
Rapid Design of Meta Models

Bastian Roth, Matthias Jahn, and Stefan Jablonski

Chair for Databases & Information Systems

University of Bayreuth

Bayreuth, Germany

{bastian.roth, matthias.jahn, stefan.jablonski} @ uni-bayreuth.de

Abstract - Designing concise meta models manually is a complex

task. Hence, newly proposed approaches were developed, which

follow the idea of inferring meta models from given model

examples. Unlike most approaches in the state of the art, we

accept arbitrary model examples independent of a concrete

syntax. The contained entity instances may have assigned values

to imaginary attributes (i.e., attributes that are not declared

yet). Based on these entity instances and the possessed

assignments, a meta model is derived in a direct way. However,

this meta model is quite bloated with redundant information. To

increase its quality, we provide recommendations for applying

so-called language patterns like inheritance or enumerations.

For this reason, the applicability of those patterns is analyzed

concerning the available information gathered from the

underlying model examples. In addition to our previously

published work, we also support the derivation of meta model

changes based on modifications and extensions of the initial

example models. Furthermore, change recommendations are

provided wherever possible. This new approach for iteratively

building, modifying and refining meta models enables users to

focus on the real world instances. Consequently, they are not

distracted by keeping the meta level in mind and thus are able

to design meta models rapidly.

Keywords - meta model derivation; meta model inference;

derivation of meta model changes; refinement of meta models;

language patterns

I. INTRODUCTION

In [1], we presented an approach how a concise meta
model can be derived from a given set of example models.

The main aim of our work is to support users in defining
domain specific languages (DSLs). In general, a DSL consists
of three important parts: an abstract syntax, a concrete syntax
and a set of semantic rules [2]. The abstract syntax defines
language concepts and how they can be linked together. The
concrete syntax in turn describes a notation for the
visualization of the DSL, whereas the rule set defines the
semantics of concepts of the abstract syntax.

Nowadays, developers of a DSL often tend to describe the
abstract or concrete syntax with meta models [3]. These meta
models are models that specify how their (instance) models
are structured. Creating a meta model and hence a DSL is not
a trivial task, if it has to be done manually. That is why
different methods for developing meta models have been
discovered. The most recent approach is the derivation of meta
models out of some (possibly merely one) example models.

In the following, when talking from a meta model we
always mean the abstract syntax of a DSL. Since it requires a
large set of models, we explicitly do not support inference of
constraint (e.g., based on OCL). Additionally to that, negative
example models are needed as well to avoid
overgeneralization [4], [5]. Negative examples are models,
which expose an invalid scenario in terms of the intended
DSL. In our case, providing such examples is impracticable
because it forces the user to pre-think models that are out of
the regarding domain’s scope.

During the derivation of an abstract syntax, all meta model
artefacts are generated automatically and thus, could differ
from the user’s expectations, especially in terms of quality. In
order to achieve a tolerable degree of quality, the user is
pointed to parts of the meta model with potential of
improvement and also supplied with possible solutions in
form of language patterns (e.g., inheritance or enumerations).
In contrast to design patterns [6], language patterns are
supported by modelling systems themselves and can be
utilized in a direct and simple manner.

The development of a meta model is often driven by the
evolution in understanding of the domain of interest. Hence,
together with the growing knowledge, the meta model often
needs to be adapted to fulfil the domain’s requirements.
Therefore, it is essential that – based on modifications of the
example models – changes within the meta model can be
derived that define how such a meta model have to or may be
adapted to get a concise result again. We call this whole
process of incrementally deriving a meta model and providing
some recommendations for quality improvements “rapid
design of meta models”.

After this introduction, some fundamentals are explained,
which help understanding the later parts of this paper. Then,
an example model is presented that is used for exemplary
explanations through the entire paper. Following this, we
introduce a method how a meta model can be automatically
derived from a given set of such example models. Since this
meta model may have some potential for improvements, in the
subsequent Section V, two algorithms are presented that
detect constellations of meta model elements with the
aforesaid improvement potential. Also, each algorithm
suggests a suitable solution, which can be applied by the user
manually. Beyond tweaking the meta model, example models
may be evolved as well or new ones can be added. Thus, in
Section VI we describe an approach how freely performed
changes at example model side have impacts on an already
existing meta model. Afterwards, an overview of some related

31

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

work is given. Finally, we look out on future challenges in the
field of rapid design of meta models and even whole domain-
specific languages.

II. FUNDAMENTALS

In the following three subsections, we explain some
fundamentals that act as basis for the subsequently presented
rapid design approach.

A. Model Workbench

Model Workbench [7] is a web-based meta modeling
platform that targets on supporting developers for creating
their own modeling language. In contrast to other tools, it
leverages advanced language patterns (e.g., Powertypes [8])
building (meta) models. Its implementation is based on the
Orthogonal Classification [9]. Thus, the system provides a
Linguistic Meta Model (LMM) [10] and interprets (meta)
models at runtime in order to emulate a concrete textual syntax
(called Linguistic Meta Language, LML). Together with that,
Model Workbench is not limited to any number of meta levels
since it is able to manage arbitrary meta model hierarchies.
Therefore, it uses Clabjects [11] as a hybrid of a class and an
object for representing concepts of a model (the term
“concept” means a Clabject throughout the context of Model
Workbench). Hence, a concept always has two different
facets: a type and an instance facet. As a type (also called a
meta concept), a concept defines attributes whereas as an
instance (also called an instance concept), a concept contains
assignments each of which may be associated with an attribute
of an instantiated meta concept.

In general, Model Workbench divides attributes and
assignments into two different classes depending on their
respective type: literal and referential ones. Literal attributes
can have one of the following types: boolean, integer, float,
pointer, string or enumeration. In our understanding,
enumerations are regarded as literal types, too. That is
tolerable because enumerations can also be represented by
integers with a highly restricted range of values. Each defined
concept, however, may be used as a referential type.

