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Abstract - Designing concise meta models manually is a complex 

task. Hence, newly proposed approaches were developed, which 

follow the idea of inferring meta models from given model 

examples. Unlike most approaches in the state of the art, we 

accept arbitrary model examples independent of a concrete 

syntax. The contained entity instances may have assigned values 

to imaginary attributes (i.e., attributes that are not declared 

yet). Based on these entity instances and the possessed 

assignments, a meta model is derived in a direct way. However, 

this meta model is quite bloated with redundant information. To 

increase its quality, we provide recommendations for applying 

so-called language patterns like inheritance or enumerations. 

For this reason, the applicability of those patterns is analyzed 

concerning the available information gathered from the 

underlying model examples. In addition to our previously 

published work, we also support the derivation of meta model 

changes based on modifications and extensions of the initial 

example models. Furthermore, change recommendations are 

provided wherever possible. This new approach for iteratively 

building, modifying and refining meta models enables users to 

focus on the real world instances. Consequently, they are not 

distracted by keeping the meta level in mind and thus are able 

to design meta models rapidly. 

Keywords - meta model derivation; meta model inference; 

derivation of meta model changes; refinement of meta models; 

language patterns 

I.  INTRODUCTION 

In [1], we presented an approach how a concise meta 
model can be derived from a given set of example models.  

The main aim of our work is to support users in defining 
domain specific languages (DSLs). In general, a DSL consists 
of three important parts: an abstract syntax, a concrete syntax 
and a set of semantic rules [2]. The abstract syntax defines 
language concepts and how they can be linked together. The 
concrete syntax in turn describes a notation for the 
visualization of the DSL, whereas the rule set defines the 
semantics of concepts of the abstract syntax. 

Nowadays, developers of a DSL often tend to describe the 
abstract or concrete syntax with meta models [3]. These meta 
models are models that specify how their (instance) models 
are structured. Creating a meta model and hence a DSL is not 
a trivial task, if it has to be done manually. That is why 
different methods for developing meta models have been 
discovered. The most recent approach is the derivation of meta 
models out of some (possibly merely one) example models. 

In the following, when talking from a meta model we 
always mean the abstract syntax of a DSL. Since it requires a 
large set of models, we explicitly do not support inference of 
constraint (e.g., based on OCL). Additionally to that, negative 
example models are needed as well to avoid 
overgeneralization [4], [5]. Negative examples are models, 
which expose an invalid scenario in terms of the intended 
DSL. In our case, providing such examples is impracticable 
because it forces the user to pre-think models that are out of 
the regarding domain’s scope. 

During the derivation of an abstract syntax, all meta model 
artefacts are generated automatically and thus, could differ 
from the user’s expectations, especially in terms of quality. In 
order to achieve a tolerable degree of quality, the user is 
pointed to parts of the meta model with potential of 
improvement and also supplied with possible solutions in 
form of language patterns (e.g., inheritance or enumerations). 
In contrast to design patterns [6], language patterns are 
supported by modelling systems themselves and can be 
utilized in a direct and simple manner. 

The development of a meta model is often driven by the 
evolution in understanding of the domain of interest. Hence, 
together with the growing knowledge, the meta model often 
needs to be adapted to fulfil the domain’s requirements. 
Therefore, it is essential that – based on modifications of the 
example models – changes within the meta model can be 
derived that define how such a meta model have to or may be 
adapted to get a concise result again. We call this whole 
process of incrementally deriving a meta model and providing 
some recommendations for quality improvements “rapid 
design of meta models”. 

After this introduction, some fundamentals are explained, 
which help understanding the later parts of this paper. Then, 
an example model is presented that is used for exemplary 
explanations through the entire paper. Following this, we 
introduce a method how a meta model can be automatically 
derived from a given set of such example models. Since this 
meta model may have some potential for improvements, in the 
subsequent Section V, two algorithms are presented that 
detect constellations of meta model elements with the 
aforesaid improvement potential. Also, each algorithm 
suggests a suitable solution, which can be applied by the user 
manually. Beyond tweaking the meta model, example models 
may be evolved as well or new ones can be added. Thus, in 
Section VI we describe an approach how freely performed 
changes at example model side have impacts on an already 
existing meta model. Afterwards, an overview of some related 
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work is given. Finally, we look out on future challenges in the 
field of rapid design of meta models and even whole domain-
specific languages. 

