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Abstract—Android is a free operating system for mobile
devices that has become very popular these days. In this work
we analyse the capabilities of an Android smartphone with the
OpenGL ES API for the rendering of synthetic realistic images.
The aim is to find out the facilities and the main limitations of
the platform for the development of augmented reality games,
studying the integration of synthetic information with the real
environment using data from the camera and the positioning
engine. Thus, our research covers mainly three fields: an
analysis of the information provided by the camera, a study
of the tracking and positioning capabilities of current Android
devices and an outline of the rendering facilities usually found
in these devices. The performance, in terms of frames per
second and latency, has been tested in different smartphones, in
addition to evaluate the reliability and efficiency of the sensors
and the quality of rendering. In order to show all the results
obtained from this study we have developed an augmented
reality game trying to combine quality, performance and real-
time interaction.
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Image processing; Realistic image synthesis

I. INTRODUCTION

This work extends a previous survey [1] about the current
state and capabilities of augmented reality applications in
Android smartphones, adding new tests and devices to
the analysis. Smartphones have gathered functionalities and
features of an increasingly number of different devices, from
those used in a more professional environment (i.e., mobile
devices, electronic agendas, GPS) to others with recreational
aspects (such as cameras or video game consoles). Although
this means an obvious saving of money and space, the major
advantage of these new devices is the integration of all
those capabilities in increasingly complex and innovative
applications.

Most of the operating systems available for these devices
have been developed ad hoc for each model, such as Apple’s
iPhone OS [2] or Samsung’s Bada [3]. Android [4], however,
has a very different origin since it is a multi-platform
linux-based OS (rigorously, Android is really a software
stack that includes an OS, middleware and a handful of
applications) promoted by a group of companies. This open
source and cross-platform nature, together with the growth

it has experienced over the past few years, giving access to a
wide range of devices ranging from the low price terminals
to the more expensive ones, made us adopt Android as the
platform for this work.

Augmented reality (AR) [5] is one of the newest and
most popular applications that have recently shown up within
the sphere of smartphones. Most of the existing proposals
may be classified at one of the following three groups:
AR browsers; applications that allow us to move through a
completely synthetic environment; and, lastly, applications
that use the camera information to show virtual objects in
the phone.

AR browsers are outdoor augmented reality applications
that do geopositioning of virtual objects in the real world by
using the orientation sensors and the GPS or a triangulation
positioning system to determine the position where they
must be placed [6], [7]. The information about the objects to
be positioned is pre-computed and these applications do not
demand a great accuracy in the positioning and orientation
of the mobile device. AR browsers generally presents a good
operation, showing real time information with an acceptable
precision though with the typical limitations of any GPS or
triangulation positioning systems. Generally speaking, the
positioning accuracy is upper than 5 meters in optimal con-
ditions (open space and good firmament visibility). However,
the precision drops drastically in cities and, above all, inside
buildings.

The second type of AR applications uses only the move-
ment and orientation of the device to readjust the vision of a
synthetically generated scene [8], [9]. In these applications
all elements are generated in a virtual scene that is shown in
the mobile screen. The device movements and its orientation
in relation to the Earth’s magnetic field and to the centre
of the Earth (gravity) are used to establish or update the
point of view in the scene shown in the screen. The image
captured by the camera can also be shown, but it has not
any influence in the applications as it is not really processed
by the device.

Finally, some applications apply artificial vision tech-
niques [10], [11]. This type of applications processes the
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perceived image and uses that information to put the virtual
models in the right place, usually through known tags to
be able to interpret in a better way the perceived informa-
tion. Obviously, this approach means higher computational
requirements and a greater application complexity. As a con-
sequence, there are really few AR applications in Android
based on exploiting data obtained by the camera and most
of them are basically technical demonstrations. On the other
hand, this kind of applications can be found in other systems
apart from mobile devices, such as desktop computers,
mainly due to the usual high computing requirements of
image processing algorithms.

To sum up, from a user point of view there are multiple
applications using geopositioning of objects with different
objectives, and several proposals already in the market to
cover this topics. However, few Android applications use
artificial vision to perceive and process the real world, and
those have usually a poor performance. In our research,
we focus on this last line of work since the best approach
to integrate synthetic information with the immediate real-
time data from the environment in a realistic scenario such
as a dynamic and complex environment seems to be the
exploitation of both the camera and the positioning sensors
of these devices. Since Android is a brand new platform,
analysing the viability of this kind of AR application is a
necessary preliminary step. This analysis is complemented
in this work with the development of a simple AR game for
indoor environments as a demonstration of the possibilities
of this approach.

