
166

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Quality Attributes for Web Services: A Model-based Approach for Policy Creation

Alexander Wahl, Bernhard Hollunder, and Varun Sud
Department of Computer Science

Furtwangen University of Applied Science
Furtwangen, Germany

alexander.wahl@hs-furtwangen.de, bernhard.hollunder@hs-furtwangen.de, varun.sud@hs-furtwangen.de

Ahmed Al-Moayed
BI/ HANA Deparment

Adweko GmbH
Walldorf, Germany

ahmed.al-moayed@adweko.com

Abstract—Service-oriented architectures (SOA) define a con-
ceptual framework for the creation and integration of en-
terprise applications. Within an SOA, the core functional-
ity is realized by distributed services, which are typically
composed to support the required business processes. Today,
Web services are the predominant technology to implement
and deploy services in heterogeneous environments. In many
business domains, Web services must exhibit quality of service
(QoS) attributes such as security, performance, scalability, and
accounting. Currently, there is only limited support for the
assignment of QoS attributes to Web services, though. In
this paper, we present a model-based approach for deriving
policies from a QoS model. Our solution covers the modeling
of QoS attributes based on a meta-model for quality attributes,
the generation of a graphical user interface to configure the
modeled QoS attributes, and the transformation into policy
descriptions. Finally, these policies will be assigned to the target
Web services. To highly automate our approach, we apply
techniques from model-driven development such as model-to-
model and model-to-code transformations. As a consequence,
our solution reduces the cost and effort when creating QoS-
aware Web services.

Keywords-Service-oriented architecture; Web services; QoS
meta-model; model-to-model transformation; model-to-code
transformation; WS-Policy.

I. INTRODUCTION

Service-oriented architectures (SOA) refer to a system
architecture that provides applications and software com-
ponents as reusable and interoperable services with well-
defined business functionalities. In most deployment set-
tings, the services must also address non-functional re-
quirements such as security, performance, and accounting
in order to guarantee predefined quality of service (QoS)
attributes the overall business applications must fulfill. As
an enterprise typically refers to a variety of internal and

This is a revisited and substantially augmented version of “An Approach
to Model, Configure and Apply QoS Attributes to Web Services”, which
appeared in the Proceedings of the Sixth International Conference on
Software Engineering Advances (ICSEA 2011) [1].

external service providers, it is crucial to explicitly assign
QoS attributes to the underlying Web services.

In the literature, several policy languages have been
proposed to formally specify QoS attributes for particular
technical or business domains. With the WS-Policy spec-
ification [2], there exists a well-known and widely used
framework for defining QoS attributes for Web services.
Basic building blocks in WS-Policy are so-called assertions,
where a single assertion may represent a domain-specific
capability, constraint or requirement. In order to create valid
WS-Policy descriptions for non-trivial scenarios, technical
knowledge regarding the design of WS-Policy assertions and
the underlying policy grammar is required (see, e.g., [3],
[4]).

However, a developer may not necessarily acquire this
knowledge, but should be enabled to easily assign QoS
attributes to the Web service under development.

In this paper, we present a model-based approach to
specify, configure, and assign QoS attributes to Web ser-
vices. Given a QoS meta-model, the “QoS profile developer”
creates instances of the meta-model, which formalize QoS
attributes for dedicated domains such as security or perfor-
mance. Such models, also called QoS profiles, are reusable
assets and can be applied to different Web services by the
“Web service developer”. By means of model transforma-
tions, a graphical user interface (GUI) is generated, which is
used by the developer to adjust the predefined QoS attributes
for the specific deployment context of the Web service.
Eventually, the refined QoS profiles are automatically trans-
lated into corresponding descriptions of well-known policy
languages such as WS-Policy.

It should be noted that Integrated Development Environ-
ments (IDE) such as Eclipse, NetBeans, and Visual Studio
provide specific project types for the construction of Web
services. These environments automate many activities such
as code compiling, WSDL interface generation, creation
of proxy objects and code deployment. However, currently

167

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

there is only limited support for developing QoS-aware
Web services, i.e., Web services with well-defined QoS
attributes. In particular, these environments are either hard
to extend or are restricted to certain policy domains such
as WS-SecurityPolicy [5] and WS-ReliableMessaging [6].
To our best knowledge, there is no framework covering the
following features:

• A simple, but powerful QoS meta-model for formaliz-
ing arbitrary QoS attributes.

• An easy way to create QoS profiles (i.e., collections of
QoS attributes) for Web services.

• The automatic creation of a graphical user interface,
which allows the developer to configure the modeled
QoS attributes for each designated Web service.

• Automatic transformation of the configured QoS profile
into equivalent policy descriptions.

• Assignment of the created policy description to the Web
service under development.

In this work, we elaborate the conceptual and technical
foundations of such a framework. We also describe our
proof of concept implementation, which demonstrates the
feasibility of the approach. Our solution is a further step to
reduce the developing effort and the costs of creating QoS-
aware Web services.

This paper is structured as follows. The next section
describes the problem addressed in this paper in more detail
and sketches our solution strategy. After introducing the
solution architecture in Section III, the successive sections
focus on particular elements: Section IV introduces the QoS
meta-model followed by the QoS profile (Section V) and
the graphical user interface for configuring QoS attributes
(Section VI and VII). In Section VIII, the generation of
policy descriptions is elaborated. A description of the proof
of concept implementation is given in Section IX. Then,
a discussion on related work (Section X) and future work
(Section XI) is given, followed by a conclusion.

II. PROBLEM DESCRIPTION AND SOLUTION STRATEGY

Developing QoS-aware Web services is a strenuous task
for Web service developers. Typically, QoS attributes are
hardcoded into the Web service business logic increasing
code complexity. Implementing QoS attributes in the source
code also decrease the degree of reusability of Web service
for different deployment settings and flexibility to react
on changing QoS requirements. Web service developers
explicitly require knowledge of policy languages, e.g., WS-
Policy, to create and apply policies to Web services. They
also require knowledge of associated policy grammars such
as policy-domain specific tags, elements, nesting rules, rules
of operations and operators and policy expression creation
rules. Such knowledge is not always available to the Web
service developers. Currently available solutions and support
to create and apply QoS attributes to the Web services are

either limited to certain domains or specific to development
environments.

In this paper, we present an approach to answer the
following questions and challenges that emerge with such
QoS-aware Web services:
• Is it possible to model, configure and apply not only

standardized QoS attributes but also project specific
QoS attributes to Web services in an easy, extendable
and flexible manner?

