
47

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Complex software systems : Formalization and Applications∗

Marc Aiguier, Pascale Le Gall and Mbarka Mabrouki
École Centrale Paris

Laboratoire de Mathématiques Appliqués aux Systèmes (MAS)
Grande Voie des Vignes - F-92295 Châtenay-Malabry

Programme d’Épigénomique
523, Place des Terrasses de l’Agora - F-91025 Evry

{marc.aiguier,pascale.legall}@ecp.fr, mabrouki@epigenomique.genopole.fr

Abstract

A mathematical denotation is proposed for the notion
of complex software systems whose behavior is specified
by rigorous formalisms. Complex systems are described
in a recursive way as an interconnection of subsystems by
means of architectural connectors. In order to consider
the largest family of specification formalisms and architec-
tural connectors, this denotation is essentially formalism,
specification and connector independent. For this, we build
our denotation on Goguen’s institution theory. In this ab-
stract framework, we characterize complexity by the notion
of property emergence.

This work is a revised and extended version of Aigu-
ier, Le Gall and Mabrouki (3rd International Conference on
Software Engineering Advanced (ICSEA), IEEE Computer
Society Press, 2008).

Keywords-abstract specification language; abstract ar-
chitectural connector; emergent property; institution; cate-
gory theory; transition systems; modal first-order logic.

1 Introduction

A powerful approach to develop large software systems
is to describe them in a recursive way as an interconnec-
tion of sub-systems. This has then made emerge the no-
tion of architectural connector as a powerful tool to de-
scribe systems in terms of components and their interac-
tions [6, 7, 16, 25]. Academic and industrial groups have
defined and developed computer languages dedicated to the
description of software architectures provided with archi-
tectural connectors, calledArchitectural Description Lan-
guage (ADL), such as ACME/ADML [17], Wright [5] or

∗This work is performed within the European project GENNETEC
(GENetic NeTworks: Emergence and Complexity)STREP 34952.

Community [15, 16]. The interest of describing software
systems as interconnected subsystems is that this promotes
the reuse of components either directly taken in a library
or adapted by slight modifications made on existing ones.
The well-known difficulty with such systems is to infer the
global behavior of the system from the ones of subsystems.
Indeed, modern software systems are often open on the out-
side, that is they interact with the environment, composed
of interacting subsystems (e.g. active objects which inter-
act together concurrently [3, 27]) or defined by questioning
requirements of subsystems (e.g. feature-oriented systems
where each feature can modify the expected properties of
pre-existing features [18, 4, 26]). Thus, such global systems
may exhibit behaviors, that cannot be anticipated just from
a complete knowledge of subsystems. Hence, what makes
such software systemscomplexis they cannot be reduced to
simple rules of property inference from subsystems towards
to the global system.

Following some works issued from other scientific dis-
ciplinaries such as biology, physics, economy or sociol-
ogy [10, 13], let us make more precise what we mean by
complex systems. A complex system is characterized by a
holistic behavior, i.e. global: we do not consider that its be-
havior results from the combination of isolated behaviors of
some of its components, but instead has to be considered as
a whole. This is expressed by the appearance (emergence)
of global properties which is very difficult, see impossible,
to anticipate just from a complete knowledge of component
behaviors. This notion of emergence seems to be the sim-
plest way to define complexity. Succinctly, this could be
expressed as follows: suppose a system XY composed of
two subsystems X and Y. Let us also suppose we have a
mathematical functionF which gives all potential pieces of
information on XY, X and Y, and an operation ’+’ to com-
bine potential pieces of information of subsystems. If we
have thatF (XY) = F (X) + F (Y) then this means that

48

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

the systemXY integrates in a consistent manner the sub-
systemsX andY without either removing or adding pieces
of information. Therefore, we can say that the systemXY

is notcomplex(i.e. the systemXY is said to bemodular).
On the contrary, if there exists somea ∈ F (X) + F (Y)
such thata 6∈ F (XY) or there exists somea ∈ F (XY)
such thata 6∈ F (X) + F (Y), then there is reconsideration
of some potential pieces of information ofX or Y in the
first case, and appearance of true emergence in the second
case. The systemXY is then saidcomplex.

In this paper, we will study the notion of complex soft-
ware systems by using formal specifications, that is we will
suppose that every part of systems have been specified in a
given formalism from which we can infer properties. The
systemXY will be built from subsystemsX and Y by
means of an architectural connectorc expliciting how the
two subsystems are linked together to form the global sys-
tem c(X,Y) = XY , the connectorc being implicit in the
notationXY . Finally, the function F will give for a spec-
ification its whole set of satisfied properties, the so-called
semantic consequencesof specifications usually notedX•,
andF (X) + F (Y) = (X• ∪ Y •)•. Roughly speaking, this
last notation consists in saturating the property derivation
mechanism, and then represents the fact thatF (X)+F (Y)
denote the set of all properties which can be derived from
the set of propertiesX•, resp.Y •, associated toX, resp.Y .
The notion of complexity being based on the emergence of
properties, a general framework dedicated to complex soft-
ware systems can be defined independently of formalisms,
specifications and architectural connectors. Hence, we in-
vestigate an abstract form of complexity, by following the
paradigm “logical-system independency”. The interest here
is simple. We can observe, whatever the formalism used
to specify softwares, that the same set of notions underlies
complexity. These notions are : architectural connector and
emergent property. To formalize abstractly these elements,
our approach will be based on previous works:

• we will use the general framework of institutions [20]
which is recognized as well-adapted to generalize for-
malisms. The theory of institutions abstracts the se-
mantical part of logical systems according to the needs
of software specifications in which changes of signa-
tures are taken into account. The abstraction of the
different parts of logical systems is obtained by us-
ing some notions of the category theory such as the
category of signatures and the two functors to denote
respectively the set of sentences and the category of
models over a signature (see Section 2 for the complete
definition of institutions and some related notions);

• specifications will be defined following the generic
approach of specification logics [14]. The inter-
est of specification logics is they unify in the same

framework heterogeneous forms of specifications by
considering them as simple objects of a category
SPEC, while handled specifications over institutions
are mostly axiomatic (i.e. of the form(Σ, Ax) where
Σ is a signature andAx is a (finite) set of formulas (ax-
ioms) overΣ). However, because we are interested by
emergent properties, we will adapt/modify specifica-
tion logics by defining them over institutions in order
to focus on specification properties;

• abstract connectors will be defined by using notions of
the category theory. The use of category theory has
already been applied strikingly to model the architec-
ture of software systems by Goguen [19] and Fiadeiro
& al. [15]. It has also been applied to model com-
plex natural systems such as biological, physical and
social systems (e.g. Ehresman and Vanbremeersch’s
works [13]).
Fiadeiro & al. [16] have proposed an abstract formal
denotation of a class of architectural connectors in the
style of Allen and Garlan [6], that is defined by a set of
roles and a glue specification. Here, we will go beyond
by not supposing any structure in the architectural con-
nectors.

Over our abstract notions of specification and architec-
tural connector, we will define the notion of emergent prop-
erties according to the two following classes:

1. the ones we will calltrue emergent propertiesthat are
properties which cannot be inferred from subsystem
properties,

2. and the ones we will callnon conformity properties
that are subsystem properties which are not satisfied
by the global system anymore.

In practice, properties of the first form, i.e. true emer-
gent properties, combine knowledge inherited from subsys-
tems. Thus, they are defined in a richer language than the
ones associated to each subsystem, and the presence of such
emergent properties is quite natural. Conversely, properties
of the second form, i.e. non conformity properties, are often
the consequences of bad interactions between subsystems.
They characterize properties that are satisfied (resp. not sat-
isfied) by a subsystem considered in isolation, but are not
satisfied (resp. satisfied) by the global system incorporating
the subsystem in question.

A software system will be then saidcomplexwhen emer-
gent properties can be inferred from it. The complexity of
systems just means that we do not benefit from the complete
knowledge of subsystems we have, to analyze the behavior
of the large system. Hence, the recursive approach used to
describe the system cannot be used to analyze its behavior.
Complex systems can then be opposed to modular systems

49

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

which by definition strictly preserve local properties at the
global level (see [24] for a state-of-the-art on the modular
approach).

The formalizations of system complexity and emergent
properties are interesting if they are done in such way to
support the characterization of general properties to guar-
antee when a system is or is not complex. To answer this
point, we will give some conditions under which a system
is modular. We will then establish two results: in the first
one we will give a sufficient and necessary condition to en-
sure the absence of true emergent properties. In the sec-
ond result, we will give sufficient conditions based on the
categorical notion of adjunctness to ensure the absence of
non-conformity properties.

As a result of our generalization defined in this paper, all
the notions, results, and techniques established and defined
in our abstract framework arede factoadaptable to any in-
stitution.

The paper is structured as follows: Section 2 reviews
some concepts, notations and terminology about institu-
tions. Section 3 defines an abstract notion of specifications
over institutions. In Section 4, abstract architectural con-
nectors are defined and classified as complex and modular.
The notations of the category theory used in this paper are
the standard ones and can be found in [15]. Although all the
notions and results given in this manuscript are exemplified
by many examples all along the paper, Section 5 illustrates
more particularly the abstract framework developed in this
paper to reactive component-based systems described by
transition systems and combined together through the syn-
chronous product operation.

Note : This manuscript extends the paper published in
the proceedings of [1] with expanded definitions, new re-
sults and additional examples. Moreover, as an application
of our approach, we will study reactive systems described
by means of transition systems as components and of the
usual synchronous product as architectural connector, and
whose behavior is expressed by logical properties over a
modal first-order logic. In this framework, we propose to
study complexity of reactive systems through this notion of
emergent properties. We will also give some conditions to
guarantee when a system is lacking of non-conformity prop-
erties which have been recognized as being the cause of bad
interaction between components. This last work has been
published in the proceedings of [2]. Here, this manuscript
also extends the paper published in [2] with complete proofs
of the main results.

