
412

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Turning Large Software Component Repositories into Small Index Files

Marcos Paulo Paixão, Leila Silva

Computing Department

Federal University of Sergipe

Aracaju, Brazil
marcospsp@dcomp.ufs.br, leila@ufs.br

Talles Brito, Gledson Elias

Informatics Department

Federal University of Paraíba

João Pessoa, Brazil

talles@compose.ufpb.br, gledson@di.ufpb.br

Abstract—Software component repositories have adopted semi-

structured data models for representing syntactic and semantic

features of handled assets. Such models imply key challenges to

search engines, which are related to the design of indexing

techniques that ought to be efficient in terms of storage space

requirements. In such a context, by applying clustering

techniques before indexing component repositories, this paper

proposes an approach for reducing the number of assets in the

repository, and consequently, the size of index files. Based on

an illustrative repository, outcomes indicate a significant

optimization in the number of assets to be indexed, and, as a

consequence, produces significant gains in storage

requirements. Besides, it has been assessed in terms of two

different clustering evaluation methods, evincing that the

proposed approach can be considered a good clustering

algorithm because produces compact and well-separated
clusters.

Keywords - Component repositories; clustering techniques;

indexing.

I. INTRODUCTION

By enabling different software developers to share

software assets, software component repositories have the

potential to improve software reuse level. However, reuse of

software assets is in general a hard task, particularly when

search and selection must be conducted over large-scale asset

collections. Therefore, in repository systems, it is important

the development of search engines that can help searching,

selecting and retrieving required software assets.

According to Orso et al. [1], the aim of a repository

system is not to store software assets only, but also metadata

describing them. Such metadata provides information
employed by search engines for indexing stored assets. In

such a direction, as endorsed by Vitharana [2], component

description models can adopt high level concepts for

describing component metadata, making possible to express

syntactic and semantic features, and so, facilitating

developers to search, select and retrieve assets. In practice,

currently available component description models have

adopted approaches based on semi-structured data, more

specifically XML, allowing structural relationships among

elements to aggregate semantic to textual values. As

examples, it can be mentioned RAS [3] and X-ARM [4].
However, indexing techniques based on textual

restrictions are not efficient for semi-structured data. Such

techniques are unable of indexing structural relationships
among terms, compromising query precision with false-

positives. Thus, the adoption of semi-structured data implies

challenges related to the design of indexing techniques that

ought to be efficient in terms of storage space requirements,

processing time and precision level of queries, which can be

constrained by textual and structural restrictions.

Several proposals can be found in the literature for

dealing with such problems. Despite their relevant

contributions, existing techniques do not meet storage space

and query processing time requirements [5], and also query

precision level [6]. In such a scenario, the proposal presented
by Brito et al. [7] represents a noticeable indexing technique

based on semi-structured data, which can be considered

precise and efficient in terms of query processing time, but

suffers from problems related to storage space requirements.

Such problems occur because generated index files are

bigger than the input database. Thus, in the context of large-

scale software component repositories, it is still a

challenging open issue to design indexing techniques that

minimize the storage space requirements without excessively

impacting on query processing time and precision.

In such a context, based on the adoption of clustering
techniques, this paper proposes an approach for reducing the

number of assets in the repository, and consequently,

optimizing the storage space requirements. It is an extended

and improved version of [8]. The clustering heuristic

proposed is based on the classical hierarchical algorithm and

K-means [9]. Taking into account a large-scale component

repository, the proposed approach identifies clusters (groups)

of similar software assets and generates new representative

assets, which in turn must be handled by the indexing

technique supported by the search engine of the repository.

Each representative asset has a simplified description, also

based on semi-structured data, which makes reference to all
original assets that belong to its cluster of similar assets. In

order to do that, the paper also proposes a similarity metric

that has the aim of indicating the set of assets that belongs to

the same cluster. The bigger the similarity among assets in

the repository, the lesser is the number of identified clusters,

and as a result, the lesser is the number of representative

assets that must be indexed by the search engine, enabling to

save storage space. In order to validate the proposed

approach, a random database composed of 14.000 assets has

413

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

been generated and results indicate that there is a significant

optimization in terms of the number of assets to be indexed.

The remainder of this paper is structured as follows.

Section II describes related techniques, evincing the original

initiative of applying clustering techniques in the context of

indexing software component repositories. The adopted
component description model, called X-ARM, is briefly

presented in Section III, identifying the main types of assets

and their relationships. Then, Section IV presents the

proposed clustering approach for reducing the number of

assets to be indexed, and so, optimizing storage space

requirements. After that, some outcomes observed in a

preliminary evaluation performance are presented in Section

V. In conclusion, Section VI presents some final remarks and

delineates future work.

II. RELATED TECHNIQUES

Taking into account that the problem of data clustering is

NP-hard, several heuristics have already been proposed. Xu
and Wunsch [10] present an interesting review of the

research field. In [11], Feng shows that clustering

algorithms, in particular, hierarchical algorithms and K-

means [9], are equivalent to optimization algorithms of a

fitness function.