• Is there a solution to enable quick development of QoS-
aware Web services irrespective of the Web service
implementation language, business logic and policy
domains?

• Moreover, is there a solution to handle and enable
frequent changes in business requirements with respect
to non-functional requirements?

• Can the time, complexity and effort in designing,
modeling, creating and applying QoS attributes to the
Web services be reduced?

This paper offers a solution, a tool chain, which automates
and simplifies modeling, configuring and applying of QoS
attributes to Web services. Figure 1 describes the working
of our proposed solution with the actors, components and
processes involved.

Figure 1. Use case diagram describing our solution strategy.

As shown in the figure, there are two distinctive roles: the
QoS profile developer and Web service developer performing
their concerned tasks. QoS profile developer uses the QoS
meta-model to create a so-called QoS profile, which forms a
reference between the Web services and the QoS attributes.
Examples of such QoS profiles are security profile and
performance profile for a Web service.

By undergoing certain set of transformations, a GUI is
generated from a QoS profile. Web service developer now
interacts with the generated GUI to create a refined QoS
profile based on certain business requirements. The Web

168

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. An approach to model, configure and apply QoS attributes to Web services.

service developer later assigns the refined QoS profile to
the concerned Web service.

Refined QoS profile follows a set of transformations to
create a policy model. Policy model is the starting point to
produce policy descriptions to be integrated into the Web
services to finally generate QoS-aware Web services. By
introducing this solution strategy, we can answer the ques-
tions described in the problem description in the following
manner:

• QoS meta-model component allows modeling, config-
uring and applying QoS attributes of not only standard-
ized but also project specific QoS attributes in an easy
extendable and flexible manner.

• QoS meta-model, QoS profile, refined QoS profile and
policy model are components of the solution strategy.
QoS profile, refined QoS profile and policy model
undergo transformations to generate business specific
solutions.

• The mentioned transformations also allow re-
processing of new technical and business specifications
at different components of the solution strategy.

• Separating the tasks of QoS profile developer and Web
service developer reduces the effort, time and complex-
ity of designing, modeling, creating and applying QoS
attributes to Web services.

III. APPROACH

Figure 2 shows the solution architecture in more details
describing our approach. The first component is the QoS
meta-model (see (1) in Figure 2). It describes exactly how
the QoS profiles are created. It is simple, extensible, easy to
understand and expressive enough to model arbitrary QoS
attributes.

The second component is the QoS profile (see (2) in
Figure 2), which is an instance of QoS meta-model. It offers
the QoS profile developer a way to model QoS attributes
within QoS categories that are already defined in the QoS
meta-model. As we will see in Section VII, with this meta-
model, we will be able to model different QoS attributes
including QoS attributes such as reliable messaging and
performance.

Once a QoS profile has been instantiated, the third compo-
nent of the solution, a GUI is generated (see (3) in Figure 2)
based on certain transformation rules. The transformations
process essential information from the QoS profile and
depending on the elements in the QoS profile generate the
GUI. The main purpose of the GUI is to provide Web service
developer an interface to refine and configure available QoS
profiles. For example, a Web service developer can choose
and specify specific encryption algorithm for a QoS security
profile.

169

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

After a successful user interaction with the GUI, the forth
component of the solution, i.e., a refined QoS profile (see
(4) in Figure 2) is obtained. The refined QoS profile is
the actualized version of the QoS profile, which is again
transformed into the policy representation, i.e., the fifth
component of the solution (see (5) in Figure 2). The policy
model is the final step towards applying QoS attributes as
policies to Web services.

In general, there are six transformations taking place from
QoS profile to policy model generation:
(a) An automated transformation from QoS profile to plat-

form independent GUI model (GUI PIM). This enables
easy extension of the solution to different GUI technolo-
gies such as Swing, SWT and WPF.

(b) An automated transformation from GUI PIM to platform
specific GUI model (GUI PSM). GUI PSM is specific
to modelled QoS attributes.

(c) An automated transformation from GUI PSM to plat-
form specific GUI code.

(d) An automated transformation from refined QoS profile
to platform independent policy model (Policy PIM). This
enables easy extension of the solution to different policy
formalisms such as WS-Policy [2] and XACML [7].

(e) An automated transformation from Policy PIM to plat-
form specific policy model (Policy PSM). Policy PSM is
specific to a policy domain selection of which is based
on project or business requirements.

(f) An automated transformation from platform specific
Policy model to platform specific policy description. The
transformation reduces complexity, time and effort to
generate policy descriptions.

In the next sections, we will describe the components shown
in Figure 2 in more details.

IV. QOS META-MODEL

There are several QoS meta-model proposals which can
be used to define and apply QoS profiles for Web services.
Malfatti [8] introduced a suitable meta-model for our ap-
proach. Figure 3 shows the QoS meta-model used in our
solution which is a slightly modified version of Malfatti. It
is extensible and expressive enough to model standardized
and arbitrary QoS attributes. The meta-model is created in
Eclipse Modeling Framework (EMF-core), a powerful tool
for designing models and their runtime support [9]. QoS
profile developer uses this QoS meta-model to instantiate
QoS profiles with QoS attributes. The basic elements of the
QoS meta-model are:
• Service: Name of the Web service to apply poli-

cies. The Web service can have zero or more
QoSCategory elements.

• QoSCategory: Defines categories with which quality
criterions are grouped. Examples of a QoSCategory
could be security, reliability and performance. Each
QoSCategory has one or more QoSParameters.

• QoSParameter: It describes the quality criterions,
e.g., Inactivitytimeout is a QoSParameter
for reliability category. Each QoSParameter has
exactly one QoSAgreedValue and a QoSMetric
associated with it.

• QoSAgreedValue: The value of the criterion is
defined in this element, e.g., the value 20 for
Inactivitytimeout. This element can also be
extended with QoSProperty elements.

• QoSMetric: This element specifies a unit with
which the value of QoSAgreedValue element is
measured e.g., “seconds” for the QoSAgreedValue
20 which is associated with the QoSParameter
Inactivitytimeout.

Figure 3. QoS meta-model.

The meta-model enables the QoS profile developer to
model QoS attributes for Web services for different business
domains. The following changes were made in the meta-
model to the meta-model proposed in [8]:
• The Category attribute in the QoSParameter was

modified to include only predefined values specified in
the enumeration class QoSCategoryName.

• The QoSLevel was not considered in this work since
the modeled QoS is always fulfilled.

Our meta-model is built using EMF (Core) [9], a modeling
framework and code generation facility, which is used to
build tools and applications based on a structured data
model.