B. Modelling modes

Creating instance models based on a given meta model is
a typical use case during modelling. Thereby, the instance
models have to satisfy the constraints specified by the meta
model. We call this kind of modelling the “stringent
(modelling) mode”.

By way of contrast, in context of the “free (modelling)
mode” the constraints of a possibly available meta model are
completely ignored. Accordingly, the LMM as specified in
[12] needs to be expanded by schemalessness. Concretely, it
means to be able to name an instance concept’s type that does
not exist (yet). Additionally, it must be possible to create
assignments to imaginary attributes. An imaginary attribute is
an attribute that is not (yet) declared by a meta concept.

C. Essential assumption on equally named elements

The most important assumption we take is that equally
named elements (types of instance concepts on the one hand,
assignments and attributes on the other hand) always relate to
the same semantic object at domain side. One could imagine
a meta model containing two different concepts, each with
exactly one string attribute labeled as owner. When trying to
make this meta model more concise, both concepts are
deemed to be candidates for generating a common super
concept because of the two equally named attributes.

This assumption is mandatory. Otherwise, neither a meta
model can be derived from one or more example models nor
elements can be identified that exhibit some potential for
improvement. Furthermore, the three inference approaches
presented in Section VII follow a comparable principal.

III. EXAMPLE MODEL

Before introducing the different algorithms for deriving a
meta model, a linguistic example model (Figure 1) is
presented on which we refer to in the following sections. This
model is created freely using the LML as concrete syntax (i.e.,
there is no underlying meta model) and represents a process
for planning a conference attendance. It only serves
demonstration purposes and hence, it does not lay claim to

Figure 1. Example model of a process

32

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

contentual completeness. Since the according syntax (LML)
is quite similar to the one of popular object-oriented
programming languages, it is easy to read for software
developers and modelers.

The process’s flow is as follows. After a suitable
conference has been found, an appropriate travel request
needs to be submitted. Only then, a hotel may be booked and
the journey may be scheduled. In parallel to these two steps,
the researcher can also register at the conference. At any time,
the scientist may inform herself/himself of the concrete topics
covered during the conference.

The successor relationships are reflected in the next

assignments. Furthermore, each task contains a title and

can be equipped with a duration. The individual steps differ
in that they have to be executed electronically
(ElectronicTask), on paper (PaperTask) or besides at an

undetermined time (DetachedTask). For the mentioned

parallel processing, there are the two elements Split and

Join with “and” semantic. The And means that all steps of
both threads have to be completed before the execution can
continue. Finally, there are two further elements, which
determine the process’s start and end points.

A meta model that matches this example process model is
shown in Figure 2. It fulfills important quality criteria
specified by Bertoa and Vallecillo in [13]. Looking at
ElectronicTask, PaperTask, DetachedTask, Start,

And and Exit, it exactly contains those concepts that are used
within the example model (completeness). The same is true

for the three attributes title, duration and next, which
are declared only once and thus, redundancy is avoided.
Moreover, because of the base concepts’ naming – Task and

FlowElement – their intention is obvious (self-
documentation).

The meta model, however, concedes more flexibility as
expressed by the underlying example model. For instance,
DetachedTask is fully unconnected from the whole control
flow, but the meta model states that it is a flow element
nevertheless. The advantage of this additional flexibility is
that when processing detached tasks, in some cases they need
not be handled separately. For example, think about a concrete
graphical syntax, which should be defined for this meta
model. Then, it suffices if one containment mapping is
specified for flow elements to lie within a certain process.

Suchlike assumptions concerning a higher degree of
flexibility cannot be inferred from the example model. They
require a profound knowledge about the particular domain and
how according models are processed. Consequently, the meta
model cannot be generated automatically as depicted by
Figure 2, but it can be approximated to a certain degree.
However, for further refinements, recommendations can be
provided, which hint the user at sets of model elements with
room for improvement. With improvements, we mean
language patterns that can be applied to those model elements.
Further details about this topic can be found in Section V.

FlowElement

-title : string

-duration? : float

Task

ElectronicTask PaperTask Start And Exit

next

**

next

DetachedTask

Figure 2. Meta model which matches exmple process model

Figure 3. Activity diagram of the initial bottom-up algorithm

33

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. DERIVING AN INITIAL META MODEL

In the following, a method (Figure 3) is presented how a
meta model can be derived from a set of example models. This
method is an extension of the algorithm introduced in [1]. It
exhibits some commonalities with the technique described in
[14], but goes deeper into potentially occurring problems as
well as respective solutions.

The algorithm’s input are all instance concepts of the
example models. At first, for each unique type name a separate
meta concept is generated. Afterwards, for each assignment
an associated attribute is created without allocating it to one
of the previously generated concepts. Hereby, the upper
bound of the attribute’s multiplicity can already be
determined. It is set to 1 if only one value is assigned,
otherwise it is set to *. Identifying the attribute’s type is done
using regular expressions. For values that have one of the
literal types boolean, integer, float, pointer (represented by
qualified names) or string, the result is always unambiguous.
However, in case only a qualified name is given, a further
differentiation is required because the value may either
represent another instance concept or an unspecified pointer.
If an instance can be found whose name matches the assigned
value, then the attribute type is set to the meta-concept of this
instance. Otherwise, the attribute is declared as a pointer
attribute.

After that, for every meta concept, sets of equally-named
attributes are computed that act as base for the actual attribute
declaration within the particular meta concept. Which

attribute belongs to which meta concept can be ascertained by
considering the underlying instance concepts.

For the example shown in Figure 1, TABLE I lists the
derived meta concepts as well as the associated sets of
equally-named attributes. In respect of a better traceability, the
table also contains the underlying instance concepts together
with the attributes inferred from the respective assignments.
After the computation of the attribute sets, all attributes of
each set are merged to one single attribute, which then is
added to the particular meta concept. Merging attributes is not
a trivial operation. Hence, it is explicated in the next
subsection in more detail.