Clustering techniques have been used in several software

engineering domains. For example, Mancoridis et al. [12]

applied clustering in the domain of software maintenance, by

introducing the concept of software modularization as a

clustering problem for which search is applicable. A tool

called Bunch [13] is proposed allowing the application of
several clustering heuristics to perform search based

software modularization. Chiricota et al. [14] investigates the

application of clustering techniques in the domain of reverse

engineering, in particular, adopting such techniques to

recover the structure of software systems. Wu et al. [15]
compares several clustering approaches proposed in the

context of software evolution. In [16], Li et al. proposes the

adoption of clustering techniques for encapsulating software

requirements. Cohen et al. [17] showed how search based

clustering algorithms could be applied to improve garbage

collection in Java programs.

Although clustering techniques are applied in several

problems of software engineering, for the best knowledge of

the authors, these techniques have never been adopted in the
context of indexing software components repositories.

Therefore, it seems an original contribution to apply such

techniques when indexing component repositories.

III. THE X-ARM MODEL

In order to express syntactic and semantic features of

software components, Frakes [18] suggests the adoption of

component description models, which provide a set of

information that allows search systems to index and classify

all types of related assets. In such a direction, this paper

explores the X-ARM description model, which adopts a

XML-based semi-structured data model, expressing not only

syntactic information but also semantic properties [4].

Besides, X-ARM enables describing several types of

software assets, which can be produced in component-based

development processes, proving the required semantic for

representing their relationships.

As illustrated in Fig. 1, X-ARM allows describing
component and interface specifications, as well as

component implementations. The component and interface

specifications can be described in a way that is independent

or dependent of component model. On the one hand,

independent specifications do not take into account any

feature or property of component models, such as CCM,

JavaBeans, EJB and Web Services. On the other hand,

dependent specifications ought to consider features and

properties related to the adopted component models.

In X-ARM, both dependent and independent interface

specifications are described as a set of operations. Each

operation has a name, a set of input or output parameters and
a return value. In component-based development processes,

dependent interface specifications must be in conformance

with their independent counterparts. So, in Fig. 1, it can be

observed that dependent interface specifications must

reference to their respective independent interface

specifications.

Independent
Component

Specification

Dependent
Component
Specification

Component
Implementation

Independent
Interface

Specification

Dependent
Interface

Specification

required provided

Operation

1

1

Parameter

*

Return

1

1 ..*

1 ..* 1 ..*

*

required

*

provided

1 ..*

1

Figure 1. Relationships between artifacts.

Dependent and independent component specifications

can make reference to a set of provided and required

interface specifications. However, it must be noticed that

independent component specifications can refer to

independent interface specifications only. Similarly,

dependent component specifications can refer to dependent

interface specifications only. In component-based
development processes, dependent component specifications

must be in conformance with their respective independent

counterparts. Therefore, note that dependent component

specifications must make reference to their respective

independent component specifications.

In summary, dependent interface and component

specifications must be in conformance with their respective

independent specifications. Besides, for each independent

414

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specification, several dependent specifications can be

described, each one in conformance with a given software

component model.

In a similar way, in component-based development

processes, component implementations must be in

conformance with their respective dependent component
specifications. So, in Fig. 1, note that component

implementations must refer to their correspondent dependent

component specifications. Besides, for each dependent

component specification, several component

implementations can be realized.

As an example of the description of an asset in X-ARM,

Fig. 2 illustrates a fragment of a dependent component

specification. In Fig. 2, all lines are numbered and many

details have been suppressed for didactic purposes. Line 1

represents the asset header, in which can be found the asset

identifier (id). Lines 2 to 4 make reference to the

independent component specification, from which the
described asset must be in conformance with. Then, lines 5

to 14 refer to all dependent interface specifications, which

are provided by the described dependent component

specification. Although note illustrated in Fig. 2, required

interfaces can also be specified in a similar way.

01 <asset name=“dependentCompSpec-X”

id=“compose.dependentCompSpec-X-1.0-beta”>

02 <model-dependency>

03 <related-asset name=“independentCompSpec-Z”

id=“compose.independentCompSpec-Z-1.0-stable”

relationship-type=“independentComponentSpec”/>

04 </model-dependency>

05 <component-specification>

06 <interface>

07 <provided>

08 <related-asset name=“dependentInterface-A”

id=“compose.dependentIntSpec-A-2.0-stable”

relationship-type=“dependentInterfaceSpec”/>

09 </provided>

10 <provided>

11 <related-asset name=“dependentInterface-B”

id=“compose.dependentIntSpec-B-3.0-stable”

relationship-type=“dependentInterfaceSpec”/>

12 </provided>

13 </interface>

14 </component-specification>

15 </asset>

Figure 2. Component specification in X-ARM.