2 Institutions

The theory of institutions [20] is a categorical abstract
model theory which formalizes the intuitive notion of logi-
cal system, including syntax, semantics, and the satisfaction

between them. This emerged in computing science studies
of software specification and semantics, in the context of
the increasing number of considered logics, with the ambi-
tion of doing as much as possible at the level of abstraction
independent of commitment to any particular logic. Now
institutions have become a common tool in the area of for-
mal specification, in fact its most fundamental mathematical
structure.

2.1 Basic definitions

Definition. 1 (Institution) An institution I =
(Sig, Sen,Mod, |=) consists of

• a categorySig, objects of which are calledsignatures,

• a functorSen : Sig → Set giving for each signature
a set, elements of which are calledsentences,

• a contravariant functorMod : Sigop → Cat giving
for each signature a category, objects and arrows of
which are calledΣ-modelsandΣ-morphisms respec-
tively, and

• a |Sig|-indexed family of relations

|=Σ⊆ |Mod(Σ)| × Sen(Σ)

calledsatisfaction relation,

such that the following property holds:
∀σ : Σ→ Σ′, ∀M′ ∈ |Mod(Σ′)|, ∀ϕ ∈ Sen(Σ),

M′ |=Σ′ Sen(σ)(ϕ)⇔Mod(σ)(M′) |=Σ ϕ

Here, we define some notions over institutions which
will be useful thereafter.

Definition. 2 (Elementary equivalence)Let I =
(Sig, Sen,Mod, |=) be an institution. LetΣ be a signa-
ture. TwoΣ-modelsM1 andM2 areelementary equivalent,
notedM1 ≡Σ M2 if, and only if the following condition
holds:∀ϕ ∈ Sen(Σ), M1 |=Σ ϕ⇐⇒M2 |=Σ ϕ.

This means thatM1 andM2 are undistinguishable with
respect to the formula satisfaction.

Definition. 3 (Closed under isomorphism)An institution
is closed under isomorphismif, and only if every two iso-
morphic models are elementary equivalent.

All reasonable logics (anyway all the logics classically used
in mathematics and computer science) are closed under iso-
morphism.

50

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Definition. 4 (Logical theory) Let I =
(Sig, Sen,Mod, |=) be an institution. LetΣ be a
signature of|Sig|. Let T be a set ofΣ-sentences (i.e.
T ⊆ Sen(Σ)). Let us denoteMod(T) the full sub-category
of Mod(Σ) whose objects are allΣ-modelsM such that
for anyϕ ∈ T ,M |=Σ ϕ, andT • the subset ofSen(Σ),
so-calledsemantic consequences ofT , defined as follows:

T • = {ϕ | ∀M ∈ |Mod(T)|, M |=Σ ϕ}

T is a logical theoryif, and only ifT = T •.

ϕ ∈ T • is also denoted byT |=Σ ϕ.

2.2 Examples of institutions

2.2.1 Propositional Logic (PL)

Signatures and signature morphisms are sets of proposi-
tional variables and functions between them respectively.
Given a signatureΣ, the set ofΣ-sentences is the least set
of sentences finitely built over propositional variables inΣ
and Boolean connectives in{¬,∨,∧,⇒}. Given a signa-
ture morphismσ : Σ → Σ′ associating to each proposi-
tional variable ofΣ a propositional variable ofΣ′, Sen(σ)
translatesΣ-formulas toΣ′-formulas by renaming proposi-
tional variables according toσ.
Given a signatureΣ, the category ofΣ-models is the cate-
gory of mappings1 ν : Σ → {0, 1} with identities as mor-
phisms. Given a signature morphismσ : Σ → Σ′, the for-
getful functorMod(σ) maps aΣ′-modelν′ to theΣ-model
ν = ν′ ◦ σ.
Finally, satisfaction is the usual propositional satisfaction.

2.2.2 Many-sorted First Order Logic with equality
(FOL)

Signatures are triples(S, F, P) whereS is a set of sorts,
andF andP are sets of function and predicate names re-
spectively, both with arities inS∗×S andS+ respectively.2

Signature morphismsσ : (S, F, P) → (S′, F ′, P ′) consist
of three functions between sets of sorts, sets of functions
and sets of predicates respectively, the last two preserving
arities.
Given a signatureΣ = (S, F, P), theΣ-atoms are of two
possible forms:t1 = t2 where3 t1, t2 ∈ TF (X)s (s ∈ S),
and p(t1, . . . , tn) where p : s1 × . . . × sn ∈ P and
ti ∈ TF (X)si

(1 ≤ i ≤ n, si ∈ S). The set ofΣ-sentences
is the least set of formulas built over the set ofΣ-atoms by
finitely applying Boolean connectives in{¬,∨,∧,⇒} and

1{0, 1} are the usual truth-values.
2S+ is the set of all non-empty sequences of elements inS andS∗ =

S+ ∪ {ε} whereε denotes the empty sequence.
3TF (X)s is the term algebra of sorts built overF with sorted variables

in a given setX.

quantifiers∀ and∃.
Given a signatureΣ = (S, F, P), a Σ-modelM is a fam-
ily M = (Ms)s∈S of sets (one for everys ∈ S), each one
equipped with a functionfM : Ms1

× . . .×Msn
→Ms for

everyf : s1 × . . .× sn → s ∈ F and with a n-ary relation
pM ⊆ Ms1

× . . . ×Msn
for everyp : s1 × . . . × sn ∈ P .

Given a signature morphismσ : Σ = (S, F, P) → Σ′ =
(S′, F ′, P ′) and aΣ′-modelM′, Mod(σ)(M′) is theΣ-
modelM defined for everys ∈ S by Ms = M ′

σ(s), and for
every function namef ∈ F and predicate namep ∈ P , by
fM = σ(f)M

′

andpM = σ(p)M
′

. Finally, satisfaction is
the usual first-order satisfaction.

Many other important logics can be obtained as FOL re-
strictions such as:

• Horn Clause Logic (HCL). An universal Horn sen-
tence for a signatureΣ in FOL is a Σ-sentence of
the form Γ ⇒ α whereΓ is a finite conjunction of
Σ-atoms andα is a Σ-atom. The institution of Horn
clause logic is the sub-institution ofFOL whose sig-
natures and models are those ofFOL and sentences
are restricted to the universal Horn sentences.

• Equational Logic (EQL). An algebraic signature
(S, F) simply is aFOL signature without predicate
symbols. The institution of equational logic is the sub-
institution of FOL whose signatures and models are
algebraic signatures and algebras respectively.

• Conditional equational logic (CEL). The institution
of conditional equational logic is the sub-institution of
EQL whose sentences are universal Horn clauses for
algebraic signatures.

• Rewriting Logic (RWL) Given an algebraic signature
Σ = (S, F), Σ-sentences are formulas of the form
ϕ : t1 → t′1 ∧ . . . ∧ tn → t′n ⇒ t → t′ whereti, t

′
i ∈

TF (X)si
(1 ≤ i ≤ n, si ∈ S) and t, t′ ∈ TF (X)s

(s ∈ S). Models of rewriting logic are preorder mod-
els, i.e. given a signatureΣ = (S, F), Mod(Σ) is the
category ofΣ-algebrasA such that for everys ∈ S,
As is equipped with a preorder≥. Hence,A |= ϕ if,
and only if for every variable assignmentν : X → A,
if eachν(ti)

A ≥ ν(t′i)
A thenν(t)A ≥ ν(t′)A where

_A : TF (A) → A is the mapping inductively defined
by: f(t1, . . . , tn)A = fA(tA1 , . . . , tAn).

2.2.3 Modal FOL (MFOL)

Signatures are couples(Σ, A) whereΣ is aFOL -signature
and A is a set of actions, and morphisms are couples of
FOL -signature morphisms and total functions on sets of ac-
tions. In the sequel, we will note by the same name both
MFOL -signature and each of its components.

51

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Given a MFOL signature(Σ, A) with Σ = (S, F, P),
(Σ, A)-atoms are either predicatesp(t1, . . . , tn) or the sym-
bol T (for T rue), and the set of(Σ, A)-formulas is the least
set of formulas built over the set of(Σ, A)-atoms by finitely
applying Boolean connectives in{¬,∨,∧,⇒}, quantifiers
∀ and∃, and modalities in{2a|a ∈ A}. For everya ∈ A,
the intuitive meaning of2a is “always after the actiona”.
Given a signature(Σ, A), a (Σ, A)-model (W,R), called
Kripke frame, consists of a familyW = (W i)i∈I of Σ-
models inFOL (thepossible worlds) such that4 W i

s = W j
s

for every i, j ∈ I ands ∈ S, and aA-indexed family of
“accessibility” relationsRa ⊆ I × I. Given a signature
morphismσ : (Σ, A) → (Σ′, A′) and a(Σ′, A′)-model
((W ′i)i∈I , R

′), Mod(σ)(((W ′i)i∈I , R
′)) is the (Σ, A)-

model(Mod(σ)(W ′i)i∈I , R) defined for everya ∈ A by
Ra = R′

σ(a). A (Σ, A)-sentenceϕ is said to be satisfied by
a (Σ, A)-model(W,R), noted(W,R) |=(Σ,A) ϕ, if for ev-
ery i ∈ I we have(W,R) |=i

Σ ϕ, where|=i
Σ is inductively

defined on the structure ofϕ as follows:

• for every FOL -formula ϕ built over Σ-atoms,
(W,R) |=i

Σ ϕ iff W i |=Σ ϕ

• (W,R) |=i
Σ 2aϕ when(W,R) |=j

Σ ϕ for everyj ∈ I

such thati Ra j.

2.2.4 More exotic institutions

The institution theory also enables to represent formalisms
which are not logics strictly speaking.

