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Abstract—The paper presents a non-linear mathematical
model for digital simulation of an enzyme loaded porous
microreactor. The model is based on a system of reaction-
diffusion equations, containing a non-linear term related to
the Michaelis-Menten kinetics, and involves three regions: the
enzyme microreactor where the enzyme reaction as well as mass
transport by diffusion take place, a diffusion limiting region (the
Nernst layer), where only the mass transport by diffusion takes
place, and a convective region, where the analyte concentration
is maintained constant. Assuming well stirred conditions, the
influence of the thickness of the Nernst layer on the behaviour
of the product emission, as well as the impact of the diffusion
modulus and the Biot number has been numerically investigated.
The simulation results showed that the Nernst layer must be
taken into consideration when modelling micro-size bioreactors.
The digital simulation was carried out using the finite difference
technique.

Keywords—reaction-diffusion; Michaelis - Menten kinetics; mi-
crobioreactor; CSTR.

I. INTRODUCTION

Continuous-flow stirred tank reactors (CSTR) are common
in chemical industries [1][2]. Although a stirred tank is a usual
construction of industrial enzyme reactors, the effectiveness
and optimal construction of CSTR remain open to study [3][4].
Specifically, further research is needed due to the application
of the immobilized enzymes, such as biocatalysts, on a man-
ufactoring scale that requires to use the reactors of different
types, including CSTR [5][6][7].

A CSTR often refers to a model used to estimate the
operation parameters when using a continuous agitated-tank
reactor to reach a specified output [6]. In the last few
decades, immobilized enzyme reactor models have evolved
significantly with wide range of applications in food industry
[8], waste cleaning [9], bacteria cells immobilization [10][11].
Rapid progress was noticed in integrating microfluidic re-
actors and biocatalytic reactions [12]. The combination of
miniaturized technologies and microfluidics allows to increase
the bioprocess efficiency. However, coupling microreactors
and biocatalysis is highly complex, requiring an integrated
approach addressing biocatalyst features, reaction kinetics,
mass transfer and microreactors geometry [12][13].

Mathematical models have been widely used to investigate
the kinetic peculiarities of the enzyme microreactors [7][12].

Models coupling the enzyme-catalysed reaction with the diffu-
sion in enzyme microreactors are usually used. Since contain-
ing catalytic particles, the analyte in CSTR is well stirred and
set in powerful motion, the mass transport by diffusion outside
the microreactors is usually neglected [13][14]. In practice,
the zero thickness of the diffusion shell (layer) can not be
achieved [15]. We consider an array of identical spherical
microreactors placed in a CSTR shown in Figure 1 [6], where
area Ωm denotes a microreactor, Ωd denotes surrounding
diffusion shell and Ωc is a convective region.
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Figure 1. Continuous stirred tank reactor with enzyme-loaded microreactors
(pellets) and a zoomed unit cell to be modelled.

The goal of this work was to investigate the dependencies of
the internal and external diffusion limitations on the yield of
the reaction product, modelled by reaction-diffusion equations,
containing a non-linear term related to Michaelis-Menten
kinetics [6][7][16]. The model involves three regions: the
enzyme microreactor, where the enzyme reaction, as well as
the mass transport by diffusion take place, a diffusion limiting
region, where only the mass transport by diffusion takes place,
and a convective region, where the analyte concentration is
maintained constant. Due to a strong non-linearity of the
reaction term, the computer simulation was carried out using
the finite difference technique. [17].

The rest of the paper is organised as follows: in Section
II, the mathematical model and microbioreactor characteristics
are described; Section III formulates a dimensionless model
and derives the main parameters of the bioreactor; Section IV
describes the numerical model and the simulator; in Section
V, results of numerical experiments are presented, and conclu-
sions close the article.
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II. MATHEMATICAL MODEL

We consider an array of identical spherical microreactors
placed in a continuous ideally stirred-tank reactor [6]. Assum-
ing a uniform distribution of the microreactors in the tank
and a relatively great distance between adjacent microreactors,
the spherical unit cell was modelled by an enzyme-loaded
microreactor (pellet) and a surrounding diffusion shell (the
Nernst diffusion layer). The principal structure of the tank
containing uniformly distributed microreactors and a unit cell
are presented in Figure 1, where Ωm denotes a microreactor
(MR), Ωd stands for the diffusion shell and Ωc is a convective
region.