IV. A CLUSTERING BASED INDEXING APPROACH

As largely recognized in the literature, the task of

indexing repositories based on semi-structured data is a

relevant issue [5][6][7]. One of the major challenges is to

provide an indexing mechanism that reduces storage space

requirements, but without excessively impacting on query

processing time and precision level.

In such a context, this paper proposes a solution for

optimizing the storage space required by index files. To do

that, the proposed approach constructs a clustered repository,

which is composed of representative assets of the set of

software assets stored in the original repository. Therefore,
instead of indexing the original repository, the adopted

search service ought to index the reduced set of

representative assets, which make reference to the original

assets. In order to identify the groups of similar assets, and,

consequently, to construct the representative assets that

compose each group, the paper also proposes the adoption of

data clustering techniques.
Clustering techniques [9] consist of three basic phases:

(i) extraction of features that express the behavior of the

elements to be clustered; (ii) definition of the similarity

metric in order to compare evaluated elements; and (iii)

adoption of a clustering algorithm. The phase of extracting

features consists in defining what information is relevant to

express the evaluated element and how information is

quantified. Such information defines an attribute vector and

thus an element can be represented as a point in the

multidimensional space. The similarity metric expresses in

quantitative terms the similarity between elements. In

general, a function is defined for such a purpose, in which
the Euclidean distance [9] between two points (elements) is

one of the more common adopted metrics. Finally, the data

clustering algorithm is a heuristic that has the aim of

generating groups of elements, in which each group is

composed of similar elements, according to the adopted

similarity metric.

A. Relevant Features

The approach proposed herein applies the clustering

technique taking into account the five types of assets that can

be stored in the repository, that is: dependent and

independent component specifications, dependent and

independent interface specifications and component

implementations. The clustering technique is applied

separately for each type of asset. Therefore, each type has a

distinct attribute vector for representing its features.

The relevant features of an independent interface

specification are its defined operations, considering their
names, input and output parameters and return values.

Consequently, different independent interface specifications

are considered similar when they have in common a

considerable subset of defined operations.

Taking into account dependent interface specifications,

the relevant features are the referenced independent interface

specification together with their operations. Thus, different

dependent interface specifications are considered similar

when they refer to the same independent interface

specification or have in common a considerable subset of

defined operations.
In relation to independent component specifications, for

each one, the relevant feature is the set of provided

independent interface specifications. So, different

independent component specifications are considered similar

when they have in common a considerable subset of

provided independent interface specifications.

For a dependent component specification, the relevant

features are its referenced independent component

specification, as well as its set of provided dependent

415

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interface specifications. Therefore, different dependent

component specifications are considered similar when they

refer to the same independent component specification or

have in common a subset of provided dependent interfaces.

Finally, for a component implementation, the relevant

feature is its referenced dependent component specification.
Hence, different implementations of the same dependent

component specification are considered similar.

As an example, Table I presents the attribute vector of

the asset illustrated before in Fig. 2. As can be noticed, the

asset is a dependent component specification. Therefore, the

attribute vector is composed of its referenced independent

component specification (lines 2 to 4) and its set of provided

dependent interface specifications (lines 5 to 14).

TABLE I. ATTRIBUTE VECTOR OF THE ASSET X.

ID compose.dependentCompSpec-X-1.0-beta

Independent

Component

Specification

compose.independentCompSpec-Z-1.0-stable

Dependent

Interface

Specification

compose.dependentIntSpec.A-2.0-stable
compose.dependentIntSpec.B-3.0-stable

B. Similarity Metric

The similarity metric is defined based on the asset
attribute vector. Since the attribute vector differs between

distinct types of assets, the similarity metric is also different

for each type of asset. In this approach the similarity between

two assets is quantified by an integer number, called

distance. To avoid negative distances, we defined that the

initial default distance (di) between two assets is 300. The

similarity criterion is applied and this value may decrease, in

such a way that assets are considered more similar when the

final distance (df) between them approximates to zero.

 For two dependent component specifications a and b, the

similarity is defined by (1), where k(a,b) = 0 if both assets
refer to distinct independent component specifications;

otherwise k(a,b) = 200. Let I be the number of dependent

interface specifications provided by both assets and U be the

set of dependent interface specifications provided by at least

one of them. The term p(a,b) is defined as p(a,b) = I/U. As

can be noticed, when p(a,b) is 1 both assets provide the same

set of dependent interface specifications, and thus they are

more similar.

 ��(�, �) = �	 − �(�, �) − �(�, �) × 100 (1)

In the case of two independent component specifications
a and b, the similarity is given by (2), where p(a,b) is

calculated as explained before for dependent component

specifications, but considering the number of independent

interface specifications provided by both assets. So, let I be

the number of independent interface specifications provided

by both assets and U be the set of independent interface

specifications provided by at least one of them. The term

p(a,b) is defined as p(a,b) = I/U. Similarly, when p(a,b) is 1

both assets provide the same set of independent interface

specifications and thus, they are more similar.

