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Abstract—With older age, people experience increasing hearing
loss. With the use of assistive technology systems it is possible
to preserve and improve the quality of life of elderly people
with hearing losses. The Augmented Hearing Experience and
Assistance for Daily life (AHEAD) system, composed of hearing
glasses (augmented with Bluetooth audio communication, and
physiological sensors) wirelessly connected to a mobile phone
also connected to a smart home environment platform, allows
to provide services on top of the hearing enhancement provided
by the hearing glasses. Beside the health related services that
the AHEAD system offers (heart rate monitoring, emergency
alarms), a physical activity assistant has been identified to be
relevant in order to reduce sedentary behaviours. In this paper,
we investigated how accurate fitness algorithms (walking time,
step counter, physically active/inactive periods) based on head
kinematic data would be. For that purpose we have adapted
state-of-the art algorithms. A total of 10 healthy users performed
activities of daily living and walking sessions. The results show
that the head location is suitable to detect fitness indicators but
some personalization of some parameters would be needed to
improve the performance of the detection methods.

Keywords–Active Ageing; Head Kinematics; Walking Detection;
Hearing Instrument; mHealth.

I. INTRODUCTION

With older age, people experience increasing hearing loss.
With the use of assistive technology systems it is possible
to preserve and improve the quality of life of elderly people
with hearing loss. Currently few hearing aids have a wireless
connectivity and for those which support it, it is done through
a dedicated physical device which works as a gateway between
the hearing aid and the smartphone (Starkey SurfLink Mobile
2 (Starkey, 2015), Phonak ComPilot (Phonak, 2015)). The low
usability of such wireless solutions limits the services that can
be delivered to the hearing impaired person. The European
project Augmented Hearing Experience and Assistance for
Daily life (AHEAD) aims to provide a speech-controlled
assistive system that supports elderly people in their everyday
life as communication tool and healthcare manager, e.g.,
initiating phone calls, recording vital parameters, performing a
audio verification test from home and providing environmental
information. The AHEAD system is integrated into hearing
glasses that are a combination of traditional hearing aids
and eye glasses: two devices elderly people are used to and
have accepted already. As health management is especially
important for elderly people, the modified hearing aid is able
to measure vital signs such as heart rate and body core temper-
ature through sensors that are in contact with the skin of the
inner ear and transmit these data for further analysis helping
elderly people in self-managing their health. Finally, a 3D
inertial sensor embedded into the hearing glasses records the
user’s physical activity in order to reduce sedentary behaviours.
The AHEAD assistant is wirelessly connected to a smart phone

Figure 1. Overall AHEAD components

which is the gateway to the smart living environment and third
party services.

Figure 1, depicts the AHEAD system composed by the
openAAL platform (back-end and ontology platform), a smart-
phone, a hearing instrument (either eyeglasses or behind the
hear system), hearing verification tools, and embedded physi-
ological and kinematic sensors. For more details regarding the
hardware and the services offered, please refer to Barralon [1].

In this paper, we are focusing on a sub part of the AHEAD
which is the smartphone and the head mounted physiological
and kinematic sensor (red polygon on Figure 1), which are the
key components supporting the AHEAD fitness service. This
service monitors and provides feedback/recommendation to the
user about his/her daily walking time, number of steps and also
the duration of physically active and inactive periods with the
final goal to reduce the amount of inactivity. This service was
considered important within the AHEAD system because the
relationship between greater time spent in sedentary behavior
and the presence of Activity of Daily Living (ADL) disability
has been reported for older adults [2].

Even though they are commercial activity monitors (FitBit,
Polar, ActiGraph, Tritrac RT3, Actical, the Actiheart, Activ8)
[3] available on the market the AHEAD consortium decided,
based on collected user requirements [4], not to add any
another body sensor (e.g., watch) to promote physical activities
but rather investigate and use the sensor embedded into the
hearing glasses. In this case a 3D accelerometer already
integrated into the Cosinuss device [5]. The question was,
however to investigate whether the head was a suitable location
for detecting walking events. It is known that the head vertical
position is very well regulated during walking in order to
maximise the visual input quality [6]. Brajick [7] investigated
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different smartphone locations (hand held, backpack, handbag,
trousers back pocket, trouser front pocket, and handheld using).
They, obviously, did not study the head location.