V. QOS PROFILE

QoS profile developer uses QoS meta-model to define and
create QoS profiles. A QoS profile is an instance of the meta-
model for a specific non-functional business requirement
coupled with corresponding QoS criterions in default state
or value. All the values of QoS attributes defined by QoS
profile developer in QoS profiles are default values that

170

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

could be used by Web service developer while applying
QoS attributes to the Web service. Web service developer
can also change or configure the QoS attributes’ values to
fit business or project requirements while applying them
to the Web service. Hence, QoS profiles are used by Web
service developers during development to provide concrete
QoS attribute values and apply them to their Web services
as policies. Following, we will model three QoS profiles
to demonstrate the flexibility of the meta-model. We will
present a standardized QoS attribute from the WS-* family
and introduce two non-standardized QoS profiles.

The first QoS attribute is from WS-ReliableMessaging.
Figure 4 models QoS attributes described as a RM policy
assertion example in [6], Section 2.4. In this example,
RQoSAgreedValue “60000” for the RQoSParameter
InactivityTimeout indicates that if the idle
time exceeds 60000 milliseconds, the sequence will
be considered as terminated by the service endpoint.
RQoSAgreedValue “3000” for RQosParameter
BaseRetransmissionInterval expresses that
an unacknowledged message will be transmitted after
3000 milliseconds. RQoSAgreedValue “200” for
RQoSParameter AcknowledgementInterval
indicates that an acknowledgement could be buffered up to
two-tenths of a second by the RM destination.

Figure 4. QoS profile for reliable messaging.

The second example models a QoS profile, which is
not standardized. A calculator Web service performs arith-
metic operations by accepting the operands and the op-
erators. Figure 5 describes calculator Web service con-
straints for arithmetic operations such as addition and
multiplication whose QoS implementation may differ with
respect to number overflow. The calculator constraints set
minInt and maxInt RQoSParameters for the Web
service class or Web service methods. The minInt and
maxInt RQoSParameters indicate that all the input
and output numbers fall within the range of “0” and
“65535”. qosDataType in RQoSAgreedValue is set to
Integer indicating the data type criterion of the value of
RQoSAgreedValue for the calculator constraint.

Figure 6 shows the third example. It is a performance QoS

Figure 5. QoS profile for calculator example.

profile where ResponseTime and Throughput are QoS
attributes, which are two of the most common used attributes
in order to measure performance. Response time refers to
the duration, which starts from the moment a request is
sent to the time a response is received. Throughput is the
maximum amount of requests that the service provider can
process in a given period of time without having effect on
the performance of the Web service endpoint [10].

Figure 6. QoS profile for performance.

RQoSAgreedValue “10” for RQoSParameter
ResponseTime indicates that the Web service shall
guarantee a response within 10 milliseconds where
Millisecond is defined as RQoSMetric. Similarly,
RQoSParameter Throughput with RQoSAgreedValue
“120” indicates that the Web service will be able to handle
up to 120 request/second without having any change on the
Web service performance. RQoSMetric defines the unit of
measure for RQoSAgreedValue.

VI. GRAPHICAL USER INTERFACE

The graphical user interface enables Web service devel-
opers to configure or refine QoS profiles with new QoS
attributes’ values according to the business requirements. It
is a graphical tool to associate the QoS values of the modeled
QoS attributes.

There are two factors, which decide how the GUI should
look like; the first factor is the QoS profile. The QoS profile

171

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specifies the number of categories and the associated QoS
attributes with their default values. In our approach, every
QoS category is represented by a GUI tab and each tab
shows the QoS attributes of the respective QoS category.
Such a design ensures a user friendly management and
division of QoS attributes based on their categories. For
example, if the QoS profile includes three QoS categories
performance, reliable messaging and calculator constraints,
the QoS profile will be transformed into a GUI, which has
three tabs. Each tab will represent a category. If the QoS
category, e.g., calculator constraint has two QoS attributes,
the QoS category tab on the GUI will represent these two
QoS attributes, i.e., minInt and maxInt with their default
values as shown in Figure 7.

Figure 7. Generated GUI from the QoS profile.

The element QoSMetric helps the GUI engine to deter-
mine, how the QoSAgreedValue shall be presented. For
example, if the QoSMetric indicates that the QoS attribute
is a Number, the GUI engine will use a text field for the
presentation of this attribute.

The second factor is the Web service endpoint. A list of
the Web service methods will be extracted either directly
from the Web service endpoint interface (SEI) or from the
WSDL. Each extracted method has its own list of QoS
attributes. A QoS profile can be associated either to a simple
Web service or a set of Web services, i.e., all Web services
contained in a WSDL description. If, for example, two Web
service methods have two different two different values for
“ResponseTime” values, a policy for each method will be
created. This will result in creating a separate policy for each
selected method. The created policy could also be applied
Web service wide. These possibilities give the Web service
more flexibility and dynamics.

The QoS profile is transformed into the GUI code us-
ing a set of three separate transformation processes. A
model-to-model transformation from QoS profile to GUI
platform independent model (GUI PIM), which introduces
an additional layer of abstraction supporting multiple GUI
platforms, a model-to-model transformation from platform

independent GUI model to platform specific GUI model
(GUI PSM), for a specific GUI technology such as Swing
and SWT and finally a model-to-code transformation from
GUI platform specific model to GUI platform specific
code, which on execution generates the GUI output. Every
transformation is performed based on transformation rules
that are defined using transformation languages. The two
model-to-model transformations described above are based
on the language “Operational Query View Transformation”
(QVTO) [11] while the model-to-code transformation is
based on “Xpand2” [12].

The transformation from QoS profile to GUI PIM is based
on the mappings between QoS profile elements and the GUI
elements. The GUI elements are defined in a GUI PIM meta-
model, which is used to generate GUI PIM ensuring the
extendibility of the solution to other GUI platforms. The
GUI PIM meta-model is an abstract GUI model consisting
of basic GUI elements. Figure 8 outlines the GUI PIM
meta-model. At the root of the GUI PIM meta-model, is a
GUI element associated with exactly one Frame element in
which all the GUI elements are contained. The next level of
abstraction of the GUI elements is the Container element
which can contain GUIElement. The GUIElement is
another abstract form of basic GUI elements divided un-
der four categories, i.e., ActionElement (e.g., buttons),
OutputElement (e.g., labels), InputElement (e.g.,
text fields) and ChoiceElement (e.g., list box) [13].
The architecture of the GUI meta-model is similar to the
schematics of the QoS meta-model.

Figure 8. GUI PIM meta-model.