In the enzyme-loaded MR layer we consider the enzyme-
catalyzed reaction

E + S
kf

GGGGGGBFGGGGGG

kr
ES

kcat
GGGGGGGGAE + P, (1)

where the substrate (S) combines reversibly with an enzyme
(E) to form a complex (ES). The complex then dissociates into
the product (P) and the enzyme is regenerated [18][19].

Assuming the steady-state approximation, the concentration
of the intermediate complex (ES) does not change and may
be neglected when modelling the biochemical behaviour of the
microreactor [6][19][20]. In the resulting scheme, the substrate
(S) is enzymatically converted to the product (P),

S
E−→ P. (2)

A. Governing Equations

Assuming the symmetrical geometry of the microreactor
and homogenised distribution of the immobilized enzyme
inside the porous microreactor, the mathematical model can be
described in one-dimensional domain using the radial distance.

Coupling enzymatic reaction in the microreactor (region
Ωm) with the one-dimensional-in-space diffusion, described
by Fick’s second law, and assuming the steady-state for a
system (2) lead to the following governing equations of the
reaction-diffusion type (0 < r < R0):

DS,m
1

r2
∂

∂r

(
r2

∂Sm

∂r

)
=

VmaxSm

KM + Sm
, (3a)

DP,m
1

r2
∂

∂r

(
r2

∂Pm

∂r

)
= − VmaxSm

KM + Sm
, (3b)

where r stands for space, Sm = Sm(r) and Pm = Pm(r) are
the concentrations of the substrate and the reaction product
in the microreactor, respectively, R0 is the radius of the
microreactor, DS,m and DP,m are the diffusion coefficients,
Vmax = kcatE0 is the maximal enzymatic rate and KM =
(kr + kcat)/kf is the Michaelis constant (see Figure 2(a)).

In the Nernst diffusion layer Ωd only the mass transport by
diffusion takes place:

DS,d
1

r2
∂

∂r

(
r2

∂Sd

∂r

)
= 0, (4a)

DP,d
1

r2
∂

∂r

(
r2

∂Pd

∂r

)
= 0, r ∈ (R0, R1), (4b)
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Figure 2. Principal structure of the unit cell consisting of a microbioreactor
and the Nernst diffusion shell (a) and non-dimensionalized regions (b).

where Sd = Sd(r) and Pd = Pd(r) are the concentrations of
the substrate and the reaction product in the diffusion shell,
respectively, DS,d and DP,d are the diffusion coefficients of
the materials in the bulk solution, R1 is the radius of the unit
cell.

B. Boundary Conditions

Fluxes of the substrate and the product through the stagnant
external diffusion shell is assumed to be equal to the corre-
sponding fluxes entering the surface of the microreactor,

DS,m
∂Sm

∂r

∣∣∣
r=R0

= DS,d
∂Sd

∂r

∣∣∣
r=R0

, (5a)

DP,m
∂Pm

∂r

∣∣∣
r=R0

= DP,d
∂Pd

∂r

∣∣∣
r=R0

. (5b)

The formal partition coefficient φ is used to describe the
specificity in concentration distribution of the compounds
between two neighboring regions [6][21],

Sm(R0) = φSd(R0), Pm(R0) = φPd(R0). (6)

Due to the symmetry of the microreactor, the zero-flux
boundary conditions are defined for the center of the microre-
actor (r = 0),

DS,m
∂Sm

∂r

∣∣∣
r=0

= 0, DP,m
∂Pm

∂r

∣∣∣
r=0

= 0. (7)