The structure of the paper is as follows, Section II goes
into the study of Android smartphones as an AR platform.
We have divided our analysis in three big sections: firstly,
a study of the possibilities for processing the information
captured by the camera; next, a survey of the positioning
and tracking capabilities of these smartphones in an indoor
environment and, lastly, the possibilities for the real-time
rendering of complex virtual models. A brief outline of
all the aspects studied in the analysis is in the end of
this section. Section III describes the AR game we have
developed taking into account the results from our analysis,
and Section IV shows the performance achieved with our
proposal. Finally, the conclusions we have reached with this
work are shown.

II. ANALYSIS OF THE CAPABILITIES OF AN ANDROID
SMARTPHONE WITH OPENGL ES

In this section, an analysis of the capabilities of the
Android platform in the context of AR is presented. Table I
shows the main features of the devices used in our study.
These devices are representative of the current smartphone
market in the last couple of years.

A. Image capture and processing

The camera of a smartphone is of great importance for AR
applications, since the synthetic images are usually rendered
over real images obtained by the camera. If the image from
the camera is just being displayed, Android efficiently add
it to the rest of layers shown by the application. Otherwise,
if the image is going to be processed, it is captured by the
system and provided to the application as a vector of bytes in
a default format previously set in the camera. Many cameras
(such as the ones used in our analysis) only work with the
YUV image format.

Once an image from the camera is obtained, any image
processing technique may be applied on it. Since image
processing is usually a high-cost computationally task, any
operation has to be spawned in a different thread to the one
running the application’s GUI. Otherwise, non-responding
lags are probably to be experienced in the application.
Besides, it is also a good practice to code image processing
tasks in native code (C, C++) and use the NDK to integrate
it in the application [12]. This way, we can achieve an
important improvement, up to 400%, in the velocity of
execution.

In order to analyse the possibilities of image capture
and processing at iterative rates we started studying the
maximum frequency at which data can be obtained. This
allow us to get the top level of performance that can be
achieved in these devices. Thus, our first test just captures
an input image and calls a naive processing image code
that just computes the frame rate (fps, frames per second)
with no additional computation (the input image is not
processed at all). The result obtained with this simple test for
a Motorola Milestone with Android v2.1 and a configuration
of 10 fps as the maximum capture frequency was 8.8 fps,
whereas a maximum of 9.3 fps was obtained when the
maximum frequency was set to 30 fps. Obviously, these
results are far from being satisfactory, since even without
any image processing we are rounding the minimum frame
rate acceptable for a fluid interaction.

To study the effect of a simple image processing on
the performance, we have extended our test by adding
the display on the screen of the images obtained by the
camera. Since images are obtained from the camera in YUV
format for portability issues and they must be in RGB to
be displayed by Android, some computation is needed to
get the conversion. Therefore, this test program just takes
each image captured by the camera, recodes it from YUV
to RGB and gets it displayed on the screen. Additionally, our
test program can be configured to encode only a region of
the image. The results of running our tests in the Motorola
Milestone are depicted in Table II. The table shows the frame
rate as a function of the size of the region to process and the
highest frequency set in the camera. As can be observed, a
top value of 5.15 fps has been obtained, that does not make
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Table I: Technical data for the smartphones used in our tests.

Motorola Milestone GeeksPhone One Samsung Galaxy S HTC Sensation Samsung Galaxy S2
Android 2.1 Eclair 2.2 Froyo 2.2 Froyo 4.0 ICS 2.3 Gingerbread / 4.0 ICS

CPU ARM Cortex A8 ARM11 Samsung Qualcomm Scorpion ARM Cortex A9
550 MHz 528 MHz Hummingbird 1 GHz dual-core 1.2 GHz dual-core 1.2 GHz

GPU PowerVR SGX 530 built-in PowerVR SGX 540 Qualcomm Adreno 220 ARM Mali-400 MP
RAM 256 MB 256 MB 512 MB 768 MB 1 GB
Display 3.7” 854x480 3.2” 400x240 4” 800x480 4.3” 960x540 4.3” 800x480
GPS 3 3 3 3 3
Acceler. 3 3 3 3 3
Compass 3 7 3 3 3
Camera 3 3 3 3 3

possible to keep a fluid stream of images on the screen.
Furthermore, we have observed a delay of about one second
in what is being displayed. A further analysis of this delay
is presented at the end of this section.