The transformation rules ensure a consistent mapping
from different elements of the QoS profile to GUI PIM. Each
of the QoS categories from the QoS profile is defined as
different tabs in GUI. The quality criterion itself is described
with a name, value and a metric representation. Depending
on the complexity of the value element, respective mapping
is performed, for example, on text field or text area.

172

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The transformation from GUI PIM to GUI PSM is also
performed through transformation rules. Essentially, the GUI
PSM is platform specific extension of properties of the GUI
PIM that contains technology specific entities. The GUI
PSM, thus, inherits the elements of GUI PIM and refines
them.

The working example shown in Figure 7 is specific to
Java Swing framework. The mappings of the elements are
performed by simply associating the corresponding elements
from the two models. For example, Java Swing element
JLabel inherits from the label element of the GUI PIM called
Label. Finally from the GUI PSM, the code is generated
through a model-to-code transformation. The mappings of
each element of the QoS model to GUI PIM and further to
Swing specific types are shown in the Figure 9.

Figure 9. Mappings from QoS profile to GUI PIM model and correspond-
ing Swing specific types.

The mapping of GUI PSM (Java Swing) into the Java
Swing code is straight forward since the elements of GUI
PSM bear the same Swing names.

VII. REFINED QOS PROFILE

Web service developer interacts with the generated GUI
to refine the QoS attributes’ values further according to the
business requirements. Hence, the refined QoS profile (see
(4) in Figure 2) is an extended version of the QoS profile
(see (2) in Figure 2) with well-defined values of the QoS
attributes. This component in the solution concept is the first
step in building the policy descriptions for the Web services.
After entering the values to the QoS attributes in the GUI
(see (3) in Figure 2), the refined QoS profile is produced with
the set values to QoS attributes. During this process, GUI
reads the entered values of QoS attributes. QoS elements in
the GUI are searched and matched with the corresponding
attributes modeled in the QoS profile. Finally, a refined QoS
profile is generated with the entered QoS values assigned to
the respective QoS attributes.

Figure 10 shows the refined QoS profile of the calcu-
lator service example mentioned earlier in Figure 5 with
new values to RQoSParameters minInt and maxInt as

“-32768” and “32767” respectively. The new values to
RQoSParameters represent the non-functional requirements
set by the Web service developer over the calculator service.

Figure 10. Refined QoS profile for Calculator.

Refined QoS profile is generated by iterating through
the elements of GUI PSM, extracting the corresponding
elements of QoS profile model with the refined values of
QoS attributes (set via the GUI), reframing the quality
criterions and finally storing the quality criterions in the
refined QoS profile model.

It is of great interest to realize the importance of generat-
ing a refined QoS profile component than directly generating
the policy model. The refined QoS profile provides the
extensibility and flexibility to the generation of policies and
applying them to the Web services. It provides an additional
layer of abstraction to generate the policy descriptions
through policy PIM thereby allowing the solution to extend
to multiple policy languages through policy PSM (see Figure
2). Each QoS profile can then extend the Web service with
profile specific non-functional quality criterions. This also
reduces complexity of integrating multiple profiles into the
Web services.

After successful generation of refined QoS profile from
the GUI, further transformations to policy model take place.
The QoS policy model and the transformations are discussed
in the next section.

VIII. QOS POLICY

As a Web service developer refines the QoS at-
tributes on the GUI, all QoS values are assigned to the
QoSAgreedValue element in the refined QoS profile.
Once the QoS values have been assigned and refined QoS
profile is created, a QoS policy model is generated. If,
for example, every Web service method has different QoS
attributes, a separate policy will be created for every Web
service method. A WS-Policy description may include the
specifications of more than one QoS attribute depending on
the user input in the GUI.

The transformation of the refined QoS profile instance
to policy model can also be divided into three different
transformation processes. A model-to-model transformation

173

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from refined QoS profile to platform independent policy
model (Policy PIM), which introduces an additional layer
of abstraction supporting multiple policy languages. Another
model-to-model transformation from policy PIM to platform
specific policy model (Policy PSM) supporting specific pol-
icy languages such as WS-Policy and XACML. And finally a
model-to-code transformation from policy PSM to platform
specific policy description code. These transformations are
performed based on certain transformation rules that are
also defined using the transformation languages QVTO and
XPand2.

The policy description elements are defined in a policy
PIM meta-model which is similar to the GUI PIM meta-
model described in Section VI. It is used to generate policy
PIM ensuring the extensibility of the solution to other policy
formalisms. The policy PIM meta-model is an abstract policy
model consisting of four basic policy elements outlined as
ServicePolicy, AssertionGroup, Assertion and
Property [14]. Figure 11 describes the policy PIM meta-
model. ServicePolicy is the root element which can
encapsulate any number of AssertionGroup elements as
child elements. AssertionGroups can have any number
of Assertions as child elements. A Property can be
assigned to any of the mentioned elements. A Property
extends an element with additional information.

Figure 11. Policy PIM meta-model.

Once the Web service developer refines the QoS profile
instance with new QoS values using the GUI, the refined
QoS profile to policy PIM transformation process gets
executed. This model-to-model transformation is based on
transformation rules defining the logical mappings between
the elements of refined QoS profile and rolicy PIM. Figure
12 outlines the mappings.

The transformation from policy PIM to policy PSM is
also a model-to-model transformation process. This transfor-
mation process can yield multiple policy language specific
policy PSMs. Once the policy PSM is created, the policy
code is generated via model-to-code transformation XPand2
process.

The following transformation rules are applied to generate
policy PIM from refined QoS profile:

Figure 12. Refined QoS profile to policy PIM mapping.

• The Category attribute in the refined QoS profile
declares the name of the policy. For example, the
category ReliableMessaging is transformed into
a wsrm:RMAssertion element declaring a Reli-
ableMessaging policy.

• The element RQoSParameter in the refined QoS pro-
file declares a QoS attribute. The RQoSParameter el-
ement indicates the reliable messaging quality attribute
InactivityTimeout and is therefore transformed
into wsrm:InactivityTimeout element.

• The element RQoSMetric in the refined QoS
profile declares a property or how the QoS
should be measured. The Milliseconds is
transformed into Milliseconds attribute within the
wsrm:InactivityTimeout element.

• The element RQoSAgreedValue in the refined QoS
profile declares a QoS value. The value “60000” will
be mapped as a value for the QoS attribute.

Listing 1 shows the modeled QoS in Figure 4 after
the transformation into a reliable messaging WS-Policy
assertion.