Finally, the last step checks whether the number of
attributes of the original set is equal to the number of instances
of the particular meta concept. If so, the algorithm terminates.
Elsewise, the number of attributes is smaller than the number
of instance concepts, which results in denoting the attribute as
optional.

A. Merging attributes

Merging attributes is the central activity when deriving a
meta model because in doing so, the information and
constraints stemming from different attributes are combined
to one single attribute. This way, the domain knowledge
obtained from the model examples is consolidated by
considering the attribute’s name, type and multiplicity. Since
all attributes of the source set have the same name, it is
adopted by the resulting attribute.

TABLE I. DERIVED META CONCEPTS WITH RESPECITVE ATTRIBUTE SETS

Meta concepts Instance concepts Attributes Attribute sets

Start S next: ElectronicTask { next: ElectronicTask }
ElectronicTask Search title: string

duration: integer
next: PaperTask

{ title: string, title: string, title:
string, title: string }

{ duration: integer, duration: float,
duration: float }

{ next: PaperTask, next: And, next:
ElectronicTask, next: And }

Register title: string
duration: float
next: And

Booking title: string
next: ElectronicTask

Organize title: string
duration: float
next: And

PaperTask Request title: string
duration: float
next: And

{ title: string }
{ duration: float }
{ next: And }

And Split next[]: ElectronicTask { next[]: ElectronicTask, next: Exit }
Join next: Exit

DetachedTask Inform title: string
duration: integer

{ title: string }
{ duration: integer }

Exit E

 Boolean Integer Float Pointer String

Boolean false / true 0 / 1 0 / 1 - "false" / "true"

Integer - 3 / -2 3 / -2 - "3" / "-2"

Float - - 0.5 / -3e6 - "0.5" / "-3e6"

Pointer - - X1 / A.B.c "X1" / "A.B.c"

TABLE II. SUPPORTED LITERAL DATA TYPES WITH CONVERSION EXAMPLES

34

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Merging attributes’ multiplicities
During the merging step, for multiplicities merely two

values need to be regarded, namely 1 and 1..*. The
multiplicity of an initially created attribute is set to 1 if the
underlying assignments embraces exactly one value. In case
of several values, the multiplicity is set to 1..*. Thus, when
merging attributes only the multiplicity’s upper bound can be
determined. Thereby, the maximum value range is adopted
(i.e., 1..* is preferred). Applied to the example from TABLE

I, it means that the attribute set next of meta concept And
leads to the multiplicity 1..*.

The lower bound is addressed in a downstream step. It
only is set to 0 if there are more instances of the currently
processed meta concept than attributes in the momentarily
handled attribute set (see the decision node’s successor in
Figure 3). Then, instances exist, which do not possess an
assignment to the current attribute. As an example, take a look
at the duration attribute of ElectronicTask in TABLE I
because it merely appears in three out of four instances.

2) Merging attributes’ types
Conflating the types of attributes is far more complex.

Thereby, literal and referential attributes need to be
distinguished.

Literal attributes as defined by the LMM are attributes
with one of these types: boolean, integer, float, string or
pointer. In case two or more attributes with different literal
types are detected, an automatic type conversion takes place,
which is similar to the one of dynamic programming
languages like JavaScript [15]. Thereby, the type with largest
value range is adopted. Consequently, assigned values from a
smaller value range have to be converted into the taken data
type.

The head row of TABLE II lists all literal data types
whereas the value range grows from left to right. Moreover,
the table contains some conversion examples (from small to
large value ranges). The type pointer occupies a special
position in the context of an automatic type conversion since
a pointer can solely be transformed into a string. Compatibility
to other data types is not given, which results in aborting the
derivation algorithm if such a scenario arises.

In TABLE I, a type conversion is required for the
duration attribute of ElectronicTask since it is two times
declared as float and one time as integer. Because of a larger
value range the resulting type will be float.

If two or more attributes to merge feature different meta
concepts as their type, for typing of the consolidated attribute,
a common meta concept has to be determined as well. This
use case is called Liskov substitution principle and is
characteristically for the language pattern “generalization” /
”inheritance” [16]. In case a common base concept already is
available, it is set as the attribute’s type. Otherwise, a suchlike
base concept needs to be introduced first.

Referred to TABLE I, this affects the attribute sets next

of ElectronicTask and And. As a consequence, for

ElectronicTask, PaperTask and And as well as for

ElectronicTask and Exit a base concept has to be created
respectively. In Figure 4, these base concepts are represented
as ElectronicTaskOrPaperTaskOrAnd and

ElectronicTaskOrExit. The automatic naming happens
by means of concatenating the names of the individual source
concepts, whereas between two names always “Or” is
inserted. Since the diagram shows the initially derived meta
model for the example process model from Figure 1 all
contained attribute sets are already merged and added to the
respective meta concept. The question mark behind a literal
attribute’s name tells it is as an optional one (e.g., duration).

B. Elimination of multiple inheritance

As obvious through Figure 4, the approach presented
above may lead to the introduction of multiple inheritance. In
several cases this is undesired because it carries some
potential risks [17] (e.g., name collision). That is why, an
additional operation can be connected in series with the initial
derivation process that removes multiple inheritance from the
generated meta model. In order to not increasing the meta
model’s complexity artificially, multiple inheritance is
replaced by the language pattern “single inheritance”.

The replacement strategy starts by looking for compounds
of concepts with multiple inheritance. For each such
compound, all base concepts are identified and conflated to
one common base concept using evolution techniques as
described in [18].

The naming is handled equally to the one from above, i.e.,
names are concatenated using a connecting “Or”. In order to
restrict the name’s length a bit, common partial strings are
only quoted once.