According to the Nernst approach, the shell of thickness ν =
R1 − R0 remains unchanged with time [15][17]. Away from
it, the solution is in motion and is uniform in concentration.
Due to the continuous injection of the substrate into the stirred
tank and washing off of the product, the concentration in the
convective region remains unchanged:

Sd(R1) = S0, Pd(R1) = 0. (8)

The thickness ν of the Nernst diffusion shell depends upon
the nature and stirring up the buffer solution. Usually, more
intensive stirring corresponds to the thinner diffusion layer
(shell).
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C. Microbioreactor Characteristics

In many industrial processes, especially in the production
of low-value added products like biopesticides, bio-fertilizers,
bio-surfactants ect. [9], it is important to continuously improve
the yield and/or productivity [7]. The productivity is important,
since this ensures an efficient utilization of the production
capacity, i.e., the bioreactors.

The yield of the desired product on the substrate is one
of the most important criteria for design and optimization
of bioreactors. The economic feasibility of the process is
expressed by the yield factor as the ratio of product formation
rate and the substrate uptake rate [6][7].

The bioreactor construction is efficient enough when the
product emission is relatively large with given substrate
amount used. The product emission rate ĒP,O can be cal-
culated by an integration of the product flux over the outer
surface of the diffusion shell [7],

ĒP,O =

∫ 2π

0

∫ π

0

DP,d
∂Pd

∂r

∣∣∣
r=R1

R2
1 sin(θ)dθdϕ

= 4πR2
1DP,d

∂Pd

∂r

∣∣∣
r=R1

.

(9)

The average consumption C̄S of the substrate over the whole
microreactor can be calculated as follows:

C̄S =

∫ R0

0

∫ 2π

0

∫ π

0

VmaxS0

KM + S0
sin(θ)dθdϕr2dr

=

∫ R0

0

4π
VmaxS0

KM + S0
r2dr

=
4

3
πVmaxR

3
0

S0

KM + S0
.

(10)

The yield factor γ for the microreactor system, as well as for
the entire tank reactor shown in Figure 1, can be defined by the
ratio of the product emission rate to the substrate consumption
rate,

γ =
ĒP,O

C̄S
. (11)

The yield factor is equal to unity (γ = 1) when whole the
consumed substrate is converted to the product and the whole
the product eluted into the bulk (convective region Ωc). The
microbioreactor is absolutely inefficient (γ = 0), if no product
falls into the bulk.

III. DIMENSIONLESS MODEL

In order to define the main governing parameters of the
two compartment model (3)-(8), the dimensional variable r
and unknown concentrations Sm(r), Pm(r), Sd(r), Pd(r) are
replaced with the following dimensionless parameters:

r̃ =
r

R0
, S̃m =

Sm

KM
,

P̃m =
Pm

KM
, S̃d =

Sd

KM
, P̃d =

Pd

KM
,

(12)

where r̃ is the dimensionless distance from the microreactor
center and S̃m(r̃), P̃m(r̃), S̃d(r̃), P̃d(r̃) are the dimensionless

concentrations. Having defined dimensionless variables and
unknowns, the following dimensionless parameters character-
ize the domain geometry and the substrate concentration in
the bulk:

ν̃ =
ν

R0
, S̃0 =

S0

KM
, (13)

where ν̃ is the dimensionless thickness of the Nernst diffusion
layer (see Figure 2(b)), S̃0 is the dimensionless substrate con-
centration in the bulk solution. The dimensionless thickness
of the microreactor equals one.