1<w s p : P o l i c y w su : Id =” R e l i a b l e M e s s a g i n g P o l i c y ”>
2<wsp:Exac t lyOne>
3<w s p : A l l>
4 <w s r m : I n a c t i v i t y T i m e o u t M i l l i s e c o n d s =” 60000 ” />
5 <w s r m : B a s e R e t r a n s m i s s i o n I n t e r v a l
6 M i l l i s e c o n d s =” 3000 ” />
7 <ws rm :Ac kno wl edg em en t In t e r va l
8 M i l l i s e c o n d s =” 200 ” />
9</ w s p : A l l>

10</ wsp :Exac t lyOne>
11</ w s p : P o l i c y>

Listing 1. Reliable messaging WS-Policy description.

Similarly, the WS-Policy descriptions of calculator con-
straint and performance are generated after their profile
transformation into policy assertions. Listing 2 shows the
modeled and refined QoS in Figure 10 after the transforma-
tion into a calculator constraint WS-Policy assertion.

Listing 3 shows the modeled QoS in Figure 6 after
transformation into WS-Policy performance assertion.

Once the policies have been created, policy model (see
(4) in Figure 2) will assign the created policies to the
Web service endpoint interface. There are several ways to
associate a WS-Policy description to a Web service. In our

174

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 <w s p : P o l i c y w su : Id =” C a l c u l a t o r C o n s t r a i n t P o l i c y ”>
2 <wsp:Exac t lyOne>
3 <w s p : A l l>
4 <w s c a l : m i n I n t Number=”−32768”> </ w s c a l : m i n I n t>
5 <w s c a l : m a x I n t Number=” 32767 ”> </ w s c a l : m a x I n t>
6 </ w s p : A l l>
7 </ wsp :Exac t lyOne>
8 </ w s p : P o l i c y>

Listing 2. Calculator service WS-Policy description.

1<w s p : P o l i c y w su : Id =” P e r f o r m a n c e P o l i c y ”>
2<wsp:Exac t lyOne>
3<w s p : A l l>
4 <wsrm:ResponseTime M i l l i s e c o n d s =” 10 ” />
5 <wsrm:Throughput R e q u e s t s / s=” 120 ” />
6</ w s p : A l l>
7</ wsp :Exac t lyOne>
8</ w s p : P o l i c y>

Listing 3. Performance WS-Policy description.

proof of concept, we use the CXF policy [15] engine to
attach the corresponding policy to either the selected Web
service methods or the Web service endpoint interface. CXF
uses the @POLICY annotation to signal the compiler that
there are policies, which should be considered and assigned
to the corresponding Web service while creating its WSDL.

IX. PROOF OF CONCEPT

The solution architecture (Figure 2) discussed in the
previous sections can be instantiated in several ways. For our
proof of concept we have used a Java based infrastructure.
To be precise, the following technologies are used:
• Eclipse IDE - Eclipse Modeling Tools [9].
• QVTO [11] and XPand2 [12] transformation frame-

works.
• Java Swing GUI implementation.
• Apache Tomcat application server [16].
• Apache CXF services framework with WS-Policy sup-

port [15].
Eclipse Modeling Tools facility is used to build tools and

applications based on a structured data model. It provides
a pluggable framework to store the model information and
by default uses XML Metadata Interchange (XMI) format to
preserve the model definition. QoS meta-model in our proof
of concept is based on Eclipse Modeling Tools.

WS-Policy [2] provides a policy language to formally
describe properties of a behavior of Web services. WS-
Policy itself does not come with concrete assertions. Related
specifications introduce domain specific assertions, e.g., WS-
Security for the security domain. The respective specifica-
tions do not only define the syntax, but also the meaning of
the assertions and their impact on the Web services runtime
behavior.

Operational Query View Transformation (QVTO) is used
to create transformation rules for model-to-model transfor-
mations. It is the sublanguage of Query View Transformation
(QVT) [17].

XPand2 is used to perform model-to-code transforma-
tions. XPand2 is administered in Eclipse Modeling Project
(EMP) but has its roots from OpenArchitectureWare Frame-
work. In our proof of concept, XPand2 is used to generate
a Swing based GUI.

Apache CXF is an open source services framework.
Apache CXF helps in building and developing services using
frontend programming APIs, like JAX-WS and JAX-RS.
Apache CXF includes a broad feature set, but it is primarily
focused on supporting Web service standards including WS-
Policy and frontends.

The main purpose of Apache CXF in our example is
WS-Policy support it offers and its possibility to associate
WSDLs with existing WS-Policies through annotations.

This section uses the calculator example mentioned in
this paper to attach quality attributes and to demonstrate the
overall working of the solution.

We begin with Eclipse Modeling Tools and define the QoS
meta-model. QoS profile developer uses and instantiates QoS
meta-model to provide QoS profile. QoS profile for a simple
calculator is generated with two quality attributes, i.e.,
minInt and maxInt. The QoS profile, then, undergoes
two automatic QVTO transformations, i.e., QoS profile to
GUI PIM, and GUI PIM to GUI PSM. Listing 4 shows a
sample transformation rule of QoS profile to GUI PIM.

1 mode l type QOS ’ s t r i c t ’ u s e s
2 QoSSOAMetaModel (’ h t t p : / / qosmetamodel / 1 . 0 ’) ;
3 mode l type GUI PIM ’ s t r i c t ’ u s e s
4 guip immetamodel (’ h t t p : / / guip immetamodel / 1 . 0 ’) ;
5 t r a n s f o r m a t i o n QoS2GUIPIMTransformation
6 (i n qos : QOS, o u t guiPim : GUI PIM) ;
7
8 p r o p e r t y v a l i d a t i o n R e g E x D o u b l e = ’ /\\d + [\\ . | ,]\\ d +/ ’ ;
9 p r o p e r t y v a l i d a t i o n R e g E x I n t e g e r = ’ /\\d +/ ’ ;

10
11 main () {
12 qos . o b j e c t s () [S e r v i c e]−>xmap serv iceToGUI () ;
13 }
14
15 mapping S e r v i c e : : s e r v i c e T o G U I () : GUI
16 when {
17 s e l f . RQoSCategory−>s i z e () > 0 ;
18 }
19 {
20 theFrame : = o b j e c t Frame {
21 name : = s e l f . name + ’ GUI ’ ;
22 } ;
23 . . .
24 . . .
25 . . .

Listing 4. Sample .qvto code for QoS profile to GUI PIM transformation.