Figure 5 depicts the accordingly modified variant of the
meta model from Figure 4. The compound with multiple
inheritance initially consists of ElectronicTask, Exit,

PaperTask, And, ElectronicTaskOrExit and

ElectronicTaskOrPaperTaskOrAndElectronicTaskOrExit

Start

-title : string

-duration? : float

ElectronicTask

-title : string

-duration : float

PaperTask AndExit next

1

next

1

next

1

next 1..*

1

next

1

next

1

next

1..*next

-title : string

-duration : integer

DetachedTask

Figure 4. Initially derived meta model with multiple inheritance

35

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ElectronicTaskOrPaperTaskOrAnd. The two latter
mentioned meta concepts represent the base types, which are
merged into ElectronicTaskOrPaperTaskOrAndOr-

Exit.
Owing to later manual modifications, base concepts could

also contain some attributes that again may result in naming
conflicts. Such attributes have to be merged analogous to the
method described in Section IV.A. Since this may lead again
to more than one base concept per meta concept, the newly
introduced multiple inheritance needs to be eliminated in turn.
At the latest, this cycle terminates when a global base concept
is found, which acts as generalization for all other meta
concepts.

As an alternative to the foregoing strategy, instead of
conflating the base concepts, the generalization hierarchy can
be extended by introducing a super concept for those base
concepts. If the concept compound comprises a big number of
base concepts, it may result in a complex generalization
hierarchy. Because of the large amount of additional concepts,
the comprehensibility and thus the meta model’s quality
suffers [13]. However, the complexity of the meta model is
only increased slightly when pursuing the first mentioned
solution. Consequently, this one is preferred.

V. META MODEL REFINEMENT

Looking at the initially derived meta model in Figure 5,
some parallels to the expected variant in Figure 2 are indeed
obvious, but the automatically generated model contains a
bunch of redundancies, which impair its comprehensibility.
Furthermore, the expected variant comprises already amended
domain knowledge, which lacks the generated result. One
example is the concept Task that specifies as a generalization
which kind of information all tasks must/may provide. In this
concrete case, it is about a task’s title and a time designation
how long a Task instance will take approximately.

Hence, the requirement arises to rebuild the derived result
in a way that it widely corresponds to the expected model.
Since inferred meta models can be much bigger than the ones
shown in this article, it is desirable to point a modelling expert
to constellations of model elements with potential for
optimization. This is contrary to the method presented in [1]
where optimizations are performed automatically by applying
appropriate language patterns. The reason for limiting to
recommendations comes from the amount of different
possible solutions how a meta model may look like to fit a set
of example models.

This becomes clear when looking at Figure 2, Figure 5 and
Figure 6, which all are valid according to the example process
model and only utilize single inheritance as language pattern.
Which one to choose requires additional domain knowledge
that is not available to the derivation engine. However, this
knowledge is availble to the user and hence, (s)he can decide
herself/himself whether to introduce a certain suggested
pattern. Also, focusing on this challenge, we develop a
framework that provides support for user-oriented meta model
evolution [19].

To provide recommendations, we resort to the principle of
equally-named attributes explicated in Section II.B. Thereby,
in a given meta model, sets of concepts are searched, which
declare as many equally-named attributes as possible.
Suchlike sets represent candidates for introducing
generalizing language patterns. The most widespread
generalization pattern is single inheritance. It is addressed in
the first subsection.

Another kind of generalization can be achieved using
enumerations. An enumeration, however, does not relate to
concepts but to literal data types with a limited value range.
The basis are again equally-named attributes. This pattern is
covered within the second subsection.

ElectronicTaskOrPaperTaskOrAndOrExit

Start

-title : string

-duration? : float

ElectronicTask Exit

-title : string

-duration : float

PaperTask And

-title : string

-duration : float

DetachedTask next

1..*

next

1

next

1

next

1

1

next

1

next

1..*

next

1

next

Figure 5. Initially derived meta model with single inheritance

*
nextnext

*-title : string

-duration? : float

Task FlowSource FlowTarget

ElectronicTask PaperTask Start And Exit

-title : string

-duration : float

DetachedTask

Figure 6. Alternative meta model with single inheritance

36

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Single inheritance as refinement recommendation

In order to provide a refinement recommendation for
applying single inheritance, attributes need to be searched,
which (potentially) have the same meaning. In the following,
we call those attributes “corresponding attributes”. With
regard to Section II.B, two attributes correspond if they
coincide by name and kind (i.e., referential or literal). By
means of an external configuration it can be specified whether
type and multiplicity also have to match such that
correspondence is on hand. As opposed to equally-named
attributes, corresponding attributes are declared by different
meta concepts.

The described correspondence is an equivalence relation,
because it is reflexive (each attributes corresponds to itself),
symmetric (if attribute a corresponds to attribute b then b
corresponds to a, too), and transitive (if attribute a
corresponds to attribute b and attribute b corresponds to c then
a corresponds to c as well). Consequently, the order of
corresponding attributes is irrelevant and thus, it is expedient
to represent them in form of sets.

Referred to the meta model in Figure 5, the following
attribute sets arise as a result if besides the attribute names no
further information is checked on equality:

 { DetachedTask.title: string,

ElectronicTask.title: string,

PaperTask.title: string }

 { DetachedTask.duration: float,

ElectronicTask.duration?: boolean,

PaperTask.duration: boolean }

 { Start.next: ElectronicTask,

ElectronicTask.next[]: ElectronicTask-

OrPaperTaskOrAndOrExit,

PaperTask.next: And, And.next:

ElectronicTaskOrPaperTaskOrAndOrExit }

In case multiplicity is considered as well, the particular
representatives of ElectronicTask of the duration and

next attribute sets are dropped. For it, the duration is
declared as optional while for the other concepts, it is specified
as mandatory. The electronic task’s next attribute, however,
permits to assign multiple values whereas the other concepts
require exactly one successor to be assigned.