These results show that the configuration with 10 fps as
the maximum frequency obtains the best results; probably
because with this frequency the application is not saturated
with images it is not able to process. Even though there is
a substantial improvement in the capture by reducing the
image size (25% fps with 1/4 of the size), this results in
less than 5 fps with the max set to 30 fps.

In a next step we have studied the performance of image
processing, so a simple colour segmentation of pixels is car-
ried out. Since all the pixels in the image were already being
processed by the image recoding process in the previous test,
adding colour segmentation only needs a few additional lines
of code, so execution times remains almost the same, as
we have tested experimentally. Other tests adding different
image processing algorithms were carried out and similar
execution times were obtained.

The obvious conclusion coming from the results of our
tests is that the image processing velocity is really low
in Android v2.1 and previous versions, obtaining a slow
response even after implementing optimisations such as
using NDK and running the processing in a different thread.
The main reason for this performance seems to be in the
process the system follows for each image captured by the
camera, allocating memory, saving a copy of the image,
calling the function to process it and, finally, removing the
reference to the allocated memory [13]. This whole process
entails a completely inefficient memory management, that
is made still more acute by the high cost of garbage
collection in Android, between 100 and 300 milliseconds.
Not reusing the memory assigned to each image results in a
frequent invocation of the garbage collector, burdening the
performance.

This important issue with memory management was
solved in Android v2.2, that included other significant
improvements as well, such as a Just in Time compiler.
Regarding image processing, the API was also enhanced
with new methods that work with a buffer passed as a

Table II: Image capture, decoding and visualisation on
Motorola Milestone with Android v2.1.

Max. FPS
Image size Milestone-30 Milestone-10

560×320 3.25 3.90
280×320 3.90 4.45
280×160 4.50 4.95
140×160 4.60 5.10
15×15 4.65 5.15

Table III: Image capture, decoding and visualisation in
devices with Android v2.2.

GeeksPhone Galaxy S
Size FPS Size FPS

400×240 3.90 800×480 5.70
200×240 4.50 400×480 7.10
200×120 5.00 400×240 8.00
100×120 5.50 200×240 8.75
15×15 5.80 15×15 9.20

parameter, removing the memory allocation and removal for
each image to process.

We have analysed the improvements in Android v2.2 by
running the same tests in two of our devices with this
version of the OS. Table III shows the results obtained
with Android v2.2 for the simple capture and recoding test
previously outlined in Table II, in this case considering only
the configuration of 10 fps as the maximum frequency, since
it provides the best results and the 30 fps configuration does
not add relevant information to the analysis. As can be
observed, there is a performance increase of 50%, from
3.90 up to 5.70, and taking into account a 50% increase
in the image size as well. The improvement is even more
appreciable looking at the visualisation delay, that has been
reduced from around 1 second to 0.5 seconds.

Table IV depicts the results achieved by the new Android
v4.0 running on two current smartphones: HTC Sensation
and Samsung Galaxy S2. As can be observed, the perfor-
mance has significantly improved, above all for the 30 fps
configuration, that now even achieves the best results in
some of the cases. The frame rates shown in this table
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Table IV: Image capture, decoding and visualisation on HTC
Sensation and Galaxy S2 with Android v4.0.

Max. FPS
Image size Sensation-30 Sensation-10 Galaxy S2-30 Galaxy S2-10

640×480 9.38 9.62 11.89 11.59
320×480 10.36 10.50 11.93 11.87
320×240 12.20 12.20 12.08 12.04
160×240 12.64 12.71 13.26 12.06
160×120 13.28 13.05 14.87 12.63

Table V: Image capture, decoding and visualisation in a
high load scenario on HTC Sensation and Galaxy S2 with
Android v4.0.