The governing equations (3) in the dimensionless coordi-
nates are expressed as follows (0 < r̃ < 1):

1

r̃2
∂

∂r̃

(
r̃2

∂S̃m

∂r̃

)
− σ2 S̃m

1 + S̃m

= 0, (14a)

DP,m

DS,m

1

r̃2
∂

∂r̃

(
r̃2

∂P̃m

∂r̃

)
+ σ2 S̃m

1 + S̃m

= 0, (14b)

where σ is the Thiele modulus or the Damköhler number
[7][22][23] defined as:

σ2 =
VmaxR

2
0

KMDS,m
. (15)

The governing equations (4) take the following form (1 <
r̃ < 1 + ν̃):

DS,d

DS,m

1

r̃2
∂

∂r̃

(
r̃2

∂S̃d

∂r̃

)
= 0, (16a)

DP,d

DS,m

1

r̃2
∂

∂r̃

(
r̃2

∂P̃d

∂r̃

)
= 0. (16b)

The matching conditions (5), (6) and (8) become:

∂S̃m

∂r̃

∣∣∣
r̃=1

=
DS,d

DS,m

∂S̃d

∂r̃

∣∣∣
r̃=1

(17a)

∂P̃m

∂r̃

∣∣∣
r̃=1

=
DP,d

DS,m

∂P̃d

∂r̃

∣∣∣
r̃=1

. (17b)

S̃m(1) = φS̃d(1), P̃m(1) = φP̃d(1). (18)

∂S̃m

∂r̃

∣∣∣
r̃=0

= 0,
∂P̃m

∂r̃

∣∣∣
r̃=0

= 0, (19a)

S̃d(1 + ν̃) = S̃0, P̃d(1 + ν̃) = 0. (19b)

The dimensionless factor σ2 essentially compares the rate
of enzyme reaction (Vmax/KM ) with the diffusion through
the enzyme-loaded microreactor (DS,m/R2

0). If σ2 � 1, the
enzyme kinetics controls the bioreactor action. The action is
under diffusion control when σ2 � 1.

The Biot number β is another dimensionless parameter
widely used to indicate the internal mass transfer resistance
to the external one [24][25],

β =
DS,dR0

DS,m(R1 −R0)
. (20)
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When the Biot number is small, the effect of the external
diffusion is the most marked. As the Biot number increases
the effect of the external diffusion becomes less important.

The diffusion module and the Biot number are widely
used in analysis and design of different bioreactors [25]. The
experiment conducted by Kont et al. [10] proved the external
mass-transfer limitations to be negligible for β > 1 using the
first order kinetics model of CSTR and packed-bed reactors
(PBR), which conducted condition (8). Typically, designers
seek for bioreactors acting in the reaction-limited regime, since
in this case reaction and diffusion occur on different time
scales [26].

IV. DIGITAL SIMULATION OF EXPERIMENTS

The non-linearity of the governing equations prevents us
from solving the boundary value problem (14)-(19) analyti-
cally, hence the numerical model was constructed and solved
using finite difference technique [17]. An explicit scheme was
used; however since Michaelis-Menten non-linearity, further
construction of equations was used:

DC,m · 1

r2
∂

∂r

(
r2

∂Cn
m

∂r

)
= ± VmaxC

n
m

KM + Cn−1
m

,

where C = S, P . Tridiagonal matrix was constructed from the
equations. In the numerical simulation, scheme was run until
the following loss becomes very small:

L = ||Sn − Sn−1||l2 + ||Pn − Pn−1||l2 < ε,

where decay rate value ε = 10−14 was used over l2 norm.
An explicit finite difference the scheme was built on a uni-
form discrete grid with 128 points in space direction [16].
The simulator has been programmed by the authors in C++
language [27].

The numerical solution of the mathematical model (14)-(19)
was validated by using exact analytical solutions known for
very special cases of the model parameters [22][25][6][16].
At such low concentration of the substrate as S0 � KM , the
non-linear reaction rate in equations (3) reduces to the first
order reaction rate. In very opposite case, when the substrate
concentration S0 to be measured is very high compared to
the Michaelis constant KM (S0 � KM ), the reaction term
reduces to the zero order reaction rate Vmax.

V. RESULTS AND DISCUSSION

To investigate the effects of the geometry and catalytic
activity of the microreactor, the reactor action was simulated
and the yield factor was calculated for very different values
of the Biot number β, the Thiele module σ and the substrate
dimensionless concentration S0.