A set of corresponding attributes implies that the declaring
concepts of the attributes contained by this set exhibit exactly
one correspondence, namely these attributes. In case of the
first listed set, the three title attributes form a

correspondence (communality) of the concepts Detached-

Task, ElectronicTask and PaperTask. The same is true

for the three duration attributes. Consequently, the three

concepts DetachedTask, ElectronicTask and Paper-

Task possess exactly two communalities, which are
determined by the two sets of corresponding attributes.

The issue of attribute sets with the same correspondences
can be generalized. If two sets of corresponding attributes
have the same size and the declaring concepts of the contained

next title duration

And - -

- DetachedTask DetachedTask

ElectronicTask ElectronicTask ElectronicTask

PaperTask PaperTask PaperTask

Start - -

next title next duration title duration

- - DetachedTask

ElectronicTask ElectronicTask ElectronicTask

PaperTask PaperTask PaperTask

 next title duration

ElectronicTask

PaperTask

1

2

Figure 7. Example for determining dependent sets of corresponding attributes

37

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attributes coincide, then we talk about a dependency between
these attribute sets regarding the common parent concepts.
Analogous to the corresponding attributes, this dependency
relationship constitutes an equivalence relation.

Visualizing this circumstance can be done using tables like
in Figure 7. Thereby, for each set of corresponding attributes,
the first row contains exactly one entry with the common
name of the respectively contained attributes. The rows below
list all those concepts that depend on each other based on the
attribute sets consolidated within the first row. Cells showing
a “-“ are included due to purpose of illustration without any
contentual meaning. Each one of these tables represents a
candidate for applying a generalizing language pattern and
thus for refining the meta model in relation to the concepts and
attributes listed by the table.

At large, in a meta model many such candidates can be
found. Hence, it is important to weight the determined
candidates and recommend them to the user ordered by this
weight. It is defined by the number of dependent sets of
corresponding attributes. As a consequence, a candidate is
better than another one if there is a greater number of such
attribute sets. In case this number is identical for two attribute
sets, the quantity of declaring concepts is considered as
secondary factor. It is justifiable because an in fact occurring
communality is more probable if two or more concepts
overlap in as many points (corresponding attributes) as
possible. In Figure 7, it is the case for the table at the bottom.
This table states that the concepts ElectronicTask and

PaperTask depend on each other concerning the attribute

sets next, title and duration.
The algorithm for determining all refinement candidates is

shown in Figure 8 in form of an activity diagram. It starts with
looking for corresponding attributes in a given collection of
meta concepts. The specific correspondence criteria are
predefined externally by means of an configuration.

The found sets of corresponding attributes are then
converted into a data structure called “dependency tuple”. Its
content is exemplarily depicted by the tables in Figure 7. The
first entry of such a tuple contains the dependent sets of
corresponding attributes and thus, it conforms to the first rows

of the example’s tables. The second entry comprises those
concepts, which declare exactly one attribute of every set of
the first entry. These concepts are located in the other rows of
the example tables. The three sets of corresponding attributes
listed above are equivalent to the first three dependency tuples
(represented as tables) in Figure 7.

The next step creates the initial dependency tuples and
puts it at the beginning of the results list. The results list
contains the refinement candidates, which are identified
during the execution of the algorithm. The tuples are ordered
descending by the quantity of included concepts. Accordingly,
the first entry is always the candidate with the greatest
probability in terms of an in fact occurring communality
within the real world.

If there are at least two dependency tuples, they are
combinated in pairs with formation of intersecting the
declaring concepts. Thereby, dependency tuples are created
only for such intersections, which contain at least two
concepts since elsewise no dependency exists. This
combination step is repeated as long as one tuple is left at a
max. After that, the algorithm terminates and returns a list of
refinement candidates ordered by the weight described above.

Applied to the example depicted by Figure 7, the results
list looks as follows (for reason of clarity, solely the names of
the corresponding attributes are specified):

({next, title, duration},

 {title, duration},

 {next, title},

 {next, duration},

 {next},

 {title},

 {duration})

At first place, it recommends the user to introduce a
common base concept for PaperTask and

ElectronicTask, which declares the three corresponding

attributes next, title and duration. If (s)he does not want
to do that (s)he can look at the next candidate. Based on the
attributes title and duration, it recommends to introduce

a base concept for DetachedTask, PaperTask and

ElectronicTask. This can be continued until the last

dependency tuple is arrived that only rests on duration.

Look for sets of

corresponding

attributes

corresponding

attribute sets

Insert dependency tuple at the

beginning of the global

candidates list

Pairwise creation of intersections

based on the attributes'

declaring concepts

One dependency tuple per

intersection with at least 2 concepts

Convert attribute sets

into dependency

tuples

One dependency

tuple per attribute set

concepts

Candidates in form of a list of

dependency tuples

#tuples
> 1

<= 1

Figure 8. Algorithm for the computation of candidates to apply single inheritance

38

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Enumeration as refinement recommendation

An enumeration represents a data type with a strongly
limited value range [20]. In general, it only consists of a few
literals, which come into question as values for assignments.
Therefore, recommending the introduction of an enumeration
as data type is merely reasonable for corresponding attributes
whose assignments exhibit repeatedly the same values. Owing
to the equal lexical structure of pointers and enumeration
literals, an enumeration can be only intended for pointer
attributes by users. Consequently, in the current context
merely two attributes may correspond to each other if they
feature the same name and are of type pointer.

Additionally, the number of the different values should be
stinted. However, a fix definition of where the border of
“stinted” is exceeded cannot be given because this depends on
the particular operational scenarios as well as the user’s
preferences. Instead, the analysis’s focus lies on the repeated
assignment of the same pointer values to corresponding
attributes. Hence, it will be recommended to introduce an
enumeration if at least two different values are repeatedly
assigned to the same set of corresponding attributes. An
example for a valid scenario is shown by Figure 9. It
represents a model with six instances that all contain an
assignment to the imaginary attribute phase. The derived

meta model only consists of the concept Job, which manifests

the aforementioned attribute phase. Since it is a pointer

attribute and the literal PRE as well as the literal DEFAULT are

used by at least two associated assignments (namely J1, J3,

J5 and J4, J5, respectively), a hint is generated that suggests
to introduce an enumeration.