Max. FPS
Image size Sensation-30 Sensation-10 Galaxy S2-30 Galaxy S2-10

640×480 7.60 7.70 8.60 8.73
320×480 8.00 8.10 9.41 9.23
320×240 8.40 8.50 12.03 9.60
160×240 8.90 8.70 13.03 9.76
160×120 9.10 8.90 14.42 10.01

were obtained while keeping a small amount of background
workload in the smartphone, as in the previous tests. In
order to check how the background processes running in the
smartphone influence the performance of the image capture
and process task, we have repeated the test in the Android
v4.0 devices while a great bunch of usual applications were
being executed in background (IM, e-mail, alerts. . . ). The
results in such a scenario are shown in Table V, and an
important drop in performance can be observed compared
to Table IV, above all in the HTC Sensation, even though
both two devices are dual core.

Lastly, all our tests analysing the image capture and
processing in Android have revealed an important delay in
the capture of the input data. This delay was extremely
high in the devices with Android v2.1, about 1 second, and
has been reduced in the last versions. Table VI shows the
results of a simple experiment to measure this delay in three
different devices, Samsung Galaxy S, with Android v2.2, and
HTC Sensation and Samsung Galaxy S2, with Android v4.0.
Our experiment involved the measurement of the response
time of a simple quantifiable event, the off/on switching of a
LED, that allow us to know the delay in the image capture
for each device (see Figure 1). As can be observed, the
delay in the Samsung Galaxy S2 is about half the time it
is in the other two devices, even though one of them, HTC
Sensation, is using the same version of Android. A video
with this experiment is provided as additional material with
this paper.

Summing up, although the improvements introduced with
Android v2.2 and next versions make us optimistic about
future revisions, above all in combination with more pow-
erful hardware such as the recent multi core processors,

Table VI: Delay between image capture and processing on
Galaxy S with Android v2.2 and HTC Sensation and Galaxy
S2 with Android v4.0.

Delay (s) Galaxy S Sensation Galaxy S2

Average 0.454 0.414 0.246
Std. deviation 0.024 0.041 0.060

(a)

(b)

Figure 1: Delay time measurements in (a) Samsung Galaxy
S and (b) HTC Sensation.

the current situation does not allow real time applications
entirely based on the processing of images from the camera.
Thus, an efficiency analysis of the real world around us
makes necessary the use of data from other sources, e.g.,
positioning sensors.

B. Device positioning and orientation

In this subsection we outline the main positioning and
tracking sensors included in most Android smartphones:
accelerometer, compass and GPS. In order to check their
performance, some test were executed on our Milestone
phone, similar results were obtained in the rest of devices.

An accelerometer measures the proper acceleration of
itself, i.e., a change in velocity, that involves a change in
position. Mathematically velocity is the integral of acceler-
ation, and position is the integral of velocity. Smartphones
have usually three accelerometers, one for each spatial axis.
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Figure 2: Values obtained by the accelerometers of a Mo-
torola Milestone during a user’s walk.

Theoretically, the position of a smartphone could be guessed
from data provided by these sensors. Data are presented as
a vector with the values measured for each of the three
axis in SI units (m/s2). In practice, however, the measures
are not very accurate due to the presence of gravitational
and centripetal forces [14]. Thus, a mobile phone left to
stand on a table presents a downward acceleration of about
9.82m/s2, the gravitational acceleration. It will be necessary
a gravitational free fall toward the centre of the Earth to
measure a value of zero in the three axes. Furthermore, the
double integral that has to be solved for obtaining location
from the acceleration value also increases the measurement
error. Anyway, these sensors are handy for knowing the de-
vice’s position relative to the floor with simple trigonometric
calculations.

To test these devices a small application that simply takes
the received measurements and save them in a file has been
developed. Figure 2 depicts the values received while a user
is walking along the Z axis with the mobile vertical to the
floor (axis Y is perpendicular to the floor and axis X is on
the side). As can be seen, there is a regular pattern of about
a footstep per second crests in axis Y (continuous changes
of about 4m/s2): acceleration progressively increases each
time the user raises his foot to start a new step, and it falls
when the foot reaches the floor, before starting a new step
and so on. The lateral movement enclosed to each footstep
can also be observed, but more complex movements would
be hard to recognise, hence the difficulty of computing
displacements using acceleration values. Broadly speaking,
the accelerometers we have tested measure a lot of noise
and therefore don’t seem reliable enough for a real time
application.