II. FUNDAMENTALS 

In the following three subsections, we explain some 
fundamentals that act as basis for the subsequently presented 
rapid design approach. 

A. Model Workbench 

Model Workbench [7] is a web-based meta modeling 
platform  that targets on supporting developers for creating 
their own modeling language. In contrast to other tools, it 
leverages advanced language patterns (e.g., Powertypes [8]) 
building (meta) models. Its implementation is based on the 
Orthogonal Classification [9]. Thus, the system provides a 
Linguistic Meta Model (LMM) [10] and interprets (meta) 
models at runtime in order to emulate a concrete textual syntax 
(called Linguistic Meta Language, LML). Together with that, 
Model Workbench is not limited to any number of meta levels 
since it is able to manage arbitrary meta model hierarchies. 
Therefore, it uses Clabjects [11] as a  hybrid of a class and an 
object for representing concepts of a model (the term 
“concept” means a Clabject throughout the context of Model 
Workbench). Hence, a concept always has two different 
facets: a type and an instance facet. As a type (also called a 
meta concept), a concept defines attributes whereas as an 
instance (also called an instance concept), a concept contains 
assignments each of which may be associated with an attribute 
of an instantiated meta concept.  

In general, Model Workbench divides attributes and 
assignments into two different classes depending on their 
respective type: literal and referential ones. Literal attributes 
can have one of the following types: boolean, integer, float, 
pointer, string or enumeration. In our understanding, 
enumerations are regarded as literal types, too. That is 
tolerable because enumerations can also be represented by 
integers with a highly restricted range of values. Each defined 
concept, however, may be used as a referential type. 

B. Modelling modes 

Creating instance models based on a given meta model is 
a typical use case during modelling. Thereby, the instance 
models have to satisfy the constraints specified by the meta 
model. We call this kind of modelling the “stringent 
(modelling) mode”. 

By way of contrast, in context of the “free (modelling) 
mode” the constraints of a possibly available meta model are 
completely ignored. Accordingly, the LMM as specified in 
[12] needs to be expanded by schemalessness. Concretely, it 
means to be able to name an instance concept’s type that does 
not exist (yet). Additionally, it must be possible to create 
assignments to imaginary attributes. An imaginary attribute is 
an attribute that is not (yet) declared by a meta concept. 

C. Essential assumption on equally named elements 

The most important assumption we take is that equally 
named elements (types of instance concepts on the one hand, 
assignments and attributes on the other hand) always relate to 
the same semantic object at domain side. One could imagine 
a meta model containing two different concepts, each with 
exactly one string attribute labeled as owner. When trying to 
make this meta model more concise, both concepts are 
deemed to be candidates for generating a common super 
concept because of the two equally named attributes. 

This assumption is mandatory. Otherwise, neither a meta 
model can be derived from one or more example models nor 
elements can be identified that exhibit some potential for 
improvement. Furthermore, the three inference approaches 
presented in Section VII follow a comparable principal. 

III. EXAMPLE MODEL 

Before introducing the different algorithms for deriving a 
meta model, a linguistic example model (Figure 1) is 
presented on which we refer to in the following sections. This 
model is created freely using the LML as concrete syntax (i.e., 
there is no underlying meta model) and represents a process 
for planning a conference attendance. It only serves 
demonstration purposes and hence, it does not lay claim to 

Figure 1. Example model of a process 
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contentual completeness.  Since the according syntax (LML) 
is quite similar to the one of popular object-oriented 
programming languages, it is easy to read for software 
developers and modelers. 

The process’s flow is as follows. After a suitable 
conference has been found, an appropriate travel request 
needs to be submitted. Only then, a hotel may be booked and 
the journey may be scheduled. In parallel to these two steps, 
the researcher can also register at the conference. At any time, 
the scientist may inform herself/himself of the concrete topics 
covered during the conference. 

The successor relationships are reflected in the next 

assignments. Furthermore, each task contains a title and 

can be equipped with a duration. The individual steps differ 
in that they have to be executed electronically 
(ElectronicTask), on paper (PaperTask) or besides at an 

undetermined time (DetachedTask). For the mentioned 

parallel processing, there are the two elements Split and 

Join with “and” semantic. The And means that all steps of 
both threads have to be completed before the execution can 
continue. Finally, there are two further elements, which 
determine the process’s start and end points. 