A. Concentration profiles

Figure 3 shows the profiles of the product concentration P
calculated from the microreactor model (14)-(19) changing the
Thiele module σ as well as the Biot number β, and keeping
unchanged the following model parameters:

DS,m = DP,m, DS,d = DP,d, φ = 0.5, ν̃ = 1. (21)
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Figure 3. Concentration profiles of the product in the microreactor simulated
at the substrate concentration S̃0 = 1 and different values of the Thiele

module σ2: 0.1 (2), 1 (1), 10 (3-5), as well as the Biot number β: 0.5 (5), 1
(1-3), 10 (4), the other parameters are as defined in (21). Dashed line shows

boundary between the microreactor and the diffusion layer.

One can be seen in Figure 3, that low Thiele modulus
values σ < 1 or high Biot number values, which means that
the species passes the Nernst diffusion layer fast, give the
concentrations approach to straight line because of linearity
of governing equations in the area r ∈ (1, 1 + ν̃). On the
other hand, high Thiele modulus values (σ2 ≥ 10) lead to
significant differences in concentration distribution across the
outer boundary of the microreactor.

B. Impact of the substrate concentration

To investigate the dependence of the yield factor γ on the
substrate concentration S̃0, γ was calculated by simulating the
microreactor action at three characteristic values of the Thiele
module σ2: 0.1, 1 and 10, as well as at three values of the
Biot number β: 0.5, 1 and 10. The effect of the substrate
concentration was investigated in a wide range of S̃0 values
[10−3, 103]. Calculation results are presented in Figure 4.

S0

1 2 3 4 5

0.001 0.01 0.1 1 10 100 1000

0
0

.1
0

.3
0

.5
0

.7
0

.9
1

γ

Figure 4. The yield factor γ vs. the substrate concentration S̃. The notation
and values of the parameters are the same as in Figure 3.

One can see (Figure 4) a non-linear impact of the substrate
concentration on the yield factor.

As a function of S̃0, the yield factor γ is a monotonous
increasing function with limit of one. At low concentrations of
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the substrate S̃0 < 1, the yield factor increases with decreasing
the Thiele modulus and increasing the Biot number β.

The yield factor γ is, practically, invariant to changes in
the substrate concentration S̃0 when the Michaelis-Menten
kinetics approaches the first order (S̃0 � 1) or zero order
kinetics (S̃0 � 1). At intermediate values of S̃0, when
the kinetics changes from the first to zero order, the yield
factor γ noticeably increases with increasing the substrate
concentration. Increasing the substrance concentration does
not influence the increase in the product yield for S̃0 > 100.

C. Impact on product rate

Figure 5 presents the dependence of the product emission
rate on the thickness of the Nernst diffusion layer. Values of
V̄P,0 were calculated changing the dimensionless thickness
ν̃ of the Nernst diffusion layer from 10−0.5 up to 100.75.
At lower values of ν̃ the two compartment model (14)-(19)
reduces to a notably simpler one layer model [22][25]. The
reactor behaviour at larger values of ν̃ is not so important due
to the product emission at very low rate.

As one can see in Figure 5, the rate V̄P,0 is a decreasing
function of ν̃, which confirms a hypothesis about the impor-
tance of the Nernst layer for the reactors productivity [25]. The
decrease in V̄P,0 with increasing ν̃ is especially noticeable at
relatively high substrate concentrations (S̃0 = 10, curve 4), as
well as high values of the Thiele module (σ2 = 2, curve 2),
i.e. in the case of the first order kinetics or when the reactor
is under the diffusion control.
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Figure 5. The product emission rate V̄P,0 vs. the dimensionless thickness ν̃

of the Nernst diffusion layer at S̃0: 0.1 (5), 1 (1-3), 10 (4), σ2: 0.1 (3), 1
(1, 4, 5), 2 (2), the other parameters are as defined in (21).