A digital compass or magnetometer is a device that
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Figure 3: Values obtained by the compasses of a Motorola
Milestone with a 90◦ turn.

measures the strength and direction of the magnetic fields
in its environment. Due to the magnetic field of the Earth,
a compass is usually employed as an orientation device
since it points out the Earth’s magnetic north. A smartphone
usually incorporates a chip that integrates three compasses
arranged to detect magnetic fields in the three spatial axes
[15]. Thus, location can be obtained independently of the
position of the device. Data are presented again as a three-
component vector, with the rotation value for each axis. The
first component of the vector is the rotation measurement
usually employed, i.e., rotation with regard to z axis. This
value is 0 ◦ when the device is oriented towards north
direction and the value increases clockwise up to 360 ◦,
north again. The other two components, rotation regarding
the other axes, are 0 ◦ when the device is lying face up.
Figure 3 shows the results obtained by a test consisting of
making an abrupt 90◦ turn, almost instantaneous, just before
returning to the initial position by means of a slighter turn,
during about 3 seconds. As can be observed in the figure,
the compass is too slow in measuring the new position after
the first sudden movement, what introduces wrong values
during a short period. However, it behaves really well in the
presence of slight movements, with accurate values and very
little noise.

Therefore, to track the direction in which a smartphone
moves with Android is recommended to take together data
from the accelerometers and the compasses. By previously
setting a default position for the device when the application
starts we get enough accuracy, since measures of smooth
changes in the local environment are quite precise.

GPS is a space-based global navigation satellite system
that provides reliable location through an infrastructure
comprising a network of satellites. This system can be used
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Figure 4: OpenGL ES 2.0 pipeline.

all around the world whenever there is an enough number of
visible satellites. Otherwise, less accurate measurements are
obtained or the device can even get out of network coverage,
usual problem in the indoor locations. The values obtained
by a GPS device points out its current position in the globe
with a few meters of precision, about 10 meters outdoor.
Besides, it does not provide reliable information about the
direction or inclination of the device and data is obtained
with a delay of about 1 and 2 seconds. All this makes
difficult to realistically locate and move synthetic objects
that are close to the device.

Nowadays, an alternative method to GPS is network-based
tracking by using the service provider’s network infrastruc-
ture to identify the location of the device. Although this
technique has less accuracy than GPS, it has the advantages
of a shorter initialisation time and an important reduction
in power consumption, since only the telephone signal is
used. Additionally, it can provide better results in indoor
environments than GPS. Anyway, both the two methods are
compatible as they are not mutually exclusive.

C. Android and synthetic graphics

OpenGL ES [16] is the API for producing computer
graphics in Android. It is a subset of the standard OpenGL
designed for embedded devices, so it removes some redun-
dant API calls and simplifies other elements to make it run
efficiently on the low-power GPUs of handheld devices. Fig-
ure 4 depicts the rendering pipeline in OpenGL ES 2.0, with
programmable hardware. Our codes are based on OpenGL
ES 1.1, with the same pipeline but with configurable fixed

Figure 5: Test model for OpenGL ES.

Table VII: Performance (fps) of OpenGL ES in Android v2.1
and v2.2.

Points GeeksPhone Milestone Galaxy S
C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

3 K 35 35 35 33 30 30 30 30 55 55 55 55
9 K 18 19 19 15 30 29 29 28 55 55 55 55

15 K 12 10 10 10 29 26 26 25 55 55 55 55
30 K 8 - - - 25 22 22 19 55 55 55 55
75 K - - - - 18 15 15 12 55 53 53 50

100 K - - - - - - - - 55 44 44 41

function hardware instead of programmable shaders. A set
of tests were carried out on the devices presented in Table I
to analyse the performance of graphic synthesis in Android.

The first test focused on measuring performance as the
number of primitives to render increases. The experimental
results obtained for a scene with the model of Figure 5
replicated multiple times are shown in the column C1 of
Table VII, in this case using the smartphones with Android
v2.x: GeeksPhone, Milestone and Galaxy S. In view of these
results, it is clear that the performance gets worse as the
number of polygons increases except for Galaxy S, device
in which we perceive a serious performance loss starting
from 300K points. Non relevant values were not included in
the table.