Formal languages (FL)The institution of formal lan-
guages is defined by the category of signaturesSet. Given
a setA, the set of sentences isA∗ andMod(A) is the cate-
gory whose objects are all subsets ofA∗. Given a signature
morphismσ : A → A′, Mod(σ) is the functor which at
L′ ⊆ A′∗ associates the setL = {α|σ(α) ∈ L′}. Finally,
given a signatureΣ ∈ Sig, |=Σ is just the membership rela-
tion 3. It is obvious to show that the satisfaction condition
holds.

Programming languages (PLG)The institution of a
programming language [28] is built over an algebra of built-
in data types and operations of a programming language.
Signatures are FOL signatures and sentences are programs
of the programming language over signatures; and models
are algebraic structures in which functions are interpreted
as recursive mappings (i.e for each function symbol is as-
signed a computation (either diverging, or yielding a result)
to any sequence of actual parameters). A model satisfies a
sentence if, and only if it assigns to each sequence of param-
eters the computation of the function body as given by the
sentence. Hence, sentences determine particular functions

4In the literature, Kripke frames satisfying such a property are saidwith
constant domains.

in the model uniquely. Finally, signature morphisms, model
reductions and sentence translations are defined similarlyto
those in FOL.

3 Specifications in institutions

Over institutions, specifications are usually defined ei-
ther by logical theories or couples(Σ, Ax) whereΣ is a
signature andAx a set (usually finite) of formulae (often
called axioms) overΣ. However, there is a large family of
specification formalisms mainly used to specify concurrent,
reactive and dynamic systems for which specifications are
not expressed in this way. We can cite for instance pro-
cess algebras, transition systems or Petri nets. Now, all of
these kinds of specifications can be studied through the set
of their semantic consequences expressed in an adequate
formalism. This leads us up to define the notion of specifi-
cations over institutions.

3.1 Definitions

Let us now consider a fixed but arbitrary institutionI =
(Sig, Sen,Mod, |=).

Definition. 5 (Specifications)A specification languageSL
overI is a pair (Spec,Real) where:

• Spec : Sigop → Set is a functor. Given a signature
Σ, elements inSpec(Σ) are calledspecifications over
Σ.

• Real = (RealΣ)Σ∈|Sig| is a Sig-indexed family of
mappingsRealΣ : Spec(Σ) → |Cat| such that
for every Σ ∈ |Sig|, and everySp ∈ Spec(Σ),
RealΣ(Sp) is a full subcategory ofMod(Σ). Objects
of RealΣ(Sp) are calledrealizations ofSp.

Definition. 6 (Semantic consequences)Let SL =
(Spec,Real) be a specification language overI. Let us
define _• = (_•Σ)Σ∈Sig theSig-indexed family of mappings
_•Σ : Spec(Σ)→ P(Sen(Σ)) that to everySp ∈ Spec(Σ),
yields the setSp•Σ = {ϕ|∀M ∈ RealΣ(Sp),M |=Σ ϕ}.
Sp•Σ is called theset of semantic consequencesof Sp or
thetheory ofSp.

Definition 6 calls for some comments:

• We could expect thatMod(Sp•) = Real(Sp) what
would make unmeaning the existence of the mappings
in Real in Definition 5. However, we can often be led
up to make some restrictions on specification models.
For instance, when dealing with axiom specifications
expressed in equational logic, we can be interested by
reachable or initial models to allow inductive proofs or
for computability reasons.

52

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

• Sometimes, _• is a natural transformation fromSpec

to5 P ◦ Senop. However, most of times, it is not the
case (see the examples in Section 3.2).

Definition. 7 (Category of specifications)Let SL be a
specification language over an institutionI. Denote
SPEC the category of specifications overSL whose the
objects are the elements in

⋃

Σ∈|Sig|

Spec(Σ), and morphisms

are actually given by signature morphisms (i.e. for every
Sp ∈ Spec(Σ) and everySp′ ∈ Spec(Σ′), σ : Sp →
Sp′ ∈ SPEC iff σ : Σ → Σ′ ∈ Sig). If a morphism
σ : Sp→ Sp′ in SPEC further satisfies:Sen(σ)(Sp•Σ) ⊆
Sp′

•
Σ′ , thenσ is calledspecification morphism.

Sig : SPEC → Sig is the functor which maps any specifi-
cationSp ∈ Spec(Σ) to the signatureΣ and any morphism
σ to the signature morphismSig(σ).

Hence, specification morphisms are arrows inSPEC

that further preserve semantic consequences. Com-
monly, the category of specifications over institutions have

⋃

Σ∈|Sig|

Spec(Σ) as objects and specification morphisms as

arrows [20, 29]. Here, the fact to consider just signature
morphisms between specifications will be useful to define
both architectural connectors and their combination.

3.2 Examples of specifications

We give three examples of specification languages that
correspond to the usual forms of specifications over arbi-
trary institutions.

3.2.1 Logical theories

Here, specifications are logical theories. To meet the re-
quirements given in Definition 5, this gives rise to the func-
tor Spec : Sigop → Set which to everyΣ ∈ Sig, as-
sociates the set of allΣ-theoriesT , and to every signa-
ture morphismσ : Σ → Σ′, matches everyΣ′-theoryT ′

with the Σ-theory T = {ϕ|Sen(σ)(ϕ) ∈ T ′}. Hence,
Spec(Σ) ⊆ P(Sen(Σ)). We naturally defineRealΣ(T) =
Mod(T). Moreover, specifications being saturated theories,
this naturally leads to the identity function _•

Σ : Spec(Σ)→

5Given a functorF : C → D, Fop : Cop → Dop is the dual ofF
defined as follows:

– ∀o ∈ C, F op(o) = F (o)

– f∗ being the reverse arrow off in C, ∀o, o′ ∈ C, ∀f ∈
HomC(o, o′), F op(f∗) = F (f)∗

The powerset functorP : Setop → Set takes a setS to its powerset
P(S), and a set functionf : S → S′ (i.e., an arrow fromS′ to S in
Setop) to the inverse image functionf−1 : P(S′) → P(S) which asso-
ciates to a subsetA ⊆ S′ the subset{s ∈ S|f(s) ∈ A} of S.

P(Sen(Σ)). It is easy to check that given a signature mor-
phismσ : Σ → Σ′, the following diagram commutes and
then _• is a natural transformation:

Spec(Σ) P(Sen(Σ))

Spec(Σ′) P(Sen(Σ′))

_•Σ

_•Σ′

Spec(σ) P(Senop(σ∗))

(See Footnote 5 for the definition ofσ∗)

3.2.2 Axiomatic specifications

In this case, specifications are defined by pairs(Σ, Ax)
where Σ is a signature andAx ⊆ Sen(Σ), and
given a signature morphismσ : Σ → Σ′, Spec(σ)
matches everyΣ′-specificationSp′ = (Σ′, Ax′) to Sp =
(Σ, {ϕ|Sen(σ)(ϕ) ∈ Ax′}). By the satisfaction condition,
we have thatSen(σ)(Ax•) ⊆ Ax′•. The functorSpec then
associates to every signatureΣ the set of pairs(Σ, Ax), and
(Σ, Ax)•Σ = Ax•. Observe that _• is not a natural transfor-
mation. Indeed, let us set inFOL , and consider the inclu-
sion morphismσ : Σ → Σ′ whereΣ′ = ({s}, ∅, {R1, R2 :
s× s}) andΣ = ({s}, ∅, {R1 : s× s}). Let Ax′ be the set
of axioms:

x R2 y =⇒ y R2 x

x R1 y ⇐⇒ x R2 y

Obviously, we prove fromAx′ that R1 is a symmetric
relation.
However, Spec(σ)((Σ′, Ax′)) = ∅, and then
Spec(σ)((Σ′, Ax′))• is restricted to tautologies while
P(Senop(σ∗))(Ax′) contains at leastx R1 y ⇒ y R1 x.

3.2.3 Inference rules

In the framework of formal language, languagesL over an
alphabetA can be specified by inference rules, that isn-
ary relationsr on A∗ and a tuple(α1, . . . , αn) ∈ r means
that if α1, . . . , αn−1 are words of the language, then so
is αn. Hence, a specification over an alphabetA is a set
R of n-ary relations onA∗. Given a signature morphism
σ : A→ A′ and a specificationR′ overA′, the specification
Spec(σ)(R′) over A is the setR of n-ary relationr such
that there existsr′ ∈ R′ andr = {(a1, . . . , an)|(∀i, 1 ≤
i ≤ n, ai ∈ A) ∧ (a1, . . . , an) ∈ r′}. Given a set of infer-
ence rulesR over an alphabetA, R•

A is the languageL in-
ductively generated from inference rules ofR. Given a sig-
nature morphismσ : A→ A′ and a set of inference rulesR′

overA′. It is easy to show thatSpec(σ)(R′)•A = R′•
A′ ∩A∗

what proves that _• is a natural transformation fromSpec

toP ◦ Senop.

53

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

3.3 Properties of specifications

Proposition. 1 Let σ : Sp → Sp′ be a specification mor-
phism. Then, the functorMod(σ) : Mod(Sig(Sp′)) →
Mod(Sig(Sp)) can be restricted to specification semantic
consequences (i.e.Mod(σ) : Mod(Sp′•Σ′) → Mod(Sp•Σ)
is a functor).

Proof. Let ϕ ∈ Sp•Sig(Sp) andM ∈ Mod(Sp′). As
σ is a specification morphism,M |=Sig(Sp′) Sen(σ)(ϕ).
Therefore, by the satisfaction condition, we also have that
Mod(σ)(M) |=Sig(Sp) ϕ.

We cannot state a similar result for the family of map-
pingsReal, i.e. we cannot define in a general way a func-
tor of the formReal(σ) : Real(Sp′) → Real(Sp). The
following notion of compatibility captures the existence of
such a functor.