Since the AHEAD smartphone is the gateway between the
hearing glasses (microphone, speaker, physiological sensors)
and the back-end platform (openAAL) we have investigated
which are the available algorithms supporting the detection of
walking events, the calculation of the daily number of step
and the duration of physically active and inactive periods with
low computation power. We have found the Jigsaw Continuous
Sensing Engine for Mobile Phone Applications [8] from which
we adapted the method to track the amount of physically active
and inactive events. We have used the frequential Short Time
Fourier Transform (STFT) method proposed by Barralon [9]
and confirmed by Brajick [7] to be better than other alterna-
tives such as thresholding time series (acceleration magnitude,
acceleration energy, mean crossing counts, etc.). For reference,
the following papers estimate walking detection event but also
gait authentication and identification [10] [11], stride and head-
ing determination for pedestrian navigation system [12], and
gait event detection for Functional Electrical Stimulation (FES)
actuation [13]. Recently, a novel confidence-based multiclass
boosting algorithm for mobile physical activity monitoring
has been proposed by Reiss [14] to improve the classification
performance on most of the evaluated datasets, especially for
larger and more complex classification tasks.

Since the AHEAD system includes a smartphone anyway,
we have selected four mobile applications (Pedometer, Walk-
Logger, Pacer, Google Fit) to compare our results with.

The rest of the paper is structured as follows. Section 2 de-
scribes the materials and methods offering the aforementioned
services. Section 3 reports on the performance achieved by the
system in comparison with other applications. Conclusions are
drawn in the Section 4.

II. MEASUREMENTS AND METHODS
A user experiment was performed in Tecnalia HomeLab, to

test the accuracy of the AHEAD fitness algorithm (including
walking time, number of steps and active/inactive duration),
and compare with other commercially available Android apps.

A. Subjects
10 Healthy subjects were involved in the test, all Tecnalia

employees (5 males, 5 females; 25-64 years old, mean 35.8
years, standard deviation 11.3 years).

B. Experimental protocol
In order to test the sensitivity (Se) and specificity (Sp) of

both the Active/inactive and Walking/non Walking detection
methods the users were asked to perform the following activ-
ities during the test:

1) Spending 2 minutes in sitting position reading the
newspaper (in this situation the user should be de-
tected as ”inactive” and ”non walking”).

2) Standing up and arranging the kitchen during 3 min-
utes (should be detected as ”active”. The evaluation
of the performance (e.g Se, Sp) of the walking
detection algorithm was never performed on this part
of the recording since some few and sporadic steps
happened and were not counted by the experimenters
because of the complexity to define what is a step in
this context).

3) Standing up and still standing for 2 minutes watching
a video on TV (should be detected as ”inactive” and
”non walking”).

4) Sitting down and remaining sited for 4 minutes
watching a video on TV (should be detected as
”inactive” and ”non walking”).

5) Initiating gait and walking for 5 minutes (should be
detected as ”active” and ”walking”). In this phase the
number of steps performed by the users was counted
and reported by two observers.

C. Materials
1) Hardware: For this experimentation we used a Nexus 5

smartphone [15] running an Android operating system (version
5.1, released on December 2014. API 22). The Nexus 5 is
powered by a 2.26 GHz quad-core Snapdragon 800 processor
with 2 GB of RAM. The smartphone was connected to a
Cosinuss One device [5] in charge of measuring physiological
parameters (e.g., heart rate, oxygen saturation, body surface
temperature) but also the head motion using a 3-axis ac-
celerometer. The component is an integrated circuit which
records an analog accelerometric input and returns a digital
signal with 12 bits resolution. The sampling rate was set
to 100Hz. The accelerometer data (packet of the five last
measurements) was sent by Bluetooth Low Energy (BLE),
RAW Data Service (UUID 0xA000), RAW Data characteristic
(UUID 0xA001), every 50ms to the Nexus 5.