Column C2 of Table VII shows the results after adding a
texture to the model of Figure 5. This definitely improves
the visual aspect of the virtual objects with a minimum
loss of efficiency, up to a 17% for a model of 75000
points in our Milestone. Column C3 depicts the results when
including transparency effects. This hardly has influence on
performance comparing to the synthesis with textures. In
column C4 the results are obtained after applying illumina-
tion to the models. The performance decreases now a 24% in
Milestone for a scene with 30K points. Obviously, this loss
of performance is due to the additional computation required
to get the colour of each pixel in the scene. Furthermore,
it is necessary to define the light sources in the scene,
setting its position, type, colour and intensity, in addition
to provide each vertex of the models with a normal vector.
As can be observed, the fall of performance in Galaxy S is
only noticeable for models with a certain complexity (100K
points).
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Table VIII: Performance (fps) of OpenGL ES in Android
v4.0 (also Android v2.3 in Galaxy S2).

Points Sensation Galaxy S2
C1 C2 C3 C4 C1 C2 C3 C4

2.3 4.0 2.3 4.0 2.3 4.0 2.3 4.0

30 K 60 60 60 60 60 60 60 60 60 60 60 60
75 K 56 55 55 54 60 60 60 60 60 60 46 52

100 K 54 53 53 50 59 59 60 60 60 57 33 37
150 K 49 48 49 24 56 58 60 60 60 60 23 26
180 K 43 40 37 18 50 55 49 50 52 56 20 22
210 K 37 32 33 14 45 48 43 44 41 46 17 19
240 K 31 26 26 12 40 43 38 39 37 39 14 17
270 K 25 21 23 10 36 38 32 35 35 37 13 15
300 K 21 17 16 9 31 35 30 32 31 33 11 13

Figure 6: Morphing animation: starting state on the left and
final state on the right.

Table VIII has the results for the smartphones with
Android v4.0 used in our work: Sensation and Galaxy S2.
Sensation keeps a good performance up to 180-210 K points,
though the frame rate with illumination (column D) dramat-
ically drops for more than 150 K points. Galaxy S2 obtains
very similar results to Galaxy S, keeping a good performance
even with 300 K points. Again, working with illuminated
models makes the performance drop, surprisingly resulting
in poorer frame rates than Sensation for 75-100K points. The
table also has the results for Android v2.3 in the Galaxy S2
model, what shows the noticeable improvement introduced
with Android V4.0, above all when the number of primitives
to be rendered increases.

As regards animation, among all the different methods
we have analysed the inclusion of morphing [17]. This
technique gets a smooth transition between two models,
using interpolation to compute the intermediate versions of
the models. Since a new position for each point in the model
has to be calculated for each frame, this kind of methods
have a high computational cost. The model in Figure 6
(around 800 points and 300 polygons) has been used to
test the performance of this kind of animation together
with the application of textures and illumination in our
target devices. The frame rates obtained for different scenes
with this model on the smartphones with Android v2.x are
shown in Table IX (only the most interesting results were
measured). It can be observed that performance falls off
dramatically except for low-complexity scenes (8K in the

Table IX: Frame rate comparison of static (S) and animated
(A) models in the scene with Android v2.1 and v2.2.

Points GeeksPhone Milestone Galaxy S
S A S A S A

800 40 21 30 30 55 55
1.6 K 32 14 30 25 55 55
2.4 K 27 10 30 18 55 55

4 K 21 6 30 10 55 51
8 K - - 27 5 55 29

12 K - - - - 55 20
16 K - - - - 55 15

Table X: Frame rate comparison of static (S) and animated
(A) models in the scene with Android v4.0 (also Android
v2.3 in Galaxy S2).

Points Sensation Galaxy S2
S A S A

2.3 4.0 2.3 4.0

30 K 60 60 60 60 60 60
75 K 60 53 60 60 51 60

100 K 59 39 60 60 36 60
150 K 57 28 60 60 24 46
180 K 55 25 55 60 19 39
210 K 54 21 47 60 17 33
240 K 54 19 42 60 14 30
270 K 47 17 41 53 12 27
300 K 44 14 37 48 11 23

case of Galaxy S). These results are greatly improved in
the new devices with Android v4.0, as shown in Table X.
Specifically, the rendering of animated models has the most
remarkable improvement, above all in the Galaxy S2, that
exhibits a great performance up to 150 K points and keeps
good frame rates with 240 K points in the scene. Again,
the table allow us to compare the results accomplished by
Android v2.3 and v4.0 when running on the same hardware
(Galaxy S2). The improvements introduced in Android v4.0
lead to an increase in performance when the number of
primitives to be rendered is greater than 150K.