 ��(�, �) = �	 − �(�, �) × 300 (2)

Analogously, for two dependent interface specifications a

and b, the similarity is calculated as expressed in (3), where

l(a,b) = 0 if both assets refer to distinct independent interface

specifications; otherwise, l(a,b) = 200. The term op(a,b) is

the ratio of common operations of both assets in relation to

the union of operations of these assets. Two operations are

considered similar if they have the same name, the same

return type and a percentage of coincidence in parameters;

the value of the percentage is defined by the user.

 ��(�, �) = �	 − �(�, �) − ��(�, �) × 100 (3)

Taking into account two independent interface

specifications a and b, the similarity is calculated by (4),

where op(a,b) represents the percentage of common

operations provided by both interfaces, exactly as explained

before for dependent interface specifications.

 ��(�, �) = �	 − ��(�, �) × 300 (4)

Finally, for two component implementations a and b, the

similarity is given by (5), where q(a,b) = 0 if both assets

refer to distinct dependent component specifications;
otherwise q(a,b) = 300. As can be noticed, when q(a,b) is

300 both assets implement the same dependent component

specification, and thus they are similar.

 ��(�, �) = �	 − �(�, �) (5)

As an example, consider two dependent component

specifications C and D, whose attribute vectors are given in

Table II and Table III, respectively. As these assets refer to

distinct independent component specifications, according to

(1), k(C,D) = 0. In this example, C and D have a common

interface and together provide three different interfaces.
Thus, I = 1, U = 3 and p(C,D) = 1/3. Hence, df (C,D) = di –

k(C,D) – p(C,D)*100 = 300 – 0 – 0.33*100 = 276,67.

TABLE II. ATTRIBUTE VECTOR OF THE ASSET C

ID compose. depCompSpec-C-2.0-beta

Independent

Component

Specification

compose.indepCompSpec-A-3.0-stable

Dependent

Interface

Specification

compose.depIntSpec-A-4.0-mature

compose.depIntSpec-C-4.0-mature

416

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. ATTRIBUTE VECTOR OF THE ASSET D

ID compose. depCompSpec-D-3.0-mature

Independent

Component

Specification

compose.indepCompSpec-C-3.0-stable

Dependent

Interface

Specification

compose.depIntSpec-B-2.0-beta

compose.depIntSpec-C-4.0-mature

C. Clustering Algorithm

The proposed clustering algorithm has two stages. In the

first stage, initially, assets are randomly chosen from the

respective storage unit and stored in the primary memory. It

is suggested to exhaust the memory capacity with this

operation. Next, but still in the first stage, the classical

hierarchical clustering algorithm [9] is applied to these

assets. In the beginning of the algorithm each asset is
considered a cluster. Then, the algorithm groups

successively the two nearest clusters, until the distance

between clusters is greater than an established threshold,

specified by the user. The algorithm considers the similarity

metric described previously to compute the distance. The

combined cluster is considered a representative asset of the

joined clusters. For each type of asset, the representative

asset includes the relevant features for the similarity metric

and also references to the joined assets. At the end of the

iteration, a directory containing all formed representative

assets (clusters) is stored in secondary memory.

Fig. 3 illustrates the main steps of the first stage: (a)
assets are randomly selected from the repository; (b) clusters

composed of similar assets are constructed by applying the

hierarchical clustering algorithm; and (c) representative

assets are created for representing each cluster.

(a)

Asset

Randomly Selected Asset

Representative Asset

(b) (c)

Figure 3. The first stage.

In the second stage, a K-means based algorithm [9] is

adopted. In general terms, representative elements are

considered centroids. However, differently from K-means,

such centroids are not recalculated in the proposed approach.

Indeed, each asset, not yet clustered in the first stage, is

compared with each representative asset. The asset is

candidate to be included in a cluster when the distance

between the asset and the respective representative asset is

lesser than the threshold. Fig. 4 shows the second stage.

As depicted in Figs. 4a, 4b, and 4c, considering all

candidate clusters, the asset is included in the cluster that has
the minor distance and then the representative element of the

cluster is reconstructed considering the features of the

included asset. Otherwise, as shown in Figs. 4d, 4e and 4f, if

the asset is not a candidate to any cluster, the own asset

becomes a new representative element and so a new cluster.

To conclude the description of the approach, it remains to

explain how the relevant features of representative assets are

determined. A representative asset, resulted from the

combination of two clusters composed by dependent

component specifications, includes all provided dependent

interface specifications of the joined assets and the

independent component specification they refer. This
specification is the one that mostly occurs in the assets that

form the combined cluster; in the case of a draw one

specification is chosen arbitrarily.

Asset Randomly Selected Asset Representative Asset

(a)

(b)

(c)

(d)

(e)

(f)
Figure 4. The second stage.