2) Software: During all the trials, five mobile applications
were running in parallel and recoding the tasks.
• AHEAD app: This app has been developed by Tec-

nalia within AHEAD project. It provides different
services as already explained above. One of the ser-
vices provided by AHEAD app is the Fitness service,
that is being analysed in this publication. It monitors
and provides feedback to the user about his/her daily
walking time, number of steps and also the dura-
tion of physically active and inactive periods. The
algorithms estimating these variables are analysed in
the next section. The Fitness service is connected by
BLE to Cosinuss One device, and receives x and y
axes accelerometer data in the RAW Data Service
every 50ms, including 5 x and 5 y axis data per
package. This data is buffered, and then analysed in
a period of 1 second. So, updated information about
active/inactive time, walking time and number of steps
is provided every 1 second.

• Pedometer (tayutau) [16]
• WalkLogger pedometer [17]
• Pacer [18]
• Google Fit [19]

D. Detection and classification methods
The first version of fitness algorithms have been developed

in Matlab. This first development was validated in [9]. To
implement these algorithms in AHEAD, we translated them
into Java. Due to the processing limitation of a smartphone
compared with a computer, and the fact that other AHEAD ser-
vices are concurrently running in parallel in the smart phone,
a loss in the algorithm performance could be considered. We
therefore compared on pre-trial data the Matlab and Android
outputs (Figure 3 and Figure 4).
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Figure 2. AHEAD app (top left) ; Pedometer (top center) ; WalkLogger (top
right) ; Pacer (bottom left) ; Google fit (bottom right)

In a second step we have compared the AHEAD app meth-
ods with other Android apps. However, some of the selected
apps (Google Fit, Pacer) do not detect (at least display) the
physically active (or inactive) periods. For example when the
user is not walking but still performing an activity of daily
living (e.g., cleaning the dishes) no information is shown. In
AHEAD these active periods are also detected and counted,
with the aim to reduce the amount of inactivity of the user.

1) Physically active or inactive: In order to detect whether
the user is physically active or not we have followed the
approach of Lu and collaborators [8]. A stationary state
detector is used to select qualified −→ai = (ax,i, ay,i, az,i)
(i.e.,stationary accelerometer readings). Our stationary detector
begins by dividing raw data into candidate frames each contain
M successive samples. For each frame, the mean and standard
deviation are calculated for the three axes. If all three standard
deviations fall below a percentage threshold σ of the mean, we
assume the device is stationary. In the AHEAD case and in
order to alleviate the communication bandwidth between the
mobile and the hearing glasses, we stream only two dimensions
of the accelerometric components (vertical (av) and antero-
posterior (aAP )). Instead of applying a threshold on each
standard deviation of each component [8], we rather calculate
the acceleration magnitude (AM) AMi =

√
(a2AP,i + a2v,i) of

the candidate frame and apply a threshold (named minVaria-
tion) on the standard deviation of the AM. The length of the
candidate frame was set to one second (100 samples).

2) Walking duration and number of steps: Recently Brajdic
has reported a comparison of different walking detection algo-
rithms (MAGN TH, ENER TH, STD TH, NASC+STD TH,
STFT, CWT, DWT, HMM) [7]. His conclusion was that the
best performing algorithms for walk detection were the two
thresholds based on the standard deviation (STD TH) and the
signal energy (ENER TH), STFT and NASC, all of which
exhibited similar error medians and spreads.

As explained in Barralon [9] and Brajdic [7], the walk-
ing detection is performed as follows: signal was split into

successive time windows using SFTF of size DFTwin and
labelled as walking if it contained significant (greater than
a threshold: DFTthresh) spectral energy at typical walking
frequencies freqwalk.

For the DFTthresh threshold, we used what was proposed
by Barralon [9]:

DFTthresh =
1

pFactor

[
b.DFTwin

2

]2
(1)

where pFactor is an attenuation coefficient, b the ampli-
tude of the input signal (aV or aAP ).