VI. DERIVING META MODEL CHANGES

When deriving meta model changes, the fundamental
principle is to keep those changes to a minimum. Thus, the
existing meta model only gets adapted insofar that modified
or newly added example models become valid. This is
necessary because users are allowed to commute meta models
arbitrarily. In case an existing meta model is always discarded

and a complete re-generation takes place, all manually
performed modifications would be lost. Which modifications
are performed at the meta model automatically during the
repeated derivation is explicated in the first subsection.

In the second subsection, we seize the idea of
recommendations. Primarily, these recommendations can be
seen as counterparts to the explicit and implicit impacts on the
meta model presented in Section IV and Section V.

A. Required changes

In order to ensure the conformity of the example models
with regards to the meta model, in any case those artefacts of
the models need to be extracted that conflict with the meta
model. Potential for conflicts is carried by the LMM’s parts,
which are extended about schemalessness (Section II.B). On
the one hand, these are type names of concepts and on the
other hand these are names of assignments.

If free modelling mode is enabled, the user may equip new
instance concepts with a type name of a not yet available type
(meta concept). Suchlike instances are handled the same way
as during the initial inference of a meta model (Section IV). A
user may also change a type name of an existing instance
concept, which is already linked with a meta concept, such
that it does not fit with any other available meta concept. Then,
this concept is considered as new, too. Furthermore,
potentially present assignments are broken away from their
underlying attributes. Afterwards, processing can continue in
the same way as with completely new instances.

The free mode enabled, new dynamic assignments (i.e.,
assignments without an underlying attribute) can be created
inside of instance concepts, which already have an associated
meta concept. For every suchlike assignment an appropriate
attribute is generated, but without putting it into a meta
concept. After that, per meta concept sets of equally-named
attributes are determined. Each of these sets is merged to one
attribute and added to a particular meta concept, according to
the method described in Section IV.A. Thereby, an existing
meta concept is expanded by an attribute that matches one or
more dynamic assignments.

Furthermore, assignments with an underlying attribute
may feature arbitrary values on the right side provided that the
respective intention (referential or literal) is not violated.
Assuming that there is an integer attribute with name “height”,
then assignments may be of any other literal type in free mode.
For instance, a meaningful value would be 3.5 although it is
outside the value range of integers. Deriving the according
meta model changes would convert the “height” attribute’s
type to float. Here again, strategies are reused, which have
been introduced for inferring an initial meta model (Section
IV). In case of an underlying literal attribute, a type
conversion occurs towards a larger value range (examples are
depicted by TABLE II). For referential attributes, however, a
common base concept is required, which has to be created if
not yet existent.

In addition, enumeration attributes need to be handled
separately. Valid values are basically pointers that do not
reference another concept. If values are specified without a
suitable enumeration literal, an according literal is generated
and added to the enumeration. Beyond pointers, string values

Job J1

 phase = PRE

Job J2

 phase = POST

Job J3

 phase = PRE

Job J4

 phase = DEFAULT

Job J5

 phase = DEFAULT

Job J6

 phase = PRE

Figure 9. Example model that induces a recommendation for introducing an

enumeration

39

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can also be assigned to enumeration attributes while free
modelling. This, however, leads to converting the underlying
attribute to a string attribute. Besides, all enumeration literals
are converted to strings as well. All other data types are not
permitted and will result in aborting the derivation process in
case they are used.

The presented five cases encompass all possible
modification kinds of instance models that require a
subsequent adaption of the underlying meta model to achieve
validity when modelling stringently.

B. Change recommendations

The different types of change requirements can be divided
into three categories. In the first category there are all
recommendations that affect the value ranges of attributes.
The second category encompasses recommendations to delete
certain concepts of the meta model. The third one contains
those recommendations that refer to a removal of language
patterns. Therewith this class stands inverse to the suggestions
presented in Section V.

1) Narrowing of attribute contraints
During the derivation of attributes all restriction in the

model are softened. This is desirable for reasons of manual
adaption. Instead, under certain circumstances narrowing the
attribute’s multiplicity or type can be recommended. For
recommending the narrowing of an attribute’s multiplicity,
the minimum and maximum have to be handle separately. If
all instances that can define an assignment do have such an
assignment, a change of the minimum from 0 to 1 is
suggested. Furthermore, narrowing the maximum of the
multiplicity can be useful if the current value is * and all
assignments are just single valued.

Dealing with the attribute’s type requires again to
distinguish between literal and referential attributes. A literal
attribute can be checked whether all according assignments
have a lower range than previously defined (TABLE II). In
this case a replacement of the old type with the new literal type

can be recommended. One could imagine that an attribute’s
type is float and all assigned values are within the integer rage.
Hence, a change of the attribute type may be expedient.

Referential attributes can be handled in a similar way.
However, they are tested whether a generalization of their type
can be replaced by a specialization of it. Thereby, all assigned
values have to be checked again. An example would be an
attribute of type ProcessOrAnd. This type has been chosen
because until now only processes and AND gateways have
been assigned. During the next derivation of changes it is
detected that only instances of Process were used as values.

According to that, changing the attribute’s type to Process is
recommended.

2) Concept removal
Based on changed instance models, a sure decision

whether a concept is not needed any longer and thus can be
deleted is hard to make. Every meta concept may be used in a
model repository out of the current scope or needed within a
code-generation step. That is why deleting a meta concept is
not done automatically but could be done by a modelling
expert who is supplied with a recommendation of an
according deletion operation. A typical representative would
be a non-abstract meta concept, which is not instantiated. Such
a concept is a candidate for removal.

