal name
as shown by Figure 12.

Figure 12. Input and output artefacts of testbench setup mapper

Since the names of the signals could be quite different,
the testbench setup application case required the use of the
structured rewriting rule type (see Section III-B). One of the
rules for the testbench setup is depicted by Figure 13 in pseudo
code. The rule defines a new local variable called soughtName
whose content depends on some attributes of the mappable
(enclosed in $$) and instead of searching for other mappables
that have the same or a similar name as the original mappable,
GEMMA searches now for mappables whose name is equal
to the variable soughtName. If a mappable has the attributes
direction, type, BLOCKID and ID with the respective values
OUTPUT, SuT Type1, 45 and 67 then soughtName would
take the value AB BLOCK45 STATUS 67 and GEMMA will
search for and map to another mappable in the database with
that name.

The main challenge for this application case was the
amount of data. Even for a small SuT, the mappable database
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Figure 6. Example of a binding specification entry in XML format

Figure 9. First implemented rule for simulation model composition (in pseudo code)

Figure 10. Second implemented rule for simulation model composition (in pseudo code)

Figure 13. One implemented rule for testbench setup (in pseudo code)

contained 350000 mappables and matches had to be found for
2500 mappables. Nevertheless, the application proved to be
successful. The total run time is around 30 seconds including
the time for data import and export, and the average time per
query is 4.5 ms on a standard PC.

V. CONCLUSION

In this paper, we introduce a new framework for generic
mapping problems, GEMMA. It is geared towards high flexi-
bility for dealing with a number of very different challenges.
To this end it has an open architecture that allows the inclusion
of application-specific code for reading and exporting data and
the resolving of mapping results. Furthermore, it provides a
generic rule-based mapping engine that allows users without

programming knowledge to define their own mapping rules.
So far, the evaluation in the two application cases described
in this paper has been highly successful.

As said in Section II, as far as we know, there is currently
no other tool with the same functionality as GEMMA. This
prevents a direct comparison in terms of performance of
GEMMA with other solutions. For our future work we also
plan to compare GEMMA functionally to other solutions that
rely on more formalized semantic information in the form of
ontologies. Depending on the results of this comparison, this
might lead to an extension of GEMMA, so that in addition to
the matching based on the Lucene text database there will be
the possibility to include the results from a semantic reasoner
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in the matching process.
From an implementation point of view, there is still a large

to-do list:

• Definition of required mapping rules capabilities and
format for representing mapping rules.

• Implementation of generic resolver module for post-
processing.

• Implementation of generic rule-based mapper.
• Transform project into Eclipse product and use the

Eclipse OSGi extension mechanism [14] for register-
ing and instantiating modules.

At the same time, we are actively looking for further applica-
tion cases to mature the framework.
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