For a representative asset resulted from the combination
of two clusters composed by independent component

specifications, the relevant features are all provided

independent interface specifications of the joined assets.

A representative asset resulted from the combination of

two clusters composed by dependent interface specifications

include as relevant features all operations of the joined

assets, as well as the independent interface that the

representative asset implements. This interface is the one

mostly referred by the joined clusters.

417

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Taking into account a representative asset resulted from

the combination of two clusters composed by independent

interface specification assets, the relevant features are all

provided operations of the joined assets.

Finally, for a representative asset resulted from the

combination of two clusters of component implementations,
the relevant feature is its referenced dependent component

specification. This specification is the one mostly frequent in

the joined assets.

As an example of the construction of representative

assets, considers two original assets as shown in Fig. 5 and

Fig. 6. The representative asset resulted from the

combination of these assets is described in Fig. 7. As both

assets are dependent component specifications, observe that

the representative asset includes all provided dependent

interface specification (lines 6 to 16 of Fig. 7) and the

independent component specification that occurs more

frequently in the original assets. (line 3 of Fig. 7).

01 <asset name=“depCompSpec-K”

id=“compose.depCompSpec-K-1.0-alfa”>

02 <model-dependency>

03 <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04 </model-dependency>

05 <component-specification>

06 <interface>

07 <provided>

08 <related-asset name=“depIntSpec-R”

id=“compose.depIntSpec-R-3.0-mature”

relationship-type=“dependentInterface”/>

09 </provided>

10 <provided>

11 <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

12 </provided>

13 </interface>

14 </component-specification>

15 </asset>

Figure 5. Dependent component specification K.

01 <asset name=“depCompSpec-L”

id=“compose.depCompSpec-L-2.0-pre-alfa”>

02 <model-dependency>

03 <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04 </model-dependency>

05 <component-specification>

06 <interface>

07 <provided>

08 <related-asset name=“depIntSpec-O”

id=“compose.depIntSpec-O-1.0-alpha”

relationship-type=“dependentInterface”/>

09 </provided>

10 <provided>

11 <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

12 </provided>

13 </interface>

14 </component-specification>

15 </asset>

Figure 6. Dependent component specification L.

V. RESULTS AND DISCUSSION

In order to evaluate the proposed distributed clustering
approach, a set of experiments has been carried out. The

purpose of such experiments is three-fold. First, it is intended

to identify the gains in terms of the number of representative

assets to be indexed when compared with the number of

original assets. The second purpose is to discover the gain in

terms of storage space requirements between the clustered

repository and the original repository. Lastly, such

experiments have evaluated the quality of the clustering

approach using well-know metrics.

01 <asset name=“repDepCompSpec-A1”

id=“compose.repDepCompSpec-A1”>

02 <model-dependency>

03 <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04 </model-dependency>

05 <component-specification>

06 <interface>

07 <provided>

08 <related-asset name=“depIntSpec-O”

id=“compose.depIntSpec-O-1.0-alpha”

relationship-type=“dependentInterface”/>

09 </provided>

10 <provided>

11 <related-asset name=“depIntSpec-R”

id=“compose.depIntSpec-R-3.0-mature”

relationship-type=“dependentInterface”/>

12 </provided>

13 <provided>

14 <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

15 </provided>

16 </interface>

17 </component-specification>

18 </asset>

Figure 7. Representative dependent component specification.

In order to perform the experiments, it has been

developed a customizable script that automatically generates

a repository that stores the mentioned X-ARM assets. The

generated repository has 14.000 assets of different types.

After creating the repository, the proposed approach has
been applied for grouping the stored assets in clusters,

generating their respective representative assets.

A. Gain in Number of Assets

Fig. 8 presents the number of each type of asset in the

original repository and the clustered repositories after the
application of the proposed approach using different

thresholds, which vary from 100 to 200 in steps of 25. As

can be noticed, the proposed approach significantly reduces

the number of assets. As expected, the number of resulting

representative assets decreases as the threshold increases.

When the threshold is increased, two assets have more

chance of being considered similar, and so, more chance of

being grouped together. Thus, for example, when the

threshold is increased from 100 to 200, the total number of

original assets is reduced to 4,287 and 2,518 representative

assets, respectively.

418

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Number of assets.

For each considered threshold, the gain in number of

assets has been identified and evaluated. Fig. 9 illustrates the

gain in terms of the number of assets. For example, when the

threshold is 150, the number of stored assets in the original

repository is reduced around 28.5%, dropping from 14,000
original assets to 3,985 representative assets. As can be

noticed in Fig. 9, the proposed approach performs a

significant reduction in the number of stored assets,

achieving relevant gains between 82% and 69.4%.

Figure 9. Total Gain in number of assets (%).