However, since the value of DFTthresh is adapted accord-
ing to the amplitude b of the input signal, a noise with a small
amplitude can be classified as walk if its frequency content is
included within the frequency range of interest. To overcome
this problem, Barralon [9] defined a constant threshold (Tb,
named minAmp in this paper) to test b. If the amplitude of
the input acceleration is too low then the algorithm will never
classified the candidate frame as ”walking”.

The step counting is then only computed when walking
has been detected and we compute a fractional number of
strides for each window by dividing the window width by the
dominant walking period it detected. These fractional values
were then summed to estimate the total number of step taken.

During daily life activities, the fastest body movements
occur when walking which corresponds to accelerometric
signal ranging from 0.6 Hz to 2.5 Hz [20]. However Brajdic
[7] has extended it to [0.01-7] Hz for the Short Term Fourier
Transform (STFT) method.

For the walking and active/inactive detections we used the
following parameters (see section III-B):
• pFactor = 0.03
• freqwalk = [0.8− 5]Hz
• input accelerometer axis: vertical
• minAmp = 0.1g
• minV ariation = 0.13g

III. RESULTS
A. AHEAD algorithm - Comparison between Matlab and
Smartphone

In figures 3 and 4 the results of the comparison between
fitness algorithms running in Matlab and in AHEAD app are
shown. Figure 3 shows the results during activities of daily
living (e.g., cleaning up the kitchen table) and inactive episodes
(reading and watching TV). Minor differences can be identified
between the two implementations, surely due to the mislaid of
some accelerometer data packages. Figure 4 shows the results
of a walking sequence, where the results are the same for
both Matlab and Android algorithms of walking detection and
active/inactive detection. Step counting has not been included
in this Matlab vs smartphone comparison, because it requires
very few processing resources; the key point to correctly count
the steps is the correct detection of walking episodes.

B. Thresholds identification
As presented in section II-D, several parameters have to

be defined to detect the user activity. Even if values of these
parameters have been reported for trunk mounted devices in
various publications [9][7], we investigated how the change
of some of them impact the performance for head mounted
device which is the case of the AHEAD solution.
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Figure 3. Illustration of AHEAD classification (walking/non walking,
active/inactive) durind daily life activities

Figure 4. Illustration of AHEAD classification (walking/non walking,
active/inactive) durind a walking sequence

In total, 10 subjects have performed the trial. Data from
the first 3 subjects has been used to study and select the inner
thresholds/values of the algorithms. The other 7 subjects’ data
has been used to validate the algorithm. The first three users
have been selected to be representative of the whole set of
subjects, and so we tried to include variation in gender and age:
2 males, 1 female; mean age 42.7 years, standard deviation of
age 19.8 years.

1) Active/Inactive: The threshold to identify in the ac-
tive/inactive detection algorithm is the threshold minVariation
to which the standard deviations are compared with. Figures 5
and 6 show the results of this identification, with the Receiver
operating characteristic (ROC) curve and the maximum ac-
curacy with different threshold minVariation values. The best
accuracy of 89% was obtained for minV ariation = 0.13.

In the threshold identification process, data from tasks 1,
3 and 4 (sitting or still reading or watching TV) were tagged
as inactive, and data from tasks 2 and 5 (arranging the kitchen
and walking) were tagged as active.

2) Walking: Walking detection algorithm has three param-
eters that can be adjusted (and will affect the sensitivity and
specificity). We therefore tested several combinations of those
three parameters and analysed how they affect the performance
of the walking detection algorithm:
• Walking detection algorithm is based on acc data from

only one axis. So, the best axis (V or AP) to be used
should be defined. V is the vertical axis, and AP is

Figure 5. Active/inactive ROC curve as a function of the minV ariation
parameter

Figure 6. Active/inactive accuracy as a function of the minV ariation
parameter

the anteroposterior axis.
• The highest peak on frequencies between 0.8Hz and

5.0Hz should be bigger than a percentage of the
theoretical maximum frequency. This attenuation co-
efficient pfactor (1) should be defined.

• The amplitude of the acc signal above the mean should
be bigger than a threshold minAmp to be defined (see
section II-D2).