A meta model that matches this example process model is 
shown in Figure 2. It fulfills important quality criteria 
specified by  Bertoa and Vallecillo in [13]. Looking at 
ElectronicTask, PaperTask, DetachedTask, Start, 

And and Exit, it exactly contains those concepts that are used 
within the example model (completeness). The same is true 

for the three attributes title, duration and next, which 
are declared only once and thus, redundancy is avoided. 
Moreover, because of the base concepts’ naming – Task and 

FlowElement – their intention is obvious (self-
documentation). 

The meta model, however, concedes more flexibility as 
expressed by the underlying example model. For instance, 
DetachedTask is fully unconnected from the whole control 
flow, but the meta model states that it is a flow element 
nevertheless. The advantage of this additional flexibility is 
that when processing detached tasks, in some cases they need 
not be handled separately. For example, think about a concrete 
graphical syntax, which should be defined for this meta 
model. Then, it suffices if one containment mapping is 
specified for flow elements to lie within a certain process. 

Suchlike assumptions concerning a higher degree of 
flexibility cannot be inferred from the example model. They 
require a profound knowledge about the particular domain and 
how according models are processed. Consequently, the meta 
model cannot be generated automatically as depicted by 
Figure 2, but it can be approximated to a certain degree. 
However, for further refinements, recommendations can be 
provided, which hint the user at sets of model elements with 
room for improvement. With improvements, we mean 
language patterns that can be applied to those model elements. 
Further details about this topic can be found in Section V. 

FlowElement

-title : string

-duration? : float

Task

ElectronicTask PaperTask Start And Exit

next

**

next

DetachedTask

Figure 2. Meta model which matches exmple process model 

Figure 3. Activity diagram of the initial bottom-up algorithm 
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IV. DERIVING AN INITIAL META MODEL 

In the following, a method (Figure 3) is presented how a 
meta model can be derived from a set of example models. This 
method is an extension of the algorithm introduced in [1]. It 
exhibits some commonalities with the technique described in 
[14], but goes deeper into potentially occurring problems as 
well as respective solutions. 

The algorithm’s input are all instance concepts of the 
example models. At first, for each unique type name a separate 
meta concept is generated. Afterwards, for each assignment 
an associated attribute is created without allocating it to one 
of the previously generated concepts. Hereby, the upper 
bound of the attribute’s multiplicity can already be 
determined. It is set to 1 if only one value is assigned, 
otherwise it is set to *. Identifying the attribute’s type is done 
using regular expressions. For values that have one of the 
literal types boolean, integer, float, pointer (represented by 
qualified names) or string, the result is always unambiguous. 
However, in case only a qualified name is given, a further 
differentiation is required because the value may either 
represent another instance concept or an unspecified pointer. 
If an instance can be found whose name matches the assigned 
value, then the attribute type is set to the meta-concept of this 
instance. Otherwise, the attribute is declared as a pointer 
attribute.  

After that, for every meta concept, sets of equally-named 
attributes are computed that act as base for the actual attribute 
declaration within the particular meta concept. Which 

attribute belongs to which meta concept can be ascertained by 
considering the underlying instance concepts. 

For the example shown in Figure 1, TABLE I lists the 
derived meta concepts as well as the associated sets of 
equally-named attributes. In respect of a better traceability, the 
table also contains the underlying instance concepts together 
with the attributes inferred from the respective assignments. 
After the computation of the attribute sets, all attributes of 
each set are merged to one single attribute, which then is 
added to the particular meta concept. Merging attributes is not 
a trivial operation. Hence, it is explicated in the next 
subsection in more detail. 

Finally, the last step checks whether the number of 
attributes of the original set is equal to the number of instances 
of the particular meta concept. If so, the algorithm terminates. 
Elsewise, the number of attributes is smaller than the number 
of instance concepts, which results in denoting the attribute as 
optional.  

 

A. Merging attributes 

Merging attributes is the central activity when deriving a 
meta model because in doing so, the information and 
constraints stemming from different attributes are combined 
to one single attribute. This way, the domain knowledge 
obtained from the model examples is consolidated by 
considering the attribute’s name, type and multiplicity. Since 
all attributes of the source set have the same name, it is 
adopted by the resulting attribute. 