The participating models are defined by using the keyword
modeltype. Keyword transformation describes the
source and the target model. The mapping functions are
defined and called from within the main() function, which
is called on the execution of the transformation file. Lines
20-21, for example, add Frame to the GUI. GUI PSM in
our proof of concept is a GUI implementation, which is
generated via transformation rules specific to the Java Swing
environment from the abstract GUI PIM. The transformation

175

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

follows the similar syntax as described for QoS profile
to GUI PIM transformation. Listing 5 shows the sample
transformation.

Once the GUI PSM is generated, the code is created auto-
matically via model-to-code Xpand2 transformation process.
XPand2 template file reads the elements of the GUI PSM
and translates them into Java Swing elements’ code. On
execution, it presents the Web service developer with the
GUI. Figure 7 shows the generated GUI for our proof of
concept calculator example with default values. Web service
developer can interact with the GUI and insert new values
to the quality criterion of calculator example.

1 mode l type GUI PIM ’ s t r i c t ’ u s e s
2 guip immetamodel (’ h t t p : / / guip immetamodel / 1 . 0 ’) ;
3 mode l type GUI PSM ’ s t r i c t ’ u s e s
4 guipsmswingmetamodel (’ h t t p : / / guipsmswingmetamodel / 1 . 0 ’) ;
5 t r a n s f o r m a t i o n GUIPIM2GUIPSMTransformation
6 (i n pim : GUI PIM , o u t psm : GUI PSM) ;
7
8 main () {
9 pim . o b j e c t s () [GUI]−>map guiToGUI () ;

10 }
11
12 mapping GUI::guiToGUI () : GUI {
13 theFrame : = o b j e c t JFrame {
14 name : = s e l f . theFrame . name ;
15 } ;
16 theFrame . g u i E l e m e n t s +=
17 s e l f . theFrame . gu iE lemen t s−>s e l e c t
18 (elem | elem . o c l I s T y p e O f (TabbedPane l))
19 . oclAsType (TabbedPane l)
20 −>map tabbedPane lToJTabbedPane () ;
21
22 theFrame . g u i E l e m e n t s +=
23 s e l f . theFrame . gu iE lemen t s−>
24 s e l e c t (o c l I s T y p e O f (G e n e r i c)) . oclAsType (G e n e r i c)−>
25 map g e n e r i c T o J P a n e l () ;
26 . . .
27 . . .
28 . . .

Listing 5. Sample .qvto code for GUI PIM to Java Swing transformation.

Each generic element from the GUI PIM is mapped with
respective Java Swing GUI element. Lines 16-20 show the
mappings of GUI PIM element TabbedPanel to the corre-
sponding GUI PSM (Java Swing) element JTabbedPane.
Figure 9 shows the mappings of the elements.

The process of generating refined QoS profile is similar
to the process of instantiation of QoS meta-model described
before to generate QoS profile.

The refined QoS profile undergoes two model-to-model
QVTO transformations, i.e., refined QoS profile to policy
PIM and policy PIM to policy PSM as well as a model-to-
code XPand2 transformation from policy PSM to get WS-
Policy code.

Refined QoS profile to policy PIM transformation is simi-
lar to the transformation described above, i.e., QoS profile to
GUI PIM. Listing 6 shows the sample transformation. Lines
19-21 maps the QoSParamaters of a QoSCategory to
respective assertions.

Policy PSM in our proof of concept is WS-Policy spec-
ification. It is generated from the abstract Policy PIM via

1 mode l type QOS ’ s t r i c t ’ u s e s
2 QoSSOAMetaModel (’ h t t p : / / qosmetamodel / 1 . 0 ’) ;
3 mode l type PIM ” s t r i c t ” u s e s
4 ” h t t p : / / webuser . hs−f u r t w a n g e n . de / ˜ p a s s f a l l / PIM” ;
5
6 t r a n s f o r m a t i o n Q o S 2 P o l i c y M o d e l l T r a n s f o r m a t i o n
7 (i n qos : QOS, o u t p o l i c y : PIM) ;
8
9 main () {

10 qos . o b j e c t s () [S e r v i c e]−>
11 xmap S e r v i c e 2 S e r v i c e P o l i c y () ;
12 }
13
14 mapping S e r v i c e : : S e r v i c e 2 S e r v i c e P o l i c y () : S e r v i c e P o l i c y
15 {
16 e v a l u a t i o n A l g o r i t h m : = s e l f . name + ’ P o l i c y ’ ;
17 v a r a s s e r t i o n G r o u p E l e m e n t : =
18 o b j e c t A s s e r t i o n G r o u p {} ;
19 a s s e r t i o n G r o u p E l e m e n t . a s s e r t i o n s +=
20 s e l f . RQoSCategory . RQoSParameter −>
21 xmap P a r a m e t e r 2 A s s e r t i o n () ;
22 a s s e r t i o n G r o u p s += a s s e r t i o n G r o u p E l e m e n t ;
23 . . .
24 . . .
25 . . .

Listing 6. Sample .qvto code for refined QoS profile to policy PIM
transformation.

1 mode l type PIM ” s t r i c t ” u s e s
2 ” h t t p : / / webuser . hs−f u r t w a n g e n . de / ˜ p a s s f a l l / PIM” ;
3 mode l type WSP ” s t r i c t ” u s e s
4 ” h t t p : / / webuser . hs−f u r t w a n g e n . de / ˜ p a s s f a l l / PSMWSPolicy” ;
5 t r a n s f o r m a t i o n PIM2WSP(i n S o u r c e : PIM , o u t T a r g e t : WSP) ;
6
7 h e l p e r f indNamespaces
8 (param : S e t (P I M : : A s s e r t i o n)) : L i s t (WSP::Namespace) {
9

10 v a r n s s : L i s t (WSP::Namespace) ;
11 param−>s w i t c h (s) {
12 c a s e (s . t y p e = ” S i g n e d E l e m e n t s I n d i c a t o r ”) {
13 v a r ns : = o b j e c t Namespace {
14 p r e f i x : = ” sp ” ;
15 u r l : =
16 ” h t t p : / / docs . o a s i s−open . o rg / ws−sx /
17 ws−s e c u r i t y p o l i c y /200702 ” ;
18 } ;
19 . . .
20 . . .
21 . . .
22 }
23
24 main () {
25 Source . o b j e c t s ()
26 [S e r v i c e P o l i c y]−>xmap S e r v i c e P o l i c y T o P o l i c y () ;
27 }
28
29 mapping S e r v i c e P o l i c y : : S e r v i c e P o l i c y T o P o l i c y () : P o l i c y {
30 v a r a s s e r t i o n s : = Source . o b j e c t s O f T y p e (P I M : : A s s e r t i o n) ;
31 namespaces : = f indNamespaces (a s s e r t i o n s) ;
32 a l t e r n a t i v e s += s e l f . a s s e r t i o n G r o u p s−>
33 xmap A s s e r t i o n G r o u p T o A l t e r n a t i v e () ;
34 . . .
35 . . .
36 . . .