Definition. 8 (Compatible) Let SL = (Spec,Real) be a
specification language overI. Let σ : Sp → Sp′ be a
specification morphism.Real is saidcompatiblewith σ if,
and only if we can define a functorReal(σ) : Real(Sp′)→
Real(Sp).

Here, we define two other notions that we will use after-
wards.

Definition. 9 (Definable by specification)Given an insti-
tution I and a specification language overI, a Σ-theory
T is saiddefinable by specificationor definablefor being
shorter if, and only if there existsSp ∈ Spec(Σ) such that
T = Sp•Σ.

In the following definition, we now adapt the standard
notion of liberal specification morphism [12] which will be
useful in Section 4.3.

Definition. 10 (Liberality) In any specification language
SL over I, a specification morphismσ : Sp → Sp′

is liberal if, and only if Real is compatible withσ and
Real(σ) : Real(Sp′) → Real(Sp) has a left-adjunct
F(σ) : Real(Sp)→ Real(Sp′).

Specifications defined by logical theories and axiomatic
specifications over the institutionCEL is liberal for every
specification morphismσ. Indeed, letσ : Σ = (S, F) →
Σ′ = (S′, F ′) be a signature morphism, and letΓ andΓ′

be two sets of conditional equations over, respectively,Σ
andΣ′ such thatSen(σ)(Γ) ⊆ Γ′. We can build a functor
TΓ′/Γ : A 7→ TΓ′/Γ(A), from the category ofΓ-algebras to
the category ofΓ′-algebras.
Let A be a Γ-algebras. TΓ′/Γ(A) is the quotient of

TF ′(A) by the congruence generated by the kernel of theΣ-
morphismTF (A) in A extending the identity onX. 6 This
algebra satisfies the following universal property: for every
Γ′-algebraB and everyΣ-morphismµ : A → Mod(σ)B,
there exists a uniqueΣ′-morphismηB : TΓ′/Γ(A) → B
such that for everya ∈ A, ηB(a) = µ(a). This universal
property directly shows that the functorTΓ′/Γ is left-adjunct
to Mod(σ), i.e., for everyΓ-algebraA there exists a univer-
sal morphismµA : A →Mod(σ)(TΓ′/Γ(A)). µA is called
theadjunct morphismfor A.

4 Architectural connector

4.1 Definitions

Succinctly, architectural connectors enable one to com-
bine components (specifications) together to make bigger
ones. However, depending on the used specification lan-
guage, the way of combining components can be differ-
ent. For instance, when specifications are logical theories
then their combination is often based on the set theoretical
union on signatures whereas the combination of specifica-
tions made of transition systems is based on some kinds of
product. However, one can observe that most of existing
connectorsc have the following common features:

• a connectorc gets as arguments a fixed numbern of
existing specificationsSp1, Sp2, . . .Spn defined re-
spectively over the signaturesΣ1, Σ2, . . .Σn, to build
a new one, denotedSp = c(Sp1, Sp2, . . . , Spn). We
can then see the connectorc as a mapping of arityn
from |SPEC|n to |SPEC|. We will see in the ex-
amples that actuallyc may be a partial function, but
often defined in a way sufficiently general to accept as
arguments tuples(Sp1, Sp2, . . . , Spn) with a large as-
sociated family of signature tuples(Σ1,Σ2, . . . ,Σn).

• as specifications will be recursively defined by means
of connectors, the argumentsSp1, Sp2, . . .Spn of
the connectorc can be linked together by some con-
straints on elements present in specification signatures,
expressed by signature morphisms. These constraints
will be taken into account by the definition of the con-
nectorc. Hence, the arguments of a connectorc will
not be a tuple ofn specifications, butn specifications
equipped with signature morphisms. This will be de-
fined by a graph whose nodes are specifications and
edges are signature morphisms. In our category theory
based setting, such a graph is called a diagram of the
specification categorySPEC. In practice, for a given
connectorc, all the diagrams accepted as arguments by

6TF ′ (A) (resp. TF (A)) is the term algebra built overF ′ (resp. F)
with sorted variables in the carrierA of theΓ-algebraA.

54

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

c have the same graph shape (i.e. the same organiza-
tion between nodes and edges). Hence, our connectors
will be built on the diagram category with the same
shape over the categorySPEC.

• the signatureΣ of Sp is the least one over the sig-
naturesΣ1, Σ2, . . . , Σn. This expresses the fact that
generally, a connectorc does not explicitly introduce
new elements to be specified, but on the contrary only
combines the elements already present in one of the
signaturesΣ1, Σ2 . . .Σn. In the following definition
of connectors, this will be expressed by the co-limit of
the diagram, projected on signatures.

This then leads us up to formally define architectural
connectors as follows:

Notation. 1 (Diagram category) Let I andC be two cat-
egories. Note∆(I,C) the category of diagrams inC with
shapeI, i.e. the category whose objects are all functors
δ : I → C, and morphisms are natural transformations be-
tween functorsδ, δ′ : I → C.
Let I ′ be a subcategory of a categoryI. Let δ be a dia-
gram of∆(I,C). Let us denoteδ|I′ the diagram of∆(I′,C)

obtained by restrictingδ to I ′.

Definition. 11 (Co-cone)Given a diagramδ : I → C. A
co-coneof δ consists of an objectc ∈ |C| and aI-indexed
family of morphismsαi : δ(i) → c such that for each edge
e : i→ i′ in I, we have thatαi′ ◦ δ(e) = αi.

A co-limiting co-cone (co-limit)(c, {αi}i∈I) can be un-
derstood as a minimal co-cone, that is:

Definition. 12 (Co-limit) A co-cone(c, {αi}i∈I) of a dia-
gram δ is a co-limit if, and only if it has the property that
for any other co-cone(d, {βi}i∈I) of δ, there exists a unique
morphismγ : c→ d such that for everyi ∈ I, γ ◦ αi = βi.
WhenI is the category• ← • → • with three objects and
two non-identity arrows, the co-limit is called apushout.

Definition. 13 (Co-complete)A category C is co-
complete if for every shape categoryI, every diagram
δ : I → C has a co-limit.

In the sequel, we will then consider institutions whose
the signature category is co-complete.

Definition. 14 (Architectural connector) Let SL be a
specification language over an institutionI for which the
categorySig is co-complete. Anarchitectural connector
c : |∆(I,SPEC)| → |SPEC| is a partial mapping such that
everyδ ∈ ∆(I,SPEC) for whichc(δ) is defined, is equipped
with a co-conep : Sig ◦ δ → Sig(c(δ)) co-limit ofSig ◦ δ.

Example. 1 (Enrichment and union) Enrichment and
union of specifications have surely been the first primitives
architectural connectors (so-called structuring primi-
tives) to be formally defined and studied especially when
dealing with specifications defined as axiomatic speci-
fications. They even received an abstract formalization
in institutions [8]. In our framework, both structuring
primitives are defined as follows: we consider an institu-
tion I = (Sig, Sen,Mod, |=). Moreover, in Example 1,
SPEC is the category whose objects are specifications of
the form(Σ, Ax) over a given institutionI and morphisms
are anyσ : (Σ, Ax) → (Σ′, Ax′) s.t. σ : Σ → Σ′ is a
signature morphism.

Enrichment Let I be the graph composed of two nodes
i and j and one arrowa : i → j. The connectorEn-
rich for axiomatic specifications is defined for every di-
agram δ : I → SPEC where δ(i) = (Σ, Ax) and
δ(j) = (Σ′, Ax′) such thatSen(Sig(δ(a)))(Ax) ⊆ Ax′,
and yieldsEnrich(δ) = (Σ′, Ax′) together with the co-
coneSig(δ(a)) and IdSig(δ(j)) which is the obvious co-
limit of Sig ◦ δ. Observe thatδ(a) and Idδ(j) are further
specification morphisms.

Union Let I be the graph composed of three nodesi, j,
andk and two arrowsa1 : i→ j anda2 : i→ k. The con-
nectorUnion is defined for every diagramδ : I → SPEC

whereδ(i) = (Σ0, Ax0), δ(j) = (Σ1, Ax1) and δ(k) =
(Σ2, Ax2), and such thatSen(Sig(δ(a1)))(Ax0) ⊆
Ax1 and Sen(Sig(δ(a2)))(Ax0) ⊆ Ax2, and yields
Union(δ) = (Σ, Ax) with the co-conep : Sig ◦ δ → Σ
which is the pushout ofSig(δ(a1)) and Sig(δ(a2)) and
such thatAx = Sen(pj)(Ax1) ∪ Sen(pk)(Ax2). Observe
that we can derive the co-conepSPEC : δ → (Σ, Ax) such
thatSig ◦ pSPEC = p, andpSPECj

andpSPECk
are spec-

ification morphisms.
In [8], both above connectors have been brought down

to two basic connectors: union with constant signatures
⋃

,
andtranslate _ by σ for every signature morphismσ. They
are defined by:

1. Let I be the graph composed of two nodesi and j

and without arrows betweeni and j. The connec-
tor

⋃

is defined for every diagramδ : I → SPEC

whereδ(i) = (Σ, Ax1) and δ(j) = (Σ, Ax2), and
yields

⋃

(δ) = (Σ, Ax) with the obvious co-limitp :
Sig ◦δ → Σ wherepi andpj are the identity signature
morphism forΣ, and such thatAx = Ax1 ∪Ax2.

2. LetI be the graph composed two nodesk and l. The
connector translate _ by σ where σ : Σ → Σ′

is a signature morphism, is defined for every dia-
gram δ : I → SPEC whereδ(k) = (Σ, Ax) and
δ(l) = (Σ′, Sen(σ)(Ax)), and yieldstranslate _ by
σ(δ) = (Σ′, Sen(σ)(Ax)).

55

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

In [8],
⋃

(δ) andtranslate _ by σ(δ) are respectively noted
δ(i)

⋃

δ(j) andtranslate δ(k) by σ.

Architectural connectors can be combined to deal with
specifications in the large.