3) Revocation of single inheritance
As stated above, the next case can be seen as opposite to

the introduction of language patterns explicated in Section V.
However, it claims for removing meta concepts, which again
may lead to invalid external references. Hence, a model expert
has to decide whether (s)he wants to adapt the model or not.
If an abstract concept has exactly one specialization this
concept is often obsolete. Thus, every concept that fulfils this
constraint is a candidate for inlining into its specialization.
One could imagine that the concept PaperTask (Figure 6)
was removed manually. After that, a hint will be generated
recommending the move of the two attributes title and

Figure 10. Manually modified example model

40

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

duration from Task to the specialization Electronic-

Task and replacing the concept Task by ElectronicTask
afterwards.

C. Example

The example model depicted by Figure 10 largely
represents the same process as shown by Figure 1. Both
models only vary on three user-performed changes, which are
highlighted in Figure 10 using red color. For the original
example, a meta model has already been generated. Also, it
has been adapted by the user so that it corresponds to the
variant from Figure 2. Now, this meta model constitutes the
foundation for deriving changes based on the modifications of
the example model described below.

The first change concerns the Request concept’s

duration assignment that is already bound to a float

attribute. The assignment of the floating point number 0.5 is

replaced by the string "0.5" (fourth issue in Section VI.A).
During the incremental meta model derivation, the type of the
existing literal attribute is widened to string (concept Task in
Figure 11) and all previously assigned values to this attribute
are converted to their string representation. For instance, the
value 1 from Search concept’s duration assignment

becomes "1".
Directly below the modified duration assignment, a new

assignment (waitForReturn) has been added without an
underlying attribute (third issue in Section VI.A). Since it
affects the one and only instance of PaperTask, this meta
concept is simply extended by an appropriate Boolean
attribute.

The third manipulation of the example model affects the
Inform concept. Its type has been changed from

DetachedTask to FreeTask, whereas no corresponding
meta concept exists for the latter. According to the second
issue in Section VI.A, a new meta concept called “FreeTask”
is induced that also receives two attributes title and

duration. As a result, there is no more concept, which

instantiates DetachedTask. For that reason, the system
suggests to the user to delete this concept (as per Section
VI.B.2).

VII. RELATED WORK

As mentioned in the introduction, deriving a meta model
from a set of model examples is not a totally new approach.
Depending on their purpose, the available related work can be
classified into two categories: meta model reconstruction and
meta model creation.

Meta model reconstruction stems from the field of
grammar reconstruction and grammatical inference [21].
Thereby, many textual sentences (ideally positive and
negative samples) are analyzed to infer a grammar [22].

In current research, the Metamodel Recovery System
(MARS) is one prominent representative for meta model
reconstruction [5], [23]. It receives a set of model samples and
transforms them to a representation that can be used by a
grammar inference engine. The output of this engine (a
grammar) is then converted back to an equivalent meta model.
As the title suggests, MARS focuses on the recovery of meta
models (e.g., if a meta model got lost). To obtain a meta
model, which corresponds as much as possible to the original
one, a large number of positive model samples is required.
Otherwise, the resulting meta model is strongly restricted in
its capabilities. Since we mostly receive only one or at least a
small set of model examples this approach is not practicable
for us.

Up to our knowledge, there are three research groups that
generate a meta model by deriving it from very few model
examples. BitKit as one representative has a rather different
intention [24]. Its authors aim at supporting the pre-
requirements analysis of software products by allowing to
model in a freeform way just like with general purpose office
tools. The resulting meta model is merely a means to an end.
Primarily, BitKit semantically combines equally looking
elements by deriving a common associated entity. After a
meta model is inferred and, for instance, the color of such an
element is changed the color of every other (equally looking)
element is adapted accordingly. Due to the office tool
intention of BitKit, the generated meta model is not intended
to be processed in any further way. Consequently, its quality
is not considered as well.

Another approach is proposed in [25]. Like BitKit, it is
also restricted to graphical DSLs. Nevertheless, we adopt their
general idea for applying patterns when inferring a meta
model. That meta model (which represents the abstract syntax
as stated by the author) highly corresponds to the concrete
syntax as well. This correspondence is obvious when
investigating another publication of Cho and Gray. In [26],
they introduce some design patterns well suited for meta
models. However, the presented patterns are very specific for
graphical DSLs and hence not universally valid. That can be
verified when comparing these patterns to the meta models for
visual languages defined in [27]. In contrast to our approach,
they directly apply design patterns wherever possible. Owing
to the visual information, they can resort to additional domain

FlowElement

-title : string

-duration? : string

Task

ElectronicTask

-waitForReturn : boolean

PaperTask Start And ExitDetachedTask

-title : string

-duration : integer

FreeTask

*

nextnext

*

Figure 11. Automatically adapted meta model according to the modified example model

41

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

knowledge, which we do not have on hand. However, our
recommendation framework can also be applied to their meta
models and hint to artefacts of these meta models with
potential for further refinement.

In parallel to our research, a similar approach has been
published in [14]. They infer a meta model from example
models, which are specified using a predefined textual
concrete syntax. From their approach, we adopted the idea of
providing recommendations such that a meta model’s quality
can be increased. Since [14] is rather an overview paper, the
authors do not provide detailed solutions how detection of
recommendations works. In this article, we minimized that
gap and presented some concrete methods how constellations
of meta model elements with potential for refinement can be
identified.

VIII. OUTLOOK

The presented rapid design approach works well for meta
models, which are formulated using a linguistic meta language
as concrete syntax. For entire DSLs, further effort is necessary
since each DSL features its own concrete syntax whose
specification process should also follow the proposed rapid
design principle. For sketching textual concrete syntaxes, we
already published a method in [28].

Our next step is to combine the meta model derivation
approach presented in the current paper with the construction
of custom concrete syntaxes. Beyond textual syntaxes, we
also contemplate to support graphical DSLs.