 

TABLE I. DERIVED META CONCEPTS WITH RESPECITVE ATTRIBUTE SETS 

Meta concepts Instance concepts Attributes Attribute sets 

Start S next: ElectronicTask { next: ElectronicTask } 
ElectronicTask Search title: string 

duration: integer 
next: PaperTask 

{ title: string, title: string, title: 
string, title: string } 
 
{ duration: integer, duration: float, 
duration: float } 
 
{ next: PaperTask, next: And, next: 
ElectronicTask, next: And } 

Register title: string 
duration: float 
next: And 

Booking title: string 
next: ElectronicTask 

Organize title: string 
duration: float 
next: And 

PaperTask Request title: string 
duration: float 
next: And 

{ title: string } 
{ duration: float } 
{ next: And } 

And Split next[]: ElectronicTask { next[]: ElectronicTask, next: Exit } 
Join next: Exit 

DetachedTask Inform title: string 
duration: integer 

{ title: string } 
{ duration: integer } 

Exit E   

 Boolean Integer Float Pointer String 

Boolean false / true 0 / 1 0 / 1 - "false" / "true" 

Integer - 3 / -2 3 / -2 - "3" / "-2" 

Float - - 0.5 / -3e6 - "0.5" / "-3e6" 

Pointer - -  X1 / A.B.c "X1" / "A.B.c" 

TABLE II. SUPPORTED LITERAL DATA TYPES WITH CONVERSION EXAMPLES 
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1) Merging attributes’ multiplicities 
During the merging step, for multiplicities merely two 

values need to be regarded, namely 1 and 1..*. The 
multiplicity of an initially created attribute is set to 1 if the 
underlying assignments embraces exactly one value. In case 
of several values, the multiplicity is set to 1..*. Thus, when 
merging attributes only the multiplicity’s upper bound can be 
determined. Thereby, the maximum value range is adopted 
(i.e., 1..* is preferred). Applied to the example from TABLE 

I, it means that the attribute set next of meta concept And 
leads to the multiplicity 1..*.  

The lower bound is addressed in a downstream step. It 
only is set to 0 if there are more instances of the currently 
processed meta concept than attributes in the momentarily 
handled attribute set (see the decision node’s successor in 
Figure 3). Then, instances exist, which do not possess an 
assignment to the current attribute. As an example, take a look 
at the duration attribute of ElectronicTask in TABLE I 
because it merely appears in three out of four instances. 

2) Merging attributes’ types 
Conflating the types of attributes is far more complex. 

Thereby, literal and referential attributes need to be 
distinguished. 

Literal attributes as defined by the LMM are attributes 
with one of these types: boolean, integer, float, string or 
pointer. In case two or more attributes with different literal 
types are detected, an automatic type conversion takes place, 
which is similar to the one of dynamic programming 
languages like JavaScript [15]. Thereby, the type with largest 
value range is adopted. Consequently, assigned values from a 
smaller value range have to be converted into the taken data 
type. 

The head row of TABLE II lists all literal data types 
whereas the value range grows from left to right. Moreover, 
the table contains some conversion examples (from small to 
large value ranges). The type pointer occupies a special 
position in the context of an automatic type conversion since 
a pointer can solely be transformed into a string. Compatibility 
to other data types is not given, which results in aborting the 
derivation algorithm if such a scenario arises. 

In TABLE I, a type conversion is required for the 
duration attribute of ElectronicTask since it is two times 
declared as float and one time as integer. Because of a larger 
value range the resulting type will be float. 

If two or more attributes to merge feature different meta 
concepts as their type, for typing of the consolidated attribute, 
a common meta concept has to be determined as well. This 
use case is called Liskov substitution principle and is 
characteristically for the language pattern “generalization” / 
”inheritance” [16]. In case a common base concept already is 
available, it is set as the attribute’s type. Otherwise, a suchlike 
base concept needs to be introduced first. 

Referred to TABLE I, this affects the attribute sets next 

of ElectronicTask and And. As a consequence, for 

ElectronicTask, PaperTask and And as well as for 

ElectronicTask and Exit a base concept has to be created 
respectively. In Figure 4, these base concepts are represented 
as ElectronicTaskOrPaperTaskOrAnd and 

ElectronicTaskOrExit. The automatic naming happens 
by means of concatenating the names of the individual source 
concepts, whereas between two names always “Or” is 
inserted. Since the diagram shows the initially derived meta 
model for the example process model from Figure 1 all 
contained attribute sets are already merged and added to the 
respective meta concept. The question mark behind a literal 
attribute’s name tells it is as an optional one (e.g., duration). 