Listing 7. Sample .qvto code for policy PIM to WS-Policy transformation.

transformation rules specific to the WS-Policy specifications.
Listing 7 shows the sample transformation. Each generic
element from the Policy PIM is mapped with a respective
WS-Policy specific element. Line 26 is the function call to
ServicePolicytoPolicy function. Line 32 performs the map-
ping of AssertionGroup to WS-Policy Alternative.

176

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13 shows the mappings of the elements.

Figure 13. Policy PIM to WS-Policy mappings.

Once the policy model for WS-Policy is generated, the
application of the policies is attached to the Web service.
Now, Apache CXF policy engine attaches the correspond-
ing policy to either the selected Web service method or
the Web service endpoint interface. Apache CXF uses the
@POLICY annotation to signal the compiler that there are
policies, which should be considered and assigned to the
corresponding Web service while creating the Web service
WSDL.

X. RELATED WORK

In our research for related work, an approach, which
nearly investigates our approach or even a part of it was
not found. Most of the recent works on QoS-aware Web
services focus on QoS-aware Web services compositions.
They investigate methods, algorithm or frameworks in order
to better compose Web services according to their QoS
attribute. Such works could be found in [18]–[20]. In this
section, we will describe papers, which propose either QoS
meta-models or policy editors.

Tondello et al. [21] proposes a QoS-Modeling ontology,
which allows QoS requirements to be specified in order
to fully describe a Web service in terms of quality. How-
ever, this proposal focuses on using QoS specification for
semantic Web service descriptions and Web service search.
This approach, however, contains many variables and many
characteristics in ontology for semantic Web services, which
does not flow in the same direction as this work intends to.

Suleiman et al. [22] addresses the problem with Web
service management policies during design. The authors
presented a solution, which uses a novel mechanism. It
generates WS-Policy4MASC policies from corresponding
UML profiles semi-automatically and feedback information
monitored by the MASC middleware into a set of UML
diagram annotations.

D’Ambrogio [23] introduced a WSDL extension for de-
scribing the QoS of a Web service. It uses a meta-model
transformation according to the MDA standard. The WSDL
meta-model is extended and transformed into a new WSDL
model called Q-WSDL, which supports QoS descriptions.
As D’Ambrogio favour an approach, which does not support

introducing a new additional language on top of WSDL, our
approach uses standards for the description of QoS attributes
in Web services.

WSO2 WS-Policy editor [24] offers an integrated WS-
Policy editor with the WSO2 application server. The editor
offer two policy views: a source view and a design view.
The source view shows the policy in its XML format and
the design view shows the policy as a tree view. The user
will be able to add and remove element to and from the
policy. However, this policy editor only offers support for
WS-Security and WS-ReliableMessaging. A support for new
QoS attributes is not mentioned.

NetBeans [25] offers a graphical tool, which allows users
to graphically configure security and reliable messaging to a
Web service. Extending this tool, however, is complex due to
the lack of documentation and its dependability to NetBeans
API and Glassfish [26].

All these works discuss QoS attributes after the Web
services are developed. Our approach offers a solution to
develop a QoS-aware Web service.

XI. FUTURE WORK

In [27], we presented the design of a comprehensive tool
chain that facilitates development, deployment and testing
of QoS-aware Web services. This paper is a part of the
work presented in the tool chain, which elaborates a concept
for managing quality of service attributes for Web services.
Future works will include different tasks, which will be
individually explained in this section.

In Section VI, we introduced a GUI, which is dynamically
generated depending on the QoS attributes modeled in the
QoS profile described in Section V. However, the generation
of the GUI is platform-specific. This GUI is only a proof
of concept in order to demonstrate the feasibility of this
approach. Our goal is to create a GUI using MDA as a
base for our approach, which will allow the dynamic GUI
generation to different platform.

Section VII indicates that the QoS profile will be trans-
formed to a QoS policy. In this paper, we have only
considered WS-Policy as a policy language in order to prove
that the concept really works. It is the intention of this
approach to offer QoS model transformation support to more
than one policy language. This will increase the flexibility
of our approach.

In [28], we offered a solution architecture, which collects
real time data about applied QoS attributes from the SOA
environment: the purpose of this architecture is to evaluate
the compliance of the entire SOA with the QoS attributes
described in the SOA QoS policy. It is our intention to use
the meta-model mentioned in Section IV for the evaluation
and monitoring of the SOA environment.

This paper presents an approach of how QoS attributes
could be easily modeled and transformed into an adequate
policy language. However, a policy without a handler, which

177

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enforces the policy on the Web service, is only half the
solution. Future works include a repository component,
which is designed to store QoS handlers. This repository
will include handler implementation, handler configurations,
and test cases.

XII. CONCLUSION

The design and implementation of an SOA that contains
QoS attributes is difficult. There are tools and IDEs, which
help developers to ease the process of creating programs,
minimizes their error rates, designing and implementing
such complex systems. But, to create a QoS policy and
conjugate it with a Web service still requires a good
knowledge of its grammar and its mechanism. It is highly
desirable to have tools, which help developers to model QoS
attributes, simplify the configuration and automate applying
QoS attributes to Web services. First steps towards such tools
have been made, but the overall support for developers needs
to be highly improved.

In this paper we presented a tool chain, which increases
the support for two developer roles: QoS profile developer
and Web service developer. The former, by the use of a
generic QoS meta-model, defines QoS profiles for targeted
QoS attributes. The approach thereby support the modeling
of new QoS attributes. From a QoS profile a corresponding
GUI is generated, which supports the Web service developer
to refine the QoS profile, to generate a policy model,
and to apply the corresponding policies to Web services.
Implementation details, like the usage of WS-Policy and
adding necessary annotation in source code, are hidden from
the Web service developer.

Throughout the paper we described the necessary modi-
fications, user interactions and transformations step by step.
At the end, the feasibility of the approach was shown by a
proof of concept.

In summary, the approach is a major step towards an
increased support for constructing QoS-aware Web services.
It eases and unifies the development process and helps to
reduce the error rate, development effort and the overall
costs.

XIII. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
giving us helpful comments.

This work has been supported by the German Ministry
of Education and Research (BMBF) under research contract
017N0709.