To conclude, the overall goal is developing a system,
which fosters the rapid design and usage of all artefacts DSLs
consist of. This means that the intended system provides a
seamless integration of free and stringent modelling when
working with meta models and even entire DSLs.

ACKNOWLEDGMENT

This article was authored in the context of the project
“Kompetenzzentrum für praktisches Prozess- und
Qualitätsmanagement” (KpPQ) funded by “Europäischer
Fonds für regionale Entwicklung” (EFRE). So, we thank this
institution, which has kindly facilitated our work.

REFERENCES

[1] B. Roth, M. Jahn, and S. Jablonski, “A method for directly deriving a
concise meta model from example models,” in Proceedings of the 5th
International Conferences on Pervasive Patterns and Applications,
2013, vol. 5, no. 1, pp. 52–58.

[2] T. Clark, P. Sammut, and J. Willans, Applied Metamodelling: A
Foundation for Language Driven Development. CETEVA, 2008, p.
227.

[3] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling
Full Code Generation, 1st ed. John Wiley & Sons, 2008, p. 444.

[4] E. M. Gold, “Language identification in the limit,” Inf. Control, vol.
10, no. 5, pp. 447–474, 1967.

[5] F. Javed, M. Mernik, J. Gray, and B. R. Bryant, “MARS: a metamodel
recovery system using grammar inference,” Inf. Softw. Technol., vol.
50, no. 9–10, pp. 948–968, 2008.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[7] B. Roth and M. Jahn, “Model Workbench,” 2013. [Online]. Available:
http://www.ai4.uni-
bayreuth.de/de/research/projects/003_ModelWorkbench/index.html.
[Accessed: 28-Jan-2013].

[8] J. Odell, Advanced object-oriented analysis and design using UML.
Cambridge University Press, 1998.

[9] C. Atkinson and T. Kühne, “Concepts for comparing modeling tool
architectures,” in Proceedings of the 8th International Conference on
Model Driven Engineering Languages and Systems, 2005, pp. 398–
413.

[10] B. Volz and S. Jablonski, “Towards an open meta modeling
environment,” in Proceedings of the 10th Workshop on Domain-
Specific Modeling, 2010.

[11] C. Atkinson and T. Kühne, “Meta-level independent modelling,” in
Proceedings of the International Workshop on Model Engineering at
14th European Conference on Object-Oriented Programming, 2000,
pp. 12–16.

[12] B. Volz, “Werkzeugunterstützung für methodenneutrale
Metamodellierung,” University of Bayreuth, PhD thesis, 2011.

[13] M. F. Bertoa and A. Vallecillo, “Quality attributes for software
metamodels,” in Proceedings of the 13th TOOLS Workshop on
Quantitative Approaches in Object-Oriented Software Engineering,
2010.

[14] J. Sánchez-Cuadrado, J. De Lara, and E. Guerra, “Bottom-up meta-
modelling: an interactive approach,” in Proceedings of the 15th
International Conference on Model Driven Engineering Languages
and Systems, 2012, pp. 3–19.

[15] D. Flanagan, JavaScript: The Definitive Guide, 6th ed. Sebastopol,
CA: O’Reilly Media, Inc., 2011, p. 1078.

[16] B. Liskov, “Data abstraction and hierarchy,” ACM SIGPLAN Not.,
vol. 23, no. 5, pp. 17–34, 1988.

[17] G. Singh, “Single versus multiple inheritance in object oriented
programming,” ACM SIGPLAN OOPS Messenger, vol. 6, no. 1, pp.
30–39, 1994.

[18] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth, “An
extensive catalog of operators for the coupled evolution of
metamodels and models,” in Proceedings of the 3rd International
Conference on Software Lanugage Engineering, 2010, pp. 163–182.

[19] M. Jahn, B. Roth, and S. Jablonski, “Remodeling to powertype
pattern,” in Proceedings of PATTERNS 2013, 2013, pp. 59–65.

[20] J. Bloch, Effective Java, 2nd ed. Upper Saddle River, New Jersey:
Addison-Wesley Longman, 2008, p. 384.

[21] M. Mernik, D. Hrncic, B. R. Bryant, A. P. Sprague, J. Gray, Q. Liu,
and F. Javed, “Grammar inference algorithms and applications in
software engineering,” in 22th International Symposium on
Information, Communication and Automation Technologies, 2009,
pp. 1–7.

[22] F. King-Sun and T. L. Booth, “Grammatical inference: introduction
and survey - part I,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 8,
no. 3, pp. 343–359, Mar. 1986.

[23] Q. Liu, B. R. Bryant, and M. Mernik, “Metamodel recovery from
multi-tiered domains using extended MARS,” in Proceedings of the
34th IEEE Annual Computer Software and Applications Conference,
2010, pp. 279–288.

[24] M. Desmond, H. Ossher, I. Simmonds, D. Amid, A. Anaby-Tavor, M.
Callery, and S. Krasikov, “Towards smart office tools,” in SPLASH
2010 Workshop on Flexible Modeling Tools, 2010.

[25] H. Cho, J. Gray, and E. Syriani, “Creating visual domain-specific
modeling languages from end-user demonstration,” in ICSE
Workshop on Modeling in Software Engineering, 2012, pp. 22–28.

[26] H. Cho and J. Gray, “Design patterns for metamodels,” in
Proceedings of the SPLASH ’11 Workshops, 2011, pp. 25–32.

[27] P. Bottoni and A. Grau, “A suite of metamodels as a basis for a
classification of visual languages,” in Symposium on Visual
Languages and Human Centric Computing, 2004, pp. 83–90.

42

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] B. Roth, M. Jahn, and S. Jablonski, “On the way of bottom-up
designing textual domain-specific modelling languages,” in

Proceedings of the 2013 ACM Workshop on Domain-Specific
Modeling, 2013, pp. 51–55.

43

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