D. Discussion

An important deficiency in the image processing capabil-
ities of the platform has arisen, mainly in terms of image
capture latency (a minimum of 0.246 seconds in high-end
smartphones). The main augmented reality applications of
other platforms use the information obtained after a complex
analysis of the images captured by the camera as the main
source of information for positioning the synthetic objects in
the scene. In view of the results of our analysis, this kind of
applications are currently not possible at all in the Android
devices we have tested.

On the other hand, multiple conclusions can be extracted
from the analysis carried out using the Android positioning
sensors. First of all, regarding the use of the built-in locating
and tracking sensors, the accelerometers and the compass
provide results relatively reliable with no important errors.
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(a) BatGhost (b) HulkGhost

(c) EmGhost (d) SuperGhost

Figure 7: Three-dimensional models.

However, GPS gives an excessive error in the measure to
be used in the kind of AR indoor application we propose in
this work.

Lastly, we have detected restrictions in size and com-
plexity of the models to be rendered. From the results we
can deduce that the graphic hardware is powerful enough
to render non-excessively complex models with textures
and illumination. Therefore, in the game we propose in
the next section as an example of AR application, all the
render capabilities we have analysed have been applied, but
limiting the complexity of the model in order to get real
time rendering.

III. AN AR GAME IN AN ANDROID PLATFORM

To exploit the different aspects we have studied in our
analysis we have developed a simple AR game. In this game
each real-time image obtained by the camera is analysed and
it determines the apparition of ’enemies’ that the user/player
must hunt down. Thus, we have implemented a simple
system of events based on object colours and the differ-
ent enemies are drawn when a certain event is triggered.
Therefore, in accordance with this game idea, the main
requirement is to render virtual elements (the ’enemies’)
on the live image stream from the camera. These synthetic
characters have to look as if they really were in the real
world so they must behave properly with camera movements.

There are 4 different enemies in the game, each one
of them with specific reactions and movements: BatGhost
(Figure 7a), has been designed as an example of animation
by parts, with its wings moving independently to provide a
sense of flapping, HulkGhost (Figure 7b) with its blinking
eye is an example of animation using morphing techniques,
EmGhost (Figure 7c) was designed to have an enemy with

Table XI: Frame rates of the AR game.

Milestone GeeksPhone Galaxy S
Test ImPr Syn ImPr Syn ImPr Syn

Static 3.25 15 2.75 8 4.10 35
ImPr deact. 30 21 44

Anim. 2.75 8 2.50 3 3.60 23
ImPr deact. 28 17 41

bouncing capabilities, that could jump over the player, and
SuperGhost (Figure 7d), that moves around the player while
approaching to him. Whenever an enemy is hunted, the
player earns points and extra shoots as a reward. Otherwise,
if the player is hit by the enemy a life is lost. When the
player loses its last life the game ends. Figure 8 shows
some screenshots of the game: an enemy appears when the
associated colour is detected through the camera (Figure 8a),
the settings menu of the application (Figure 8b) and the
colour calibration process (Figure 8c). This calibration is
indispensable to get a right colour-based event triggering
with different devices.

When it comes to rendering the different elements through
OpenGL ES calls, the operating system itself executes these
calls in a different thread, allowing a decoupled execu-
tion [18]. Furthermore, the reuse of memory is a constant
issue in our implementation, preventing the number of
memory allocations as far as possible.

IV. EXPERIMENTAL RESULTS

This section presents the performance achieved by our AR
application. The resulting frame rates are shown in Table XI.
The different columns show the frames per second for image
processing (ImPr) and image synthesis (Syn) in each device.
The results in rows 2 and 4 (ImPr deact.) are obtained
by deactivating the image processing task once an event is
triggered, as described below.

In Motorola Milestone the image processing rate ranges
from 3.25 fps with no visible enemy to 2.75 fps when an
animated (morphing) enemy appears. Besides, the image
synthesis rate falls down from 15 fps to 8 fps with only an
animated model in the scene.