Figures 7 and 8 show the results of the identification of
these 3 parameters. When selecting these values, a better sen-
sitivity has been prioritized at the expense of poorer specificity.
The best results were obtained for the vertical axis. We selected
an attenuation coefficient pFactor = 0.03 and the minimum
amplitude of the acc signal above the mean minAmp = 0.1.

Figure 7. Learning: Walking - ROC as function of pFactor, minAmp and
acceleration axis (V or AP).
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Figure 8. Learning: Walking Accuracy as function of pFactor, minAmp,
and axis. The blue plot represents the AP axis and the white one the V axis

For this threshold identification process, data from tasks 1,
3 and 4 (sitting or still reading or watching TV) were tagged
as non walking, and data from task 5 (walking) was tagged
as walking. Data from task 2 was excluded from this section,
because some few and sporadic steps happened and were not
counted by the experimenters because of the complexity to
define what is a step in this context.

C. Results on seven subjects
After setting the required parameters (see previous section),

the configured algorithms were validated with the remaining
7 users: 3 males, 4 females; mean age 32.9 years (standard
deviation 5.3 years).

Table I shows the overall results of the test, comparing
AHEAD fitness service with the true values and the results
obtained with other Android apps available in Google Play.
• Active/Inactive time detection algorithm has a sensi-

tivity of 89 percent.
• Walking time algorithm has a sensitivity of 86 percent

for all 7 users. For the 4 users where the algorithm
has a better performance, the sensitivity is 96 percent,
while it is of 72 percent for the other 3 users.

• Step counter has also a sensitivity of 86 percent for
all 7 users. For the 4 users where the algorithm has a
better performance, the sensitivity is 93 percent, while
it is of 77 percent for the other 3 users.

In Figures 9 and 10, the walking time and number of steps
information is shown. Numbers correspond to average values
of the 7 users, and associated standard deviation in brackets.

AHEAD walking detection and step counting algorithms
clearly had much worse performance with 3 of these 7 users.
In Table I and in Figures 9 and 10, new columns were added
to distinguish the algorithms good performance in 4 users and
bad performance in 3 users.

IV. CONCLUSION

A new approach for fitness activity detection has been pre-
sented in this paper. The main novelties presented here are 1)
the head location of the accelerometer sensor embedded into a
pair of hearing glasses, and 2) the detection of physically active
episodes that do not necessary imply a walking event. The
integration of additional sensors into the hearing instruments
will facilitate the user acceptance while offering additional
services with the aim to increase the autonomy level of the
users and reduce the amount of sedentary behaviours.

The results presented support that the head kinematics
is a suitable location for physical activity monitoring. The
results are promising, with a sensitivity higher than 85% for
all 3 algorithms (active detection, walking detection and step
counter). Even though the user trial was designed to cover
sequentially inactive, active, and walking phases, the test was
performed in a Homelab and the users executed those tasks
in a very natural manner. As a consequence, sequences that
were supposed to be ”inactive” sometimes include ”active”
events (postural re-adjustment on a chair, head and trunk
motion to scratch a leg, ...). Similarly, during walking we
observed large head movements to either look around or talk
to the experimenter. Besides, the Cosinuss sensor was placed
by the user him/herself on the hear, and therefore the sensor
placement was not identical for all users. All these elements
contributed to reduce the performance of the implemented
algorithms. The raw acc data of the 3 users with worse walking
detection performance show some similarities, e.g., changes
in the Cosinuss sensor orientation during the trial. Finally, the
three users selected for the learning stage of the algorithm were
chosen based on general characteristics (gender and age), but
we did not take into account other gait related features such
as body mass, leg or step length.

The promising results presented in this publication may
require some more research so that the algorithm could be
more independent of various gait patterns or gait styles.

The AHEAD subsystem presented in this paper is a poten-
tial candidate to be used in the ACTIVAGE project (European
Large Scale Pilot on Smart Living Environments) where the
main objective is to build the first European Internet of Thing
(IoT) ecosystem across 9 Deployment Sites (DS) in seven
European countries.
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