However, as shown in Fig. 10, the gains are different for

each type of asset. Note that, in general, the better gains are

achieved for component implementations and dependent

interfaces. Considering component implementations, the

gains become a little bit more expressive, varying between

91.1% and 86.1%. For dependent interface specifications, the

gains are between 88% and 69.8%. In the former case, such

higher gains can be explained by the considerable amount of

assets of those types. As can be seen in Fig. 8, the original

repository has 8,000 component implementations. Thus, this

type of asset is the prevalent one in the evaluated repository,

increasing the likelihood of identifying similar assets.

Furthermore, considering that component implementations

are considered similar when they refer to the same dependent

component implementation, it is also possible to correlate

such a good gain with the existence of different

implementations of the same component specification, not
only for different target platforms but also for meeting a

variety of non-functional requirements, like performance,

security and cost. Therefore, considering the various

methods, techniques and algorithms that can be employed to

meet non-functional requirements, it is obvious that such

multiple implementations impact on the likelihood of

identifying similar component implementations.

Figure 10. Gains in number of assets for different types of assets.

In the case of dependent interface specifications, the

gains become better due mainly to two reasons. First, in

software projects, it is not rare to implement different

versions of software systems for different target platforms.

So, in component-based software projects, different versions

imply on several dependent interface specifications for each

independent interface specification. Considering that

dependent interface specifications are considered similar

when they refer to the same independent interface

specification, it is easy to see that multiple implementations
impacts on the likelihood of identifying similar dependent

interface specifications. The second reason is a consequence

of the high gains in independent interface specifications. For

instance, consider two dependent interface specifications

(depInti and depIntj) that refer to two independent interface

specifications (indepIntx and indepInty), respectively. Now,

consider that indepIntx and indepInty are clustered as the

representative asset indepIntc. As a consequence, now, both

dependent interface specifications depInti and depIntj refer to

the same representative independent interface specification

indepIntc. Then, taking into account that dependent interface
specifications are considered similar when they refer to the

same independent interface specification, depInti and depIntj

are clustered and produce the representative asset depIntc.

419

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Clearly, a high gain in clustering independent interfaces has

a significant impact in the gain in clustering dependent

interfaces.

In terms of dependent component specifications, the

gains range from 74.5% to 58.4%. One reason for this gain is

the expressive number of assets in the repository (3,000
assets according Fig. 8). Furthermore, the existence of

different versions of software systems for different target

platforms implies on several dependent component

specifications for each independent component specification.

Considering that dependent component specifications are

considered similar when they refer to the same independent

component specification, it is clear to notice that multiple

implementations impacts on the likelihood of identifying

similar dependent component specifications.

In relation to independent component specifications, the

gains are notably low, varying from 41.5% to 8.9%. Besides,

as can be noticed in Fig. 10, the gain of 41.5% occurs for the
higher threshold only. When the threshold is 175 and 125,

the respective gains decrease to 12.9% and 8.9%. Such gains

are relatively low and indeed not expected. As mentioned

before, independent component specifications are considered

similar when they have in common a considerable subset of

provided independent interfaces. Thus, it is possible to infer

that such low gains are a consequence of the difficulty of

finding two or more independent component specifications

that share a reasonable subset of independent interfaces.

As can be noticed, the clustering gains in independent

interfaces specifications impact positively on the gains in
dependent interface specifications, but give the impression

that do not impact on the gains in independent component

specifications. Furthermore, the clustering gains in

independent component specifications impact on the gains in

dependent component specifications, which in turn impact

on the gains in component implementations.

B. Gain in Storage Requirements

As already mentioned, the adoption of semi-structured

data for representing metadata about software components

implies challenges related to the design of indexing

techniques that ought to be efficient in terms of storage space

requirements. Therefore, it is not enough to be efficient in

reducing the number of assets, but also in downgrading

storage space requirements for index files.

In such a direction, the gain in terms of storage space

required by index files has been evaluated in the original

repository, containing 14.000 X-ARM assets of different
types. After generating the clustered repositories by applying

the proposed approach for different thresholds, the original

repository and the clustered repositories have been indexed

using the indexing technique proposed in [7]. Fig. 11

presents the storage space required by the original repository

and the clustered repositories, after applying the indexing

technique.

As can be noticed, the proposed approach significantly

reduces the required storage space. As expected, the required

storage space decreases as the threshold increases. When the

threshold increases, the number of representative assets

reduces, and, as a consequence, the storage space required by

index files also downgrades. Thus, when the threshold

increases from 100 to 200, the storage space required by

index files reduces from 10.9 to 7.3MB.

Figure 11. Storage space requirements for different thresholds.

For each considered threshold, the gain in storage space

requirements has been identified and evaluated. Fig. 12

illustrates the gain in terms of storage space requirements.

For example, when the threshold is 150, the storage space

required by index files is reduced around 87.3%, dropping

from 77 to 9.8 MB. As can be noticed in Fig. 12, the

proposed approach performs a significant reduction in the
storage space requirements, achieving relevant gains

between 85.8% and 90.5%.