B. Elimination of multiple inheritance 

As obvious through Figure 4, the approach presented 
above may lead to the introduction of multiple inheritance. In 
several cases this is undesired because it carries some 
potential risks [17] (e.g., name collision). That is why, an 
additional operation can be connected in series with the initial 
derivation process that removes multiple inheritance from the 
generated meta model. In order to not increasing the meta 
model’s complexity artificially, multiple inheritance is 
replaced by the language pattern “single inheritance”. 

The replacement strategy starts by looking for compounds 
of concepts with multiple inheritance. For each such 
compound, all base concepts are identified and conflated to 
one common base concept using evolution techniques as 
described in [18]. 

The naming is handled equally to the one from above, i.e., 
names are concatenated using a connecting “Or”. In order to 
restrict the name’s length a bit, common partial strings are 
only quoted once. 

Figure 5 depicts the accordingly modified variant of the 
meta model from Figure 4. The compound with multiple 
inheritance initially consists of ElectronicTask, Exit, 

PaperTask, And, ElectronicTaskOrExit and 

ElectronicTaskOrPaperTaskOrAndElectronicTaskOrExit

Start

-title : string

-duration? : float

ElectronicTask

-title : string

-duration : float

PaperTask AndExit next

1

next

1

next

1

next 1..*

1

next

1

next

1

next

1..*next

-title : string

-duration : integer

DetachedTask

Figure 4. Initially derived meta model with multiple inheritance 
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ElectronicTaskOrPaperTaskOrAnd. The two latter 
mentioned meta concepts represent the base types, which are 
merged into ElectronicTaskOrPaperTaskOrAndOr-

Exit.  
Owing to later manual modifications, base concepts could 

also contain some attributes that again may result in naming 
conflicts. Such attributes have to be merged analogous to the 
method described in Section IV.A. Since this may lead again 
to more than one base concept per meta concept, the newly 
introduced multiple inheritance needs to be eliminated in turn. 
At the latest, this cycle terminates when a global base concept 
is found, which acts as generalization for all other meta 
concepts. 

As an alternative to the foregoing strategy, instead of 
conflating the base concepts, the generalization hierarchy can 
be extended by introducing a super concept for those base 
concepts. If the concept compound comprises a big number of 
base concepts, it may result in a complex generalization 
hierarchy. Because of the large amount of additional concepts, 
the comprehensibility and thus the meta model’s quality 
suffers [13]. However, the complexity of the meta model is 
only increased slightly when pursuing the first mentioned 
solution. Consequently, this one is preferred. 

V. META MODEL REFINEMENT 

Looking at the initially derived meta model in Figure 5, 
some parallels to the expected variant in Figure 2 are indeed 
obvious, but the automatically generated model contains a 
bunch of redundancies, which impair its comprehensibility. 
Furthermore, the expected variant comprises already amended 
domain knowledge, which lacks the generated result. One 
example is the concept Task that specifies as a generalization 
which kind of information all tasks must/may provide. In this 
concrete case, it is about a task’s title and a time designation 
how long a Task instance will take approximately. 

Hence, the requirement arises to rebuild the derived result 
in a way that it widely corresponds to the expected model. 
Since inferred meta models can be much bigger than the ones 
shown in this article, it is desirable to point a modelling expert 
to constellations of model elements with potential for 
optimization. This is contrary to the method presented in [1] 
where optimizations are performed automatically by applying 
appropriate language patterns. The reason for limiting to 
recommendations comes from the amount of different 
possible solutions how a meta model may look like to fit a set 
of example models. 

This becomes clear when looking at Figure 2, Figure 5 and 
Figure 6, which all are valid according to the example process 
model and only utilize single inheritance as language pattern. 
Which one to choose requires additional domain knowledge 
that is not available to the derivation engine. However, this 
knowledge is availble to the user and hence, (s)he can decide 
herself/himself whether to introduce a certain suggested 
pattern. Also, focusing on this challenge, we develop a 
framework that provides support for user-oriented meta model 
evolution [19]. 