The performance is slightly worse in GeeksPhone One,
with a peak of 2.75 fps for image processing. As can be
seen, the main performance loss is mostly noticeable in the
graphic synthesis. While the stream of images obtained from
the camera is being processed, the performance values of
the graphic synthesis are lower than the ones for Motorola
Milestone in about 50%.

In the case of Galaxy S we have obtained better results,
with a rate of image processing ranging from 3.6 fps to
4.1 fps along with a rate of synthesis of 35 fps for static
models and 23 fps for animated, aspect in which the im-
provement is more appreciable.
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(a)

(b) (c)

Figure 8: Game screenshots: (a) Event detection and triggering (b) Settings menu (c) Color calibration.

On the other hand, the performance loss in the processing
of the image has increased the delay in obtaining new
images from the camera, reaching now about 1 second in
our application.

As commented, once an enemy is discovered it does not
keep still, it moves around the environment. To increase
the frame rate and achieve a good response and fluid
feeling we have stopped the image processing task while
the enemy remains active in the screen. This restricts the
appearance of multiple simultaneous enemies, but allow us
to get an outstanding improvement in the rendering, reaching
about 30 fps in Milestone, 21 fps in GeeksPhone and 44 fps
in Galaxy S, a performance high enough to achieve an
acceptable fluidity in an AR game.

V. CONCLUSIONS

In this work we present a study of the capabilities of
current smartphones in the context of AR applications. Thus,
to test the feasibility of this kind of applications we start
checking the main constraints in the obtaining of data from
the device’s camera. The maximum frame rate we can
obtained is less than 15 fps in the best cases. Including
additional processing, such as colour segmentation, does
not have an appreciable impact in performance. The main
limitation is the latency in the image capture, near to 0.25

seconds in the best case. However, looking at the evolution
of this delay, from about 1 second in the oldest analysed
devices, rounding 0.5 seconds in the mid-range phones and
about 0.25 in the Galaxy S2 with Android v4.0, it seems that
this drawback will be solved in a near future. Besides, using
native code and the NDK seems essential to achieve a good
performance, as the existing software layers are probably
introducing the main performance issues (drawback of being
a multiplatform OS).

Another point in our study has been to analyse the locating
and tracking features of these devices. From our tests we
have concluded that to obtain the device orientation is
relatively simple and reliable. Nevertheless, to guess the
device displacement is really complicated. Calculating it
using the values obtained by the accelerometers is not very
reliable, due to the numerical errors in the computation of the
double integration. Additionally, geolocation systems have
a margin of error too high for our requirements, about 10
meters.

With regard to the rendering of synthetic images with
the OpenGL ES library, we have tested the inclusion of
textures, illumination and transparencies. The performance
achieved in scenes with up to 15K points has been acceptable
for a mid-range smartphone as Motorola Milestone. Adding
models with morphing animation means a loss higher than
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20% each time the number of points is doubled.
As a proof of concept, to show the possibilities within

the AR field of the different smartphones we have analysed,
an interactive AR video game has been implemented. The
performance we have achieved in this application is 3.25
images obtained through the camera per second and 28 fps
in the synthesis of graphics in a mid-high end smartphone
as Motorola Milestone. The results are better in a more
powerful device as Samsung Galaxy S, 4.1 processed images
per second and 35 fps, and appreciably worse in a low-
end device as GeeksPhone One, 2.75 processed images per
second and only 8 fps.

Additionally, it should be pointed out the great influence
that the presence of other running tasks (background and
foreground, e.g., a chat) have in the performance of an
AR application. In this sense, a further analysis of the task
scheduling on Android would be interesting.

As future work, we plan to propose a set of benchmarks
in order to identify graphics processor bottlenecks. This pro-
posal aims to guide programmers to identify the benefits of
potential optimisations. These benchmarks could be a useful
tool to make design decisions in architecture improvements.

Specifically, this proposal is aimed at designing, imple-
menting and testing a set of benchmarks to analyse the
rendering capabilities of Bézier surfaces on an Android
smartphone with the OpenGL ES API. We expect to de-
scribe several hand-tuned Bézier Surfaces rendering in real-
time implementation on Android systems, identifying key
graphics processor performance limitations, enhancements
and tuning opportunities.
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