Figure 12. Total gain in storage requirements.

C. Clustering Quality

Of course, it is not enough to evaluate the gains in terms

of number of assets and storage space requirements. It is also

imperative to assess the quality of the clustering approach. In
such a direction, the clustered repositories have been

assessed in terms of two different clustering evaluation

methods: Davies-Bouldin index and Silhouette index.

The Davies-Bouldin index [19] is a clustering evaluation

method based on internal criterion. It is a function of the

ratio of the sum of intra-cluster distances (within-cluster

scatter) to inter-cluster distances (between-cluster

420

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

separation), as defined in (6), where n is the number of

clusters, ci is the representative element of cluster i, σi is the
average distance of all elements in cluster i to representative

element ci, and d(ci,cj) is the distance between representative

elements ci and cj. As widely mentioned in the literature, a

good clustering algorithm must produce clusters with low

intra-cluster distances (high intra-cluster similarity) and high

inter-cluster distances (low inter-cluster similarity). Based on
that, a good clustering algorithm has a small value of Davies-

Bouldin index, representing compact and well-separated

clusters [20].

�� = 1
� � max	�� �σ	 + σ�

� !	 , !�"#
$

	%&
 (6)

As can be seen in Fig. 13, the Davies-Bouldin index of

the clustered repositories for all evaluated thresholds varies

between 9.60 and 1.66. Such low values for the threshold

from 100 to 150 evinces that the proposed approach can be

considered a good clustering algorithm because has produced

compact and well-separated clusters. Note that the Davies-

Bouldin index increases as the threshold increases. Such a

trend is already expected and indicates that lower thresholds

produce higher intra-cluster similarity and lower inter-cluster
similarity, and so higher quality clusters.

The Silhouette index [21] is based on the comparison of

the tightness and separation of the clustered elements. The

silhouette for each element is calculated as illustrated in (7),

where ai is the average intra-cluster dissimilarity of element i

to all other elements within the same cluster, and bi is the

lowest average inter-cluster dissimilarity of element i to all

other elements in another cluster. Note that the silhouette

value varies between -1 and 1. Based on the silhouette for

each element, the overall average silhouette for all elements

can be easily calculated. If the overall average silhouette is

close to 1, it means that elements are well-clustered and are
assigned to very appropriate clusters. If the overall average

silhouette is close to -1, it means that elements are

misclassified and so poorly clustered.

'(() = �	 − �)�*+�	 , �	, (7)

As also illustrated in Fig. 13, the overall average
silhouette of the clustered repositories for all evaluated

thresholds varies between 0.62 and 0.84. Such values close

to 1 are evidences that the proposed approach is a good

clustering algorithm because elements are well-clustered and

are assigned to appropriate clusters. Note that the silhouette

index decreases as the threshold increases. Again, such a

trend is already expected and indicates that lower thresholds

produce lower intra-cluster dissimilarity and higher inter-

cluster dissimilarity, and so higher quality clusters.

Figure 13. Quality indexes for different thresholds.

VI. CONCLUSION

Based on the preliminary results, it can be clearly

evinced as benefits the potential of the proposed approach in

significantly clustering an X-ARM repository and

consequently reducing storage space requirements. It must
be highlighted that, the bigger the original repository in

terms of the number of stored assets, the more expressive the

likelihood of clustering assets, and so the better the gain in

terms of storage space requirements.

Taking into account that the indexing technique proposed

by Brito et al. [7] adopted for indexing the clustered

repository, the experiments reveal the reduction in the size of

the original repository implies in an expressive reduction in

the size of index files of the clustered repository. Besides,

considering that the technique proposed by Brito et al. has an

excellent performance in query processing time, even in
large-scale index files, it is expected a reasonable gain in

terms of query processing time due to the expressive

reduction in the size of index files. Therefore, the proposed

approach clearly makes possible to map large software

component repositories into small index files.

However, as often informally said, there is no free lunch.

That is, in formal words, such expressive gains in terms of

storage space requirements and query processing time have

an impact on the query precision level, since the process of

clustering assets introduces some degree of information loss

in representative assets. For the experiments of the previous

section the query precision level vary from 0.41 for the
threshold of 100 to 0.31 for the threshold of 200. Such

results can be considered very attractive because, as

indicated in experiments presented in [22], highly popular

and adopted search engines like Google and Altavista have

achieved inferior precision indexes around 0.29 and 0.27,

respectively. Moreover, in all thresholds the recall index is

about 0.67. Again, such results can also be considered

interesting because, as also indicated in [22], Google and

Altavista have obtained inferior recall indexes around 0.20

and 0.18, respectively.

Although these preliminary results indicate the
usefulness of the approach, a large number of experiments

must be performed to better evaluate the heuristics and the

421

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

similarity metric here introduced. In these experiments we

must investigate several configurations of the repository

differing on the amount of assets of each type, as well as the

possibilities of relations among them. Besides, it is also

under investigation a comparative analysis contrasting the

proposed heuristics and other ones available in the literature,
but applied in different research fields.