To provide recommendations, we resort to the principle of 
equally-named attributes explicated in Section II.B. Thereby, 
in a given meta model, sets of concepts are searched, which 
declare as many equally-named attributes as possible. 
Suchlike sets represent candidates for introducing 
generalizing language patterns. The most widespread 
generalization pattern is single inheritance. It is addressed in 
the first subsection. 

Another kind of generalization can be achieved using 
enumerations. An enumeration, however, does not relate to 
concepts but to literal data types with a limited value range. 
The basis are again equally-named attributes. This pattern is 
covered within the second subsection. 

ElectronicTaskOrPaperTaskOrAndOrExit

Start

-title : string

-duration? : float

ElectronicTask Exit

-title : string

-duration : float

PaperTask And

-title : string

-duration : float

DetachedTask next

1..*

next

1

next

1

next

1

1

next

1

next

1..*

next

1

next

Figure 5. Initially derived meta model with single inheritance 

*
nextnext

*-title : string

-duration? : float

Task FlowSource FlowTarget

ElectronicTask PaperTask Start And Exit

-title : string

-duration : float

DetachedTask

Figure 6. Alternative meta model with single inheritance 
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A. Single inheritance as refinement recommendation 

In order to provide a refinement recommendation for 
applying single inheritance, attributes need to be searched, 
which (potentially) have the same meaning. In the following, 
we call those attributes “corresponding attributes”. With 
regard to Section II.B, two attributes correspond if they 
coincide by name and kind (i.e., referential or literal). By 
means of an external configuration it can be specified whether 
type and multiplicity also have to match such that 
correspondence is on hand. As opposed to equally-named 
attributes, corresponding attributes are declared by different 
meta concepts. 

The described correspondence is an equivalence relation, 
because it is reflexive (each attributes corresponds to itself), 
symmetric (if attribute a corresponds to attribute b then b 
corresponds to a, too), and transitive (if attribute a 
corresponds to attribute b and attribute b corresponds to c then 
a corresponds to c as well). Consequently, the order of 
corresponding attributes is irrelevant and thus, it is expedient 
to represent them in form of sets. 

Referred to the meta model in Figure 5, the following 
attribute sets arise as a result if besides the attribute names no 
further information is checked on equality: 

 { DetachedTask.title: string, 

ElectronicTask.title: string, 

PaperTask.title: string } 

 { DetachedTask.duration: float, 

ElectronicTask.duration?: boolean, 

PaperTask.duration: boolean } 

 { Start.next: ElectronicTask, 

ElectronicTask.next[]: ElectronicTask-

OrPaperTaskOrAndOrExit,  

PaperTask.next: And, And.next: 

ElectronicTaskOrPaperTaskOrAndOrExit } 

In case multiplicity is considered as well, the particular 
representatives of ElectronicTask of the duration and 

next attribute sets are dropped. For it, the duration is 
declared as optional while for the other concepts, it is specified 
as mandatory. The electronic task’s next attribute, however, 
permits to assign multiple values whereas the other concepts 
require exactly one successor to be assigned. 

A set of corresponding attributes implies that the declaring 
concepts of the attributes contained by this set exhibit exactly 
one correspondence, namely these attributes. In case of the 
first listed set, the three title attributes form a 

correspondence (communality) of the concepts Detached-

Task, ElectronicTask and PaperTask. The same is true 

for the three duration attributes. Consequently, the three 

concepts DetachedTask, ElectronicTask and Paper-

Task possess exactly two communalities, which are 
determined by the two sets of corresponding attributes. 

The issue of attribute sets with the same correspondences 
can be generalized. If two sets of corresponding attributes 
have the same size and the declaring concepts of the contained 

next  title  duration 

And  -  - 

-  DetachedTask  DetachedTask 

ElectronicTask  ElectronicTask  ElectronicTask 

PaperTask  PaperTask  PaperTask 

Start  -  - 

 

 

next title  next duration  title duration 

-  -  DetachedTask 

ElectronicTask  ElectronicTask  ElectronicTask 

PaperTask  PaperTask  PaperTask 

 

 

 next title duration 

ElectronicTask 

PaperTask 

1 

2 

Figure 7. Example for determining dependent sets of corresponding attributes 
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attributes coincide, then we talk about a dependency between 
these attribute sets regarding the common parent concepts. 
Analogous to the corresponding attributes, this dependency 
relationship constitutes an equivalence relation. 