Definition. 15 (Connector combination) Let c :
|∆I,SPEC | → |SPEC| andc′ : |∆(I′,SPEC)| → |SPEC|
be two architectural connectors. Leti′ ∈ |I ′| be an object.
Let I ′ ◦i′ I be the category defined by:

• |I ′ ◦i′ I| = |I|
∐

|I ′|

• the setsHomI′◦i′I(k, l) for everyk, l ∈ |I ′ ◦i′ I| are
inductively defined as follows:

– k, l ∈ |I ′| ⇒ HomI′(k, l) ⊆ HomI′◦i′I(k, l)

– k, l ∈ |I| ⇒ HomI(k, l) ⊆ HomI′◦i′I(k, l)

– for everyi ∈ |I|, we introduce the arrowqi in
HomI′◦i′I(i, i

′).

– HomI′◦i′I is closed under composition.

Let us denotec′ ◦i′ c : |∆I′◦i′I,SPEC | → |SPEC| the
architectural connector defined by :7

δ 7→

c′(δ|I′) if c(δ|I) is defined
δ(i′) = c(δ|I)
andδ(qi) is the morphismri in SPEC

whose the image bySig is the component
pi of the co-limitp associated toc(δ|I)

undefined otherwise

Example. 2 Enrichment can be removed and replaced by
the following combination oftranslate and∪ as follows:
let δ be a diagram of∆(I,SPEC) where I is the index
category of the connectorEnrich, δ(i) = (Σ, Ax) and
δ(j) = (Σ′, Ax′)

Enrich(δ) =
⋃

◦itranslate_byδ′(pi)(δ
′)

whereδ′ is the diagram of∆(I′′◦iI′,SPEC) for I ′′ (resp.
I ′) the index category of the connector∪ (resp. translate),
defined by:δ′(k) = δ(i), δ′(i) = translateδ′(k)byδ′(pi) =
(Σ′, Sen(Sig(pi))(Ax)) andδ′(j) = (Σ′, Ax′ \Ax).

The reader accommodated to the terminology and to the
concepts of software architecture can be disappointed by the
way connectors are interpreted here, i.e. by functions that
take components and produce systems. Indeed, connectors
are typically viewed as forms of communicating compo-
nents. Such connectors can also be formalized in our frame-
work. For instance, in Community [15, 16], in the style of
Allen and Garlan [6], a connector consists ofn rolesRi and

7qi is the arrow introduced inHomI′◦i′ I(i, i′).

one glueG stating the interaction between roles (i.e. the
way roles communicate together). Roles and glue are pro-
grams defined over signatures (see [16] for a complete def-
inition of programs). In our framework, programs denote
specifications from which we can observe temporal proper-
ties. Each role and the glue are interconnected by a channel
to denote via signature morphisms shared attributes and ac-
tions. This gives rise to a diagram defined as the intercon-
nection on the glueG of basic diagrams of the form:

channel

Ri G

In Community, the mathematical meaning of a connector is
then defined by the colimit of such diagrams. This can be
easily defined in our framework by considering a connec-
tor c defined for every diagram of the previous form over
the categoryPROG (defined in [16]) taken as the category
SPEC.

4.2 Complex structuring

As already explained in the introduction of the paper,
an architectural connector will be considered as complex
when:

1. The global system does not preserve the complete be-
havior of some subsystems. We will then talk about
non-conformity properties.

2. Some global properties cannot be deduced from a com-
plete knowledge of these components. We will then
talk abouttrue emergent properties.

This is expressed by comparing the set of semantic con-
sequences of subsystems with the ones of the global system
up to signature morphisms.

Definition. 16 (Complex connector)Let c :
|∆(I,SPEC)| → |SPEC| be an architectural connec-
tor. Let δ be a diagram of∆(I,SPEC) such thatc(δ) is
defined. c is saidcomplex forδ if, and only if one of the
two following properties fails:

1. Conformity.

∀i ∈ I,∀ϕ ∈ Sen(Sig(δ(i))), ϕ ∈ δ(i)•Sig(δ(i)) ⇐⇒

Sen(pi)(ϕ) ∈ c(δ)•Sig(c(δ))

56

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

2. Non true emergence.

∀ϕ ∈ c(δ)•Sig(c(δ)),
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))) |=Sig(c(δ))

ϕ

A formulaϕ that makes fail the equivalence of both Point 1.
and Point 2. is calledemergent property.
If c is not complex for a diagramδ, then it is saidmodular.

Example. 3 Here, we give a very simple example of spec-
ifications in which modularity fails. LetNat be the specifi-
cation inEQL defined as follows:

Specification of Nat Sorts: SNat = {nat }

Functions : FNat =
{0 :→ nat ,

succ : nat→ nat ,

_ + _ : nat× nat→ nat }

Axioms: AxNat =
{x + 0 = x

x + succ(y) = succ(x + y)}

Let us us enrich this specification by adding operations
and axioms to specify stacks of natural numbers. This leads
to the following enrichment:

Sorts: SStack = {nat, stack }

Functions : FStack = FNat ∪
{empty :→ stack ,

push : nat× stack → stack ,

pop : stack → stack ,

top : stack → nat ,

high : stack → nat}

Axioms: AxStack = AxNat ∪
{pop(empty) = empty

pop(push(e, P)) = P

top(push(e, P)) = e

high(push(e, P)) = succ(high(P))}

If we suppose that realizations are either the initial
model or reachable models8 of both specifications, then an
example of emergent property is:

∀x, (x = 0) ∨ (∃y, x = succ(y))

This is becausehigh(empty) has not been specified to
be equal to0. On the contrary, if we add this equation in
AxStack, there is not emergent property anymore.

8A model is reachable when any of its values is the result of the evalu-
ation of a ground term.

4.3 Conditions for modularity

As we have explained it in the introduction of this
manuscript, complex software systems prevent to check
their correctness with respect to their specification step by
step by taking the benefit of their recursive structure. This
leads to the important consequence that adding any compo-
nent gives rise to a new systems whose the correctness has
to be completely (re)checked. It is then important to study
general properties that guarantee when a system is not com-
plex (i.e. modular). This is what we propose to do with the
two following results.

Theorem 1 states that showing the non-presence of true
emergent properties for a connectorc and a diagramδ

comes to show that(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is defin-

able byc(δ).

Theorem. 1 Letc be an architectural connector andδ be a
diagram such thatc(δ) is defined. Then, we have:

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable byc(δ) if, and

only if the set of true emergent properties is empty and each
pi is a specification morphism.

Proof. The only if part. This obviously results
from the fact that (

⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•

is definable by c(δ). Indeed, we have

c(δ)•Sig(c(δ) = (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•, that

is for every ϕ ∈ c(δ)•Sig(c(δ)), we have that
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))) |=Sig(c(δ)) ϕ.

Theif part. As eachpi of p is a specification morphism,
we have that(

⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• ⊆ c(δ)•Sig(c(δ).

Moreover, as the set of true emerging properties is empty,
we have thatc(δ)•Sig(c(δ) ⊆ (

⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•.

Hence,c(δ)•Sig(c(δ) = (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

•, and

then
(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable byc(δ).

By Theorem 1, the architectural connectorsEnrich,
Union,

⋃

and translate _ by σ have no true emergence
properties for any defined diagram.

As we could expect, modularity is a property which
holds for some, but certainly not for all architectural con-
nectors. More surprising, even under the condition that

57

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable byc(δ) for a con-

nectorc and a diagramδ such thatc(δ) is defined, mod-
ularity can fail because of non-conformity properties (see
Example 3).
In the next theorem, we give a supplementary condition
based on the liberality of eachpi of the co-limitp, that leads
to an empty set of non-conformity properties. For Theo-
rem 2, we suppose the following conditions :

1. the institution under consideration is closed under iso-
morphism,

2. Real is compatible for every specification morphism
pi of the associated co-conep, and

3. each pi of the co-limit p associated to the con-
nector c in ∆(I,SPEC) satisfies the supplemen-
tary condition, so-calledRight Satisfaction Con-
dition (RSC) : ∀ϕ ∈ Sen(Sig(δi)),∀M ∈
Real(c(δ)), Real(pi)(M) |=Sig(δi) ϕ =⇒
M |=Sig(δ(c)) Sen(pi)(ϕ).

The interest of RSC is, realizations being a subset of mod-
els, some pruning on realizations inReal(δ(c)) have been
allowed to be done, and then this direction of the satisfac-
tion condition has been able to be brought into failure. For
instance, this property does not hold when specifications are
logical theories and realizations are restricted to reachable
models (see Example 3). For the next theorem, we suppose
that these three conditions hold.

Theorem. 2 Let c be an architectural connector andδ
be a diagram such thatc(δ) is defined. Suppose that

(
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable byc(δ), Real is

compatible with eachpi and eachpi is liberal. Then, for
everyi ∈ I and everyM ∈ Real(δ(i)), If each adjunct
morphismµM :M→ Real(pi)(F(pi)(M)) is an isomor-
phism, then the set of non-conformity properties is empty.

Proof. Let ϕ ∈ δ(i)•Sig(δ(i)), and letM ∈ Real(c(δ)).

As (
⋃

i∈I

Sen(pi)(δ(i)
•
Sig(δ(i))))

• is definable by c(δ),

Real(pi)(M) |=Sig(δ(i)) ϕ. Therefore, by the hypothe-
sis that the truth of property is preserved for the functor
Real through each signature morphismpi, we have that
M |=Sig(c(δ)) Sen(pi)(ϕ).

letϕ ∈ Sen(δ(i)) such thatSen(pi)(ϕ) ∈ c(δ)•, and let
M ∈ Real(δ(i)). AsF(pi) is left-adjunct toReal(pi), we
haveF(pi)(M) |=Sig(c(δ)) Sen(pi)(ϕ). AsReal is com-
patible with eachpi, Real(σ)(F(pi)(M)) |=Sig(δ(i)) ϕ.
As the adjunct morphism is an isomorphism andI is sta-
ble under isomorphism,M and Real(σ)(F(pi)(M)) are
elementary equivalent, and thenM |=Sig(δ(i)) ϕ.