ACKNOWLEDGMENT

This work was supported by the National Institute of

Science and Technology for Software Engineering (INES –

www.ines.org.br), funded by CNPq, grants 573964/2008-4.

REFERENCES

[1] A. Orso, M.J. Harrold, and D.S. Rosenblum, “Component
Metadata for Software Engineering Tasks”, Proc. 2nd Int.
Workshop on Engineering Distributed Objects, 2000,
pp. 126-140.

[2] P. Vitharana, F. Zahedi, and H. Jain, "Knowledge-Based
Repository Scheme for Storing and Retrieving Business
Components: A Theoretical Design and an Empirical
Analysis", IEEE Transactions on Software Engineering., vol.
29, issue 7, July 2003, pp. 649-664.

[3] OMG, Reusable Asset Specification: OMG Available
Specification – v2.2, 2005.

[4] G. Elias, M. Schuenck, Y. Negócio, J. Dias, and S. Miranda,
“X-ARM: An Asset Representation Model for Component
Repository”, Proc. 21st ACM Symposium on Applied
Computing (SAC 2006), France, 2006, pp. 1690-1694.

[5] W. Meier, “eXist: An Open Source Native XML Database”,

NODe 2002 Web and Database-Related Workshops on Web,
Web-Services, and Database Systems, 2002.

[6] R. Goldman and J. Widom, “DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases”,
Proc. 23rd Int. Conf. on Very Large Data Bases (VLDB

1997), Greece, 1997, pp. 436-445.

[7] T. Brito, T. Ribeiro, and G. Elias, “Indexing Semi-Structured
Data for Efficient Handling of Branching Path Expressions”,
2nd Inter. Conf. on Advances in Databases, Knowledge, and
Data Applications (DBKDA 2010), France, 2010,

pp. 197-203.

[8] M.P. Paixão, L. Silva, T. Brito and G. Elias, “Large Software
Component Repositories into Small Index Files”, Proc. 3rd
International Conference on Advances in Databases,

Knowledge, and Data Applications (DBKDA 2011),
pp. 122-127, 2011.

[9] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data,
Prentice Hall, 1984.

[10] R. Xu and D. Wunsch, “Survey of Clustering Algorithms”,
IEEE Transactions on Networks, vol.16, issue 3, May,
pp. 645-678.

[11] A. Feng, “Document Clustering – An Optimization Problem”,

ACM SIGIR 2007, pp. 819-820.

[12] S. Mancoridis, B.S. Mitchell, C. Rorres, Y.F. Chen, and E.R.
Gansner. “Using automatic clustering to produce high level
system organizations of source code”. Proc. IEEE
International Workshop on Program Comprehension,

pp. 45–53, 1998.

[13] B.S. Mitchel and S. Mancoridis. “On the Automatic
Modularization of Software Systems Using the Bunch Tool”,
IEEE Transaction on Software Engineering, vol. 32, issue 3,
pp. 1-16, March 2006.

[14] Y. Chiricota, F. Jourdan, and G. Melançon, “Software
Component Capture using Graph Clustering”, Proc. IEEE
International Workshop on Program Comprehension, 2003.

[15] J. Wu, A.E. Hassan, and R.C. Holt, "Comparison of
Clustering Algorithms in the Context of Software Evolution",
Proc. 21st Int. Conf. on Software Maintenance, 2005,
pp. 525-535.

[16] Z. Li, Q.A. Rahman, and N.H. Madhavji, “An Approach to
Requirements Encapsulation with Clustering”, Proc. 10th
Workshop on Requirement Engineering, 2007, pp. 92-96.

[17] M. Cohen, S.B. Kooi, and W. Srisa-an. “Clustering the Heap

in Multi-Threaded Applications for Improved Garbage
Collection”, Proc. of the 8th annual Conference on Genetic
and Evolutionary Computation, Vol. 2, pp. 1901-1908,
July 2006.

[18] W. Frakes and K. Kang, “Software Reuse Research: Status
and Future”, IEEE Transactions on Software Engineering,
vol.31, issue 7, July 2005, pp. 529-536.

[19] D.L. Davies, and D.W. Bouldin, “A Cluster Separation
Measure”, IEEE Trans. Pattern Anal. Mach. Intelligence,

vol. 1, pp. 224–227, 1979.

[20] S. Theodoridis and K. Koutroumbas, Patternn Recognition,
Academic Press, 2009.

[21] P.J. Rousseeuw, “Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis”, Journal of
Computational and Applied Mathematics, vol 20,
pp. 53-65, 1987.

[22] S.M. Shafi and R.A. Rather, “Precision and Recall of Five
Search Engines for Retrieval of Scholarly Information in the
Field of Biotechnology”, Webology, vol. 2, number 2, 2005.