The impact of the thickness ν̂ on the product rate V̄P,0 gives
us tendencies on thickness ν̂ selection. However, reducing
the thickness of Nernst layer is a serious problem. Since
microreactor is soaking and mixing to create layer and zero
thickness of the diffusion shell can not be achieved [15],
the impact of other model parameters on the microreactor
efficiency is also important.

D. Impact of the Biot number

To investigate the dependence of the yield factor γ on the
Biot number β, the factor γ was calculated at different values

of the Thiele module σ2 (0.1, 1 and 10) and the substrate
concentration S̃0 (0.1, 1 and 10), changing the Biot number
in a range of [10−1, 102]. The results of the calculations are
depicted in Figure 6.
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Figure 6. The yield factor γ vs. the Biot number β at S̃0: 0.1 (2), 1 (1, 4,
5), 10 (3), σ2: 0.1 (5), 1 (1-3), 10 (4), the other parameters are as in (21).

Figure 6 shows the product yield γ as an increasing function
of the Biot number β. However, the yield factor γ rapidly
grows only when β values are relatively small (β < 1), and the
reactor action is under the diffusion control (σ > 1). The yield
factor, practically, does not depend on β when the microreactor
acts under the enzyme kinetics control (σ < 1) or the substrate
concentration is high (S̃0 > 10). On the other hand, the Nernst
diffusion layer may be neglected when the Biot number is
higher than around 20 [25][28].

E. Impact of the Thiele Module

The dependence of the yield factor γ on the Thiele modulus
was investigated by calculating the factor γ at different values
of the Biot number β, as well as of the substrate concentration
S̃0 and changing modulus σ from 10−3 up to 105. Figure 6
shows the yield factor γ as a monotonous decreasing function
of σ at very different values of β and S̃0.
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Figure 7. The yield factor γ vs. the Thiele modulus σ at β: 0.1(2), 1(1, 4,
5), 10(3), Ŝ0: 0.1(5), 1(1-3), 10(4), the other parameters are as in (21).
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It can be seen in Figure 7 that the yield factor γ, practically,
does not depend on σ and approaches to zero when the
bioreactor acts notably under the diffusion control (σ > 100).
The yield factor γ is also invariant to changes in the modulus
σ when the enzyme kinetics controls the bioreactor action
(σ < 0.01). At mixed conditions when the reactor action
is influenced by both the enzyme kinetics and the diffusion,
the yield factor γ noticeably decreases with increasing the
modulus σ. Figure 7 also shows that the factor γ increases
with increasing the substrate concentration (as in Figure 4), as
well as when increasing the Biot number β (as in Figure 6).

There are some limitations worth to mention that might
be used for the future investigations. First of all, in physical
experiments, pellets will not be perfect spheres, which requires
modelling more sophisticated domains in 2D and 3D space.
Secondly, the system with time dependent characteristics
should be considered in the future work.

VI. CONCLUSION AND FUTURE WORK

The mathematical model (3)-(8) of the microbioreactor
can be successfully used to investigate the behaviour of the
catalytic microreactor and to optimize its configuration.

The thickness of the Nernst diffusion layer (shell) noticeably
effects the reaction product emission (Figures 5, 6). The
production rate V̄P,0 as well as the yield especially decreases
when the thickness is more than two times greater than the
radius of the microreactor, ν̃ > 2, β < 0.5. This property
becomes important when the size of microbioreactors used in
industrial applications continuously reduces, while the Nernst
diffusion layer is still often neglected.

The yield of the product increases with increasing the
substrate concentration (Figure 4) and with decreasing the
Biot number (Figure 6). However, an increase in the substrate
concentration becomes ineffective when the enzyme reaction
apporaches the zero order kinetics S̃0 > 10 (Figure 4). The
high yield can be achieved only when the enzyme kinetics
controls the bioreactor action σ < 1 (Figure 7).

Such formulation can be useful to find optimal parameters of
such biosystem construction [11]. More importantly, it might
improve the design and production of microbioreactors.

More precise and sophisticated computational models, im-
plying the multiple reactions of microreactor, as well as the
observed experimental data of the microreactors for model
validation are still under development.
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