Theorem 2 generalizes to any architectural connectors
the standard condition of modularity based on the two no-
tions of hierarchical consistency and sufficient complete-
ness [22], which has been stated for the enrichment connec-
tor in the algebraic specification framework (when specifi-
cations are conditional positive).

5 Application to reactive systems

In this section, we propose to exemplify our abstract
framework to reactive system modeling. We will then give a
rigorous and formal definition of emergent properties in the
framework of reactive system modeling. We restrict our-
selves to reactive systems described by means of the usual
synchronous product of transition systems, and whose be-
havior is expressed by logical properties overMFOL . The
reason is this is sufficient for the purpose of the study, and
the results given in this paper could easily be adapted to
temporal logics more classically used to reason on reactive
systems and other composition connector whose the great-
est number are based-on transition system product. In our
setting, we will study some conditions under which non-
conformity properties do not occur. The interest is this pro-
vides guidance in the design process. Indeed, the appear-
ance of non-conformity properties leads to make a posteri-
ori verification of the global system without benefiting from
the decomposition of the system into components.

In Section 5.1, we introduce transition systems and their
semantics, and define the synchronous product as means to
compose them. Finally, Section 5.2 presents results ensur-
ing the non-existence of non-conformity properties along
synchronous product.

5.1 Transition systems

5.1.1 Syntax

As usual when considering automata, transition systems
describe possible evolutions of system states. Elementary
evolutions are represented by a transition relation between
states. Each transition between two states is labeled by three
elements: actions of the system, guards expressed here by
formulas ofFOL presented in Section 2, and side-effects
on states defined by pairs of ground terms or of the form
(p(t1, . . . , tn), b) wherep(t1, . . . , tn) is a ground atom and
b is equal totrue or false. As usual, we start by defin-
ing the language, so-called signature, on which transition
systems are built:

Definition. 17 (Signature) A signatureis a triple L =
(Σ, V, A) where:Σ is a FOL -signature,V is a set of vari-
ables overΣ andA is a set whose elements are calledac-
tions.

58

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Definition. 18 (Side-effect)Given a signature L =
(Σ, V, A) whereΣ = (S, F, P), a side-effectoverL is a
pair of ground terms overΣ (t, t′) of the same sort (i.e.
∃s ∈ S, t, t′ ∈ TF) or a couple(p(t1, . . . , tn), b) where
p(t1, . . . , tn) is a groundΣ-atom (i.e. eachti is a ground
term) andb is equal totrue or false. In the sequel, a side-
effect(t, t′) will be notedt 7→ t′.
We noteSE(L) the set of side-effects overL.

A transition system is then defined as follows:

Definition. 19 (Transition system) Given a signature
L = (Σ, V, A), a transition systemis a couple(Q, T)
where:

• Q is a set ofstates, and

• T ⊆ Q×A× Sen(Σ)× 2SE(L) ×Q.

A small specification example is given in [2]. Transi-
tion systems are specifications of reactive systems. Given
a signature morphismσ : (Σ, A) → (Σ′, A′) and a spec-
ification S ′ = (Q′, T′) over (Σ′, A′), Spec(σ)(S ′) is the
specificationS = (Q, T) over(Σ, A) such thatQ = Q′ and
T = {(q, a, ϕ, δ, q′)|(q, σ(a), Sen(σ)(ϕ), σ(δ), q′) ∈ T

′}.

5.1.2 Semantics

Semantics of transition systems are defined by Kripke
frames themselves defined as follows:

Definition. 20 (Kripke frame) Given a signatureL =
(Σ, V, A), an Kripke frameoverL or L -model, is a cou-
ple (W, R) where:

• W is a I-indexed set(Wi)i∈I of Σ-models such that
W i

s = W j
s for everyi, j ∈ I ands ∈ S, and

• R is aA-indexed set of “accessibility” relationsRa ⊆
I × I.

Here, states are defined byΣ-models. Therefore, side-
effects will consist on moving from aΣ-model to another
one by changing the semantics of functions according the
assignments given in the setδ of transitions. Formally, this
is defined as follow: ifA is aΣ-model, then _A : TF → A
is theΣ-morphism inductively defined byf(t1, . . . , tn) 7→
fA(tA1 , . . . , tAn)

Definition. 21 (Side-effect semantics)LetL = (Σ, V, A)
be a signature. LetA andB be twoΣ-models. We note
A ;δ B to mean that the stateA is transformed into the
stateB alongδ, if and only ifB is defined asA except that
for everyt 7→ t′ ∈ δ (resp. p(t1, . . . , tn) 7→ b), tB = t′A

(resp.(tA1 , . . . , tAn) ∈ pB iff b = true).

Definition. 22 (Semantics of transition systems)Given a
transition systemS = (Q, T) over a signatureL , the se-
mantics forS, notedReal(S), is the set of all the Kripke
frames(W, R) overL such that the set of indexesI = Q,
and satisfying both implications:

1. (q, a, ϕ, δ, q′) ∈ T ∧Wq |= ϕ ∧Wq
;δ W

q′

⇒ q Ra q′

2. q Ra q′

⇒ ∃(q, a, ϕ, δ, q′) ∈ T,Wq |= ϕ ∧Wq
;δ W

q′

Hence, the way whose dynamic is dealt with in this paper
follows the state-as-algebra style [21, 3] where states are
Σ-models and state transformations are transitions from a
state-model to another state-model.

5.1.3 Synchronous product

Synchronous product combines two transition systems into
a single one by synchronizing transitions. Understandably,
executions of synchronous product modelize system behav-
ior as a synchronizing concurrent system. Hence, when an
actiona is “executed” in the product, then every compo-
nent witha in its alphabet must execute a transition labeled
with a. Formally, the synchronous product of two transition
systems is defined as follows:

Definition. 23 (Synchronous product) Let Si = (Qi, Ti)
be a transition system over a signatureLi = (Σi, Vi, Ai)
with i = 1, 2 such that:

• for every transition(q1, a, ϕ1, δ1, q
′
1) ∈ T1 and ev-

ery f(t1, . . . , tn) 7→ t′1 ∈ δ1 (resp. p(t1, . . . , tn) 7→
b ∈ δ1), there does not exist a transition
(q2, a, ϕ2, δ2, q

′
2) ∈ T2 and a side-effectt2 7→

t′2 ∈ δ2 with t2 of the form f(t′1, . . . , t
′
n) (resp.

p(t′1, . . . , t
′
n) 7→ b′ ∈ δ2),

• and conversely, that is this condition on side-effects
has also to be satisfied by replacingT1 by T2, δ1 by
δ2 andδ2 by δ1.

Thesynchronous productofS1 andS2, notedS1⊗S2, is the
transition system(Q, T) overL = (Σ1∪Σ2, V1∪V2, A1∪
A2) defined as follows:

• Q = Q1 ×Q2

• if a ∈ A1 ∩ A2, (q1, a, ϕ1, δ1, q
′
1) ∈ T1 and

(q2, a, ϕ2, δ2, q
′
2) ∈ T2 then

((q1, q2), a, ϕ1 ∧ ϕ2, δ1 ∪ δ2, (q
′
1, q

′
2)) ∈ T

• if a ∈ A1 \ A2 and (q1, a, ϕ1, δ1, q
′
1) ∈ T1 then for

everyq2 ∈ Q2, ((q1, q2), a, ϕ1, δ1, (q
′
1, q2)) ∈ T

59

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

• if a ∈ A2 \ A1 and (q2, a, ϕ2, δ2, q
′
2) ∈ T2 then for

everyq1 ∈ Q1, ((q1, q2), a, ϕ2, δ2, (q1, q
′
2)) ∈ T

Both conditions on side-effects allow us to remove the case
where for an identical function namef (resp. a predicatep)
applied to an identical tuple of arguments yields different
values, and then causes the functionality off (resp. makes
inconsistent the set of side-effects resting onp) to fail.

By following the notions of our abstract framework, the
synchronous product gives rise to the connectorSync. To
define this connector, we consider the shapeI composed
of three nodesi, j andk and two arrowsa1 : i → j and
a2 : i → k. The connectorSync is then defined for ev-
ery diagramδ whereδ(i) is the empty transition system
over the signature(Σ∅, Ai) whereΣ∅ is the emptyFOL -
signature,δ(j) = (Qj , Tj) over the signature(Σj , Aj) and
δ(k) = (Qk, Tk) over the signature(Σk, Ak), and yields
Sync(δ) = δ(j) ⊗ δ(k) over the signature(Σ, A) with the
co-conep : Sig ◦ δ → (Σ, A) which is the pushout of
Sig(δ(a1)) andSig(δ(a2)) in Sig.

5.2 Results

The synchronous product of two transition systemsS1⊗
S2 have generally true emergent properties. The reason
is the setMod(Th(S•1 ∪ S

•
2)) of Kripke frames may be

greater thanReal(S1 ⊗ S2). Indeed, Kripke frames in
Real(S1 ⊗ S2) have to preserve the shape of the transition
systemS1⊗S2 unlike Kripke frames inMod(Th(S•1∪S

•
2)).

Hence, properties in(S1⊗S2)
• may be more numerous than

in Th(S•1 ∪ S
•
2). However, we can show under some con-

ditions that non-conformity properties cannot occur along
synchronous product. More precisely, we are going to show
that the “only if” part of the conformity property is satisfied
but the “if” part only holds when formulas that label tran-
sitions are conditional equations (i.e. expressed in the logic
CEL).
Let us start by showing that the semantic consequences
of S1 andS2 are preserved byS1 ⊗ S2. Let us suppose
a S1 ⊗ S2-model (W, R), and let us define aLi-model
(Wi, Ri) for i = 1, 2 as follow:

• for everyq ∈ Qi,W
q
i = Mod(Σi ↪→ Σ)(W(q,q′)) for

anyq′ ∈ Qj with j 6= i ∈ {1, 2}

• ∀a ∈ Ai, Ria
= {(q, q′)|∃ϕ ∈ Sen(Σi),∃δ ∈

SE(L), (q, a, ϕ, δ, q′) ∈ Ti}

Let us noteΓi for i = 1, 2, the set of all theseLi-models.