REFERENCES

[1] A. Al-Moayed and B. Hollunder, “An approach to model,
configure and apply QoS attributes to web services,” in Pro-
ceedings of the Sixth International Conference on Software
Engineering Advances (ICSEA 2011). Xpert Publishing
Services, 2011, pp. 405–410.

[2] W3C, “Web Services Policy Framework - Version 1.5,”
September 2007, last access: 20.12.2012. [Online]. Available:
http://www.w3.org/TR/ws-policy/.

[3] T. Erl, A. Karmarka, P. Walmsley, H. Haas, U. Yalcinalp,
C. K. Liu, D. Orchard, A. Tost, and J. Pasley, Web Service
contract Design & Versioning for SOA. Prentice Hall, 2009.

[4] B. Hollunder, M. Hüller, and A. Schäfer, “A methodology
for constructing ws-policy assertions,” in Proceedings of the
2nd International Conference on Engineering and Meta-
Engineering (ICEME 2011), 2011, pp. 112–117.

[5] OASIS, “Web Services Security Policy - Version 1.3,”
April 2009, last access: 20.12.2012. [Online]. Available:
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/.

[6] OASIS, “Web Services Reliable Messaging Policy - Version
1.2,” February 2009, last access: 20.12.2012. [Online].
Available: http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.
pdf.

[7] OASIS, “eXtensible Access Control Markup Language
(XACML) Version 2.0,” OASIS, February 2005, last access:
20.12.2012. [Online]. Available: http://docs.oasis-open.org/
xacml/2.0/access control-xacml-2.0-core-spec-os.pdf.

[8] D. Malfatti, “A Meta-Model for QoS-Aware Service Compo-
sitions,” Master’s thesis, University of Trento, Italy, 2007.

[9] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework, E. Gamma, L. Nackman,
and J. Wiegand, Eds. Addison-Wesley Professional, 2008.

[10] E. Kim, Y. Lee, Y. Kim, H. Park, J. Kim, B. Moon, J. Yun, and
G. Kang, “Web service quality factors version 1.0,” OASIS,
Tech. Rep., 2011, last access: 20.12.2012. [Online]. Avail-
able: http://docs.oasis-open.org/wsqm/WS-Quality-Factors/
v1.0/WS-Quality-Factors-v1.0.pdf.

[11] R. Dvorak, “Model Transformation with Opera-
tional QVT,” Borland Software Corporation, 2008,
http://www.eclipse.org/m2m/qvto/doc/M2M-QVTO.pdf, last
access: 20.12.2012. [Online]. Available: http://www.eclipse.
org/m2m/qvto/doc/M2M-QVTO.pdf.

[12] E. Galileo, “Xpand/ Xtend/ Check Reference,” The
Eclipse Foundation, last access: 20.12.2012. [Online].
Available: http://help.eclipse.org/galileo/index.jsp?topic=/org.
eclipse.xpand.doc/help/ch01s06.html.

[13] M. Hermann and A. Hülzenbecher, “M2M-Transformation
zur Generierung einer grafischen Benutzeroberfläche in einem
QoS-SOA Kontext,” Hochschule Furtwangen University,
2011, informatik Journal, Faculty of Informatics.

[14] A. Passfall, T. Rübsamen, and R. Teckelmann, “Modell-
basierte Erzeugung von Policy-Dokumenten,” Hochschule
Furtwangen University, 2011, informatik Journal, Faculty of
Informatics.

[15] “Apache CXF: An Open-Source Services Framework,”
The Apache Software Foundation, last access: 20.12.2012.
[Online]. Available: http://cxf.apache.org/.

178

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] “Apache Tomcat,” The Apache Software Foundation, last
access: 20.12.2012. [Online]. Available: http://tomcat.apache.
org/.

[17] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification,” last access: 20.12.2012. [Online].
Available: http://www.omg.org/spec/QVT/1.0/.

[18] M. H. Agdam and S. Yousefi, “A Flexible and Scalable
Framework For QoS-aware Web Services Composition,” in
Proc. 5th Int Telecommunications (IST) Symp, 2010, pp. 521–
526.

[19] P. Bartalos and M. Bielikova, “QoS Aware Semantic Web Ser-
vice Composition Approach Considering Pre/Postconditions,”
in Proc. IEEE Int Web Services (ICWS) Conf, 2010, pp. 345–
352.

[20] H. Kil and W. Nam, “Anytime Algorithm for QoS
Web Service Composition,” in Proceedings of the 20th
international conference companion on World wide web,
ser. WWW ’11. New York, NY, USA: ACM, 2011,
pp. 71–72, last access: 20.12.2012. [Online]. Available:
http://doi.acm.org/10.1145/1963192.1963229.

[21] G. Tondello and F. Siqueira, “The QoS-MO Ontology
For Semantic QoS Modeling,” in Proceedings of the
2008 ACM symposium on Applied computing, ser. SAC
’08. New York, NY, USA: ACM, 2008, pp. 2336–
2340, last access: 20.12.2012. [Online]. Available: http:
//doi.acm.org/10.1145/1363686.1364239.

[22] B. Suleiman and V. Tosic, “Integration of UML Modeling
and Policy-Driven Management of Web Service Systems,”
in Proc. ICSE Workshop Principles of Engineering Service
Oriented Systems PESOS 2009, 2009, pp. 75–82.

[23] A. D’Ambrogio, “A Model-driven WSDL Extension for De-
scribing the QoS of Web Services,” in Web Services, 2006.
ICWS ’06. International Conference on, sept. 2006, pp. 789–
796.

[24] WSO2, “WSO2 WSAS: The WS-Policy Editor 3.2.0 - User
Guide,” WSO2, April 2010, last access: 20.12.2012.

[25] “NetBeans IDE,” Oracle Corporation, last access: 20.12.2012.
[Online]. Available: http://netbeans.org.

[26] “Glassfish Application Server,” last access: 20.12.2012.
[Online]. Available: http://glassfish.java.net.

[27] B. Hollunder, A. Al-Moayed, and A. Wahl, Performance and
Dependability in Service Computing: Concepts, Techniques
and Research Directions. IGI Global, 2011, ch. A Tool Chain
for Constructing QoS-aware Web Services, pp. 172–188.

[28] A. Wahl, A. Al-Moayed, and B. Hollunder, “An Architec-
ture to Measure QoS Compliance in SOA Infrastructures,”
in Proceedings of the Second International Conferences on
Advanced Service. Los Alamitos, CA, USA: IEEE Computer
Society, 2010, pp. 27–33.