Theorem. 3 Each(Wi, Ri) ∈ Γi is aSi-model.

Proof. The first condition of Definition 22 is obvious. To
prove the second condition, let us suppose a transition

(q, a, ϕ, q′) ∈ Ti. By construction, there exists a transi-
tion ((q, qj), a, ϕ′, δ′, (q′, q′j)) ∈ T such that eitherϕ′ = ϕ

andδ′ = δ, or ϕ′ = ϕ∧ϕ′′ andδ′ = δ ∪ δ′′. In both cases,
by hypothesis, we have that(W(q,qj) |= ϕ′. Therefore, by
the satisfaction condition forFOL Wq

i |= ϕ. Moreover, by
the condition on side-effects in Definition 23, we have that
Wq

i ;δ W
q′

i

Proposition. 2 ∀ι : V →W,

(∀(Wi, Ri) ∈ Γi, ∀q ∈ Qi, (Wi, Ri) |=
q
ι ϕ)

=⇒ (∀qj ∈ Qj , (W, R) |=
(q,qj)
ι ϕ)

Proof. By induction on the structure ofϕ.

Basic case.ϕ is of the formp(t1, . . . , tn). Let qj ∈
Qj . By definition, there exists(Wi, Ri) ∈ Γi such that
Wq

i = Mod(Σi ↪→ Σ)(W(q,qj)). By hypothesis, we have
Wq

i |=ι p(t1, . . . , tn), and thenW(q,qj) |=ι p(t1, . . . , tn).

General case.Let us handle the case whereϕ is 2aϕ′.
Let us suppose that(W, R) |=

(q,qj)
ι ϕ. Then, let us consider

(q′, qj) such that(q, qj) Ra (q′, q′j). By the hypothesis, we
have for every(Wi, Ri) ∈ Γi that (Wi, Ri) |=

q
ι ϕ. By con-

struction, we also haveq Ria
q′ for every(Wi, Ri) ∈ Γi.

Therefore, for every(Wi, Ri) ∈ Γi, (Wi, Ri) |=
q
ι ϕ′, and

then by the induction hypothesis, we have(W, R) |=
(q′,q′

j)
ι

ϕ′, whence we can conclude(W, R) |=
(q′,q′

j)
ι ϕ.

The cases of Boolean connectives and quantifier are sim-
pler and left to the interested reader.

Theorem. 4 S•i ⊆ (S1 ⊗ S2)
•

Proof. Letϕ ∈ S•i , and let(W, R) ∈ Real(S1 ⊗ S2). Let
ι : V → W be an interpretation. By Theorem 3, for every
model(Wi, Ri) ∈ Γi, we have(Wi, Ri) |= ϕ, and then
for everyq ∈ Qi we also have(Wi, Ri) |=

q
ι ϕ. There-

fore, by Proposition 2, we have for everyqj ∈ Qj that

(W, R) |=
(q,qj)
ι ϕ, and then(W, R) |= ϕ.

To show the “if” part of the conformity property, we need
to make some restrictions on formulas that label transitions.
Hence, we suppose that transition systems are built over the
logic CEL , and then given a model(W, R) of transition
systemS, for eachq ∈ Q, Wq is now an algebra. There-
fore, the logic for transition systems is the modal first-order
logic defined as in Section 2 except that nowΣ-atoms are
restricted toΣ-equations.

Given two transition systemsS1 andS2 over the signa-
turesL1 andL2, respectively, and satisfying the above re-
striction, for i 6= j ∈ {1, 2}, and for every(Wj , Rj) ∈
Mod(Sj) we define the mappingF(Wj ,Rj) : Mod(Si) →
Mod(L) whereL is the signature over which the transition
systemS1⊗S2 is built as follow: if we note for aΣ-algebra
A, th(A) = {ϕ|ϕ : CEL -formula,A |= ϕ}, then to every

60

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

(Wi, Ri),F(Wj ,Rj)((Wi, Ri)) = (W, R) such that(W, R)

is theL-model defined by9

• ∀q ∈ Qi, ∀q
′ ∈ Qj , W (q,q′) = TΓi/Γ(Wq

i) ×
TΓj/Γ(Wq

i)

• Ra = {((q1, q
′
1), (q2, q

′
2))|∃ϕ ∈ Sen(Σ),∃δ ∈

SE(L), ((q1, q
′
1), a, ϕ, (q2, q

′
2)) ∈ T}

whereΓi = th(Wq
i), Γj = th(Wq′

j), andΓ = th(Wq
i) ∪

th(Wq′

j).

Theorem. 5 For every (Wj , Rj) ∈ Mod(Sj) and every
(Wi, Ri) ∈ Mod(Si), F(Wj ,Rj)((Wi, Ri)) is a S1 ⊗ S2-
model.

Proof. The first condition of Definition 20 is obvious. To
prove the second condition, let us suppose a transition
((q1, q

′
1), a, ϕ, δ, (q2, q

′
2)) ∈ T. By construction,ϕ and δ

are:

1. either of the formϕ′ ∧ ϕ′′ with ϕ′ ∈ Sen(Σi) and
ϕ′′ ∈ Sen(Σj) and δ′ ∪ δ′′ with δ′ ∈ SE(Li) and
δ′′ ∈ SE(Lj),

2. orϕ ∈ Sen(Σi)∪Sen(Σj) andδ ∈ SE(Li)∪SE(Lj).

This then leads to the two following cases:

1. Suppose thatϕ is of the formϕ′ ∧ ϕ′′ and then
δ = δ′ ∪ δ′′. This means by construction, that
(q1, a, ϕ′, δ′, q′1) ∈ Ti and (q2, a, ϕ′′, δ′′, q′2) ∈ Tj .

By hypothesis, we haveWq1

i |= ϕ′ and Wq′
1

j |=
ϕ′′. Therefore, we have thatTΓi/Γ(Wq1

i) |= ϕ′ ∧
ϕ′′ and TΓj/Γ(Wq2

j) |= ϕ′ ∧ ϕ′′, and then so is

9Cartesian product and preservation resultsLet Σ be a signature,I
be a set and(Ai)i∈I be aI-indexed family ofΣ-algebras. Let us note
∏

i∈I

Ai theΣ-algebra defined as follow:

• for everys ∈ S, its carrier of sorts is
∏

i∈I

(Ai)s,

• for everyf : s1 × . . . × sn → s ∈ F , f

∏

i∈I

Ai

is the mapping that
to every(a1, . . . , an) ∈

∏

i∈I

(Ai)s1
×. . .×

∏

i∈I

(Ai)sn , associates

(fAi (ai
1
, . . . , ai

n)|i ∈ I) where givena ∈
∏

i∈I

(Ai)s, ai is the ith

coordinate ofa.

By construction, we can notice that:

∏

i∈I

Ai |=ι ϕ ⇐⇒ ∀i ∈ I, Ai |=ιi ϕ

where for every interpretationι, ιi is the interpretation defined byx 7→ ai

if ι(x) = a. It is well-known that conditional equations are preservedby
Cartesian product of algebras, that is, if for everyi ∈ I, Ai |= Γ ⇒ α,

then
∏

i∈I

Ai |= Γ ⇒ α.

TΓi/Γ(Wq1

i) × TΓj/Γ(Wq2

j) (recall that conditional
equations are preserved along the cartesian product of
algebras). Moreover, by hypothesis, we also have that

Wq1

i ;δ′ Wq2

i andWq2

j ;δ′′ W
q′
2

j . By definition,
Γi (resp.Γj) contains the ground equational theory of

Wq1

i (resp. Wq2

j). If we noteΓ′
i = th(W

q′
1

i), Γ′
j =

th(W
q′
2

j) andΓ′ = th(W
q′
1

i)∪ th(W
q′
2

j), then we have
TΓi/Γ(Wq1

i) ;δ TΓ′
i
/Γ′(Wq2

i) and TΓj/Γ(Wq2

j) ;δ

TΓ′
j
/Γ′(W

q′
2

j).

2. The case whereϕ ∈ Sen(Σi) ∪ Sen(Σj) and δ′ ∈
SE(Li) andδ′′ ∈ SE(Lj) is noticeably similar to the
previous one.

MFOL is closed under isomorphism. Moreover, by The-
orem 3,Real is compatible with each morphismspi of the
co-conep associated to the connectorSync. Finally, by
Proposition 2 and Theorem 4, RSC is satisfied. Therefore,
Theorem 6 is a specialization of Theorem 2.

Theorem. 6 If for every (Wi, Ri) ∈ Mod(Si), every
(Wj , Rj) ∈ Mod(Sj), and everyq ∈ Qi and every
q′ ∈ Qj , the adjunct morphismµWq

i
: Wq

i → Mod(Σi ↪→

Σ)(TΓi\Γ(Wq
i)) is an isomorphism, then(S1 ⊗ S2)

• ∩
Sen(Li) ⊆ S

•
i .

Proof. Letϕ ∈ (S1 ⊗ S2)
• ∩ Sen(Si) and let(Wi, Ri) ∈

Mod(Si). By Theorem 5, for every(Wj , Rj) ∈ Mod(Sj),
we have thatF(Wj ,Rj)((Wi, Ri)) |= ϕ. As the adjunct mor-
phismµWq

i
is an isomorphism, for everyι : V → Wi there

existsι′ : V → TΓi/Γ(Wi)×TΓj/Γ(Wj) such thatι = pi◦ι
′

wherepi is the i-th projection mappi : TΓi/Γ(Wq
i) →

TΓi/Γ(Wq
i) ⊗ TΓj/Γ(Wq′

j) for q ∈ Qi and q′ ∈ Qj .
By hypothesis, for everyq ∈ Qi and everyq′ ∈ Qj ,

F(Wj ,Rj)((Wi, Ri)) |=
(q,q′)
ι′ ϕ. It is then easy to show by

induction on the structure ofϕ that (Wi, Ri) |=
q
ι ϕ.

Example. 4 When dealing with formulas expressed in the
logic CEL to label transitions, we often make restrictions
on algebras denoting states. Indeed, to allow inductive
proofs or for computability reasons, state-algebras are then
restricted to reachable10 or some quotients of the ground
term algebra. Let us the suppose for the below counter-
example of the conditions given in Theorem 6, that we re-
strict our approach to state-algebras defined by reachable
algebras. Let us consider the two following transition sys-
temsS1 andS2 defined respectively over the two following
signaturesL1 andL2:

10A Σ-algebra isreachable if, and only if the uniqueΣ-morphism
µ : TF → A is surjective, that is all the values inA are denoted by
the evaluation of a ground term.

61

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Σ1 =

S = {nat},

F =

0 :→ nat;
s : nat→ nat,

+ : nat× nat→ nat

,

P = ∅

Σ2 =

S = {nat},
F = {0 :→ nat; s, p : nat→ nat},
P = ∅

A1 = A2 = {a}

Let us defineS1 andS2 as follows:

• S1 = ({q1, q2}, {q1
a,ϕ1,δ1

−→ q2}) whereϕ1 = (s(x) =
s(y)⇒ x = y)∧x+0 = x∧x+s(y) = s(x+y) and

δ1 = ∅. S2 = ({q′1, q
′
2}, {q

′
1

a,ϕ2,δ2

−→ q′2}) whereϕ2 =
(s(x) = s(y)⇒ x = y)∧ s(p(x)) = x∧ p(s(x)) = x

andδ2 = ∅.

By definition ofS1 (resp. S2), the uniqueS1-model (resp.
S2-model) is (W, R) whereWq1

1 = Wq2

1 = N (resp.

W
q′
1

2 = W
q′
2

2 = Z). On the contrary, by construction,

in S1 ⊗ S2, we have the transition(q1, q
′
1)

a,ϕ′,δ′

−→ (q2, q
′
2)

whereϕ′ = ϕ1 ∧ ϕ2 andδ′ = ∅, and then all theS1 ⊗ S2-
model satisfyW(q1,q′

1
) = W(q2,q′

2
) = Z. Consequently, the

modal formulaϕ′ ⇒ 2a(∀x.∃y.x + y = 0) belongs to
(S1 ⊗ S2)

• but not inS•1 . The reason isF(W2,R2)(W
q1

1) =
Z. Therefore, the adjunct functorµW

q1
1

is injective but not
surjective, and then is not an isomorphism.

6 Conclusion

In this paper, our main contribution is twofold. First,
we have formally defined the notion of emergent properties
independently of formalism, and of the form of both spec-
ifications and architectural connectors. Secondly, we have
studied in this abstract framework, some general conditions
that enable us to obtain two general properties that guar-
antee when a system is not complex. These conditions are
based on the category theory of morphism conservativeness
and adjunction. Finally, to illustrate our abstract framework,
we have instantiated our abstract framework with reactive
component-based systems described by transition systems
and combined together through synchronous product, and
we have applied our general results to obtain global sys-
tems lacking of non-conformity properties which have been
recognized as being the cause of bad interactions between
components.

An ongoing research that we are currently pursuing is to
extend abstract connectors to heterogeneous abstract con-
nectors, that is connectors defined on component specifica-
tions described in heterogeneous formalisms. For this pur-
pose, we will take benefit from [11, 23] and from works that
we made on hierarchical heterogeneous specifications [9].

References

[1] M. Aiguier, P. Le Gall, and M. Mabrouki. A formal defi-
nition of complex software. InICSEA 2008: Proceedings
of the 2008 The Third International Conference on Software
Engineering Advances, pages 415–420. IEEE Computer So-
ciety, 2008.

[2] M. Aiguier, P. Le Gall, and M. Mabrouki. Emergent prop-
erties in reactive systems. InAPSEC 2008: Proceedings
of the 2008 15th Asia-Pacific Software Engineering Confer-
ence, pages 273–280. IEEE Computer Society, 2008.

[3] M. Aiguier. Étoile-specifications: An object-oriented alge-
braic formalism with refinement.Journal of Logic and Com-
putation, 14(2):145–178, 2004.

[4] M. Aiguier, C. Gaston, and P. Le Gall. Feature logics and
refinement. InAPSEC 2002: Proceedings of the 9th Asian
Pacific Software Engeenering Conference, pages 385–395.
IEEE Computer Society Press, 2002.

[5] R. Allen. A Formal Approach to Software Architecture.
PhD thesis, Carnegie Mellon, School of Computer Science,
Junuary 1997. Issued as CMU Technical Report CMU-CS-
97-144.

[6] R. Allen and D. Garlan. A formal basis for architectural
connectors.ACM TOSEM, 6(3):213–249, 1997.

[7] L. Blass, P. Clements, and R. Kasman.Software Architecture
in Practice. Addison Wesley, 1998.

[8] T. Borzyszkowski. Logical systems for structured specifica-
tions. Theoretical Computer Science, 286:197–245, 2002.

[9] S. Coudert and P. Le Gall. A reuse-oriented framework for
hierarchical specifications. InAMAST 2000: Proceedings
of the 8th International Conference on Algebraic Methodol-
ogy and Software Technology, pages 438–453, London, UK,
2000. Springer-Verlag.

[10] R.-I. Damper. Emergence and levels of abstraction.Inter-
national Journal of Systems Science, 31(7):811–818, 2000.
Editorial for the Special Issue on ’Emergent Properties of
Complex Systems’.

[11] R. Diaconescu. Grothendieck institutions.Applied Categor-
ical Structures, 10(4):383–402, 2002.

[12] R. Diaconescu. Jewels of institution-independent model the-
ory. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, ed-
itors, Algebra, Meaning, and Computation, Essays Dedi-
cated to J.-A. Goguen on the Occasion of His 65th Birth-
day, volume 4060 ofLecture Notes in Computer Science.
Springer-Verlag, 2006.

[13] A.-C. Ehresmann and J.-P. Vanbremeersch.Memory Evo-
lutive Systems: Hierarchy, Emergence, Cognition. Elsevier
Science, 2007.

[14] H. Ehrig, M. Balmadus, and F. Orejas. New concepts for
amalgation and extension in the framework of specifica-
tion logics. InAMAST 1991: Algebraic Methodology and
Software Technology, Lecture Notes in Computer Science.
Springer, 1991.

[15] J.-L. Fiadeiro. Categories for Software Engineering.
Springer-Verlag, 2004.

[16] J.-L. Fiadeiro, A. Lopes, and M. Wermelinger. A math-
ematical semantics for architectural connectors. In R.-C.
Backhouse and J. Gibbons, editors,Generic Programming,
volume 2793 ofLecture Notes in Computer Science, pages
178–221. Springer-Verlag, 2003.

62

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[17] D. Garlan, R.-T. Monroe, and D. Wile. Acme: An architec-
ture description interchange language. InCASCON 1997:
Proceedings of the 1997 conference of the Centre for Ad-
vanced Studies on Collaborative research, pages 169–183.
IBM Press, 1997.

[18] C. Gaston, M. Aiguier, and P. Le Gall.Language Con-
structs for Decsribing Features, chapter Algebraic treat-
ment of feature-oriented systems, pages 105–125. Springer-
Verlag, 2000.

[19] J. Goguen.Advances in Cybernetics and Systems Research,
chapter Categorical Foundations for General Systems The-
ory, pages 121–130. Transcripta Books, 1973.

[20] J. Goguen and R.-M. Burstall. Institutions: Abstract model
theory for specification and programming.Journal of the
ACM, 39(1):95–146, 1992.

[21] Y. Gurevich. Evolving algebras 1993: Lipari guide. InSpec-
ification and Validation Methods, pages 9–36. Oxford Uni-
versity Press, 1995.

[22] J.-V. Guttag and J.-J. Horning. The algebraic specification
of abstract data types.Acta Informatica, pages 27–52, 1978.

[23] T. Mossakowski. Institutional 2-cells and grothendieck insti-
tutions. InEssays Dedicated to Joseph A. Goguen, volume
4060 ofLecture Notes in Computer Science, pages 124–149.
Springer, 2006.

[24] F. Orejas.Algebraic Foundations of Systems Specification,
chapter Structuring and Modularity, pages 159–201. IFIP
State-of-the-Art Reports. Springer, 1999.

[25] D. Perry and A. Wolf. Foundations for the study of software
architectures.ACM SIGSOFT Software Engineering Notes,
17(4):40–52, 1992.

[26] M. Plath and M. Ryan. Feature integration using a feature
construct.Science of Computer Programming, 41(1):53–84,
2001.

[27] A. Sernadas, C. Sernadas, and C. Caleiro. Denota-
tional semantics of object specification.Acta Informatica,
35(9):729–773, 1998.

[28] A. Tarlecki. Moving between logical systems. In M. Hav-
eraaen, O. Owe, and O.-J. Dahl, editors,Recent Trends in
Data Type Specifications. 11th Workshop on Specification of
Abstract Data Types, volume 1130 ofLecture Notes in Com-
puter Science, pages 478–502. Springer Verlag, 1996.

[29] A. Tarlecki. Algebraic Foundations of Systems Specifica-
tion, chapter Institutions: An abstract Framework for For-
mal Specifications, pages 105–131. IFIP State-of-the-Art
Reports. Springer, 1999.