Visualizing this circumstance can be done using tables like 
in Figure 7. Thereby, for each set of corresponding attributes, 
the first row contains exactly one entry with the common 
name of the respectively contained attributes. The rows below 
list all those concepts that depend on each other based on the 
attribute sets consolidated within the first row. Cells showing 
a “-“ are included due to purpose of illustration without any 
contentual meaning. Each one of these tables represents a 
candidate for applying a generalizing language pattern and 
thus for refining the meta model in relation to the concepts and 
attributes listed by the table. 

At large, in a meta model many such candidates can be 
found. Hence, it is important to weight the determined 
candidates and recommend them to the user ordered by this 
weight. It is defined by the number of dependent sets of 
corresponding attributes. As a consequence, a candidate is 
better than another one if there is a greater number of such 
attribute sets. In case this number is identical for two attribute 
sets, the quantity of declaring concepts is considered as 
secondary factor. It is justifiable because an in fact occurring 
communality is more probable if two or more concepts 
overlap in as many points (corresponding attributes) as 
possible. In Figure 7, it is the case for the table at the bottom. 
This table states that the concepts ElectronicTask and 

PaperTask depend on each other concerning the attribute 

sets next, title and duration. 
The algorithm for determining all refinement candidates is 

shown in Figure 8 in form of an activity diagram. It starts with 
looking for corresponding attributes in a given collection of 
meta concepts. The specific correspondence criteria are 
predefined externally by means of an configuration. 

The found sets of corresponding attributes are then 
converted into a data structure called “dependency tuple”. Its 
content is exemplarily depicted by the tables in Figure 7. The 
first entry of such a tuple contains the dependent sets of 
corresponding attributes and thus, it conforms to the first rows 

of the example’s tables. The second entry comprises those 
concepts, which declare exactly one attribute of every set of 
the first entry. These concepts are located in the other rows of 
the example tables. The three sets of corresponding attributes 
listed above are equivalent to the first three dependency tuples 
(represented as tables) in Figure 7. 

The next step creates the initial dependency tuples and 
puts it at the beginning of the results list. The results list 
contains the refinement candidates, which are identified 
during the execution of the algorithm. The tuples are ordered 
descending by the quantity of included concepts. Accordingly, 
the first entry is always the candidate with the greatest 
probability in terms of an in fact occurring communality 
within the real world. 

If there are at least two dependency tuples, they are 
combinated in pairs with formation of intersecting the 
declaring concepts. Thereby, dependency tuples are created 
only for such intersections, which contain at least two 
concepts since elsewise no dependency exists. This 
combination step is repeated as long as one tuple is left at a 
max. After that, the algorithm terminates and returns a list of 
refinement candidates ordered by the weight described above. 

Applied to the example depicted by Figure 7, the results 
list looks as follows (for reason of clarity, solely the names  of 
the corresponding attributes are specified): 

({next, title, duration}, 

 {title, duration},  

 {next, title},  

 {next, duration},  

 {next}, 

 {title}, 

 {duration}) 

At first place, it recommends the user to introduce a 
common base concept for PaperTask and 

ElectronicTask, which declares the three corresponding 

attributes next, title and duration. If (s)he does not want 
to do that (s)he can look at the next candidate. Based on the 
attributes title and duration, it recommends to introduce 

a base concept for DetachedTask, PaperTask and 

ElectronicTask. This can be continued until the last 

dependency tuple is arrived that only rests on duration. 

Look for sets of

corresponding

attributes

corresponding

attribute sets

Insert dependency tuple at the

beginning of the global

candidates list

Pairwise creation of intersections

based on the attributes'

declaring concepts

One dependency tuple per

intersection with at least 2 concepts

Convert attribute sets

into dependency

tuples

One dependency

tuple per attribute set

concepts

Candidates in form of a list of

dependency tuples

#tuples
> 1

<= 1

Figure 8. Algorithm for the computation of candidates to apply single inheritance 
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B. Enumeration as refinement recommendation 

An enumeration represents a data type with a strongly 
limited value range [20]. In general, it only consists of a few 
literals, which come into question as values for assignments. 
Therefore, recommending the introduction of an enumeration 
as data type is merely reasonable for corresponding attributes 
whose assignments exhibit repeatedly the same values. Owing 
to the equal lexical structure of pointers and enumeration 
literals, an enumeration can be only intended for pointer 
attributes by users. Consequently, in the current context 
merely two attributes may correspond to each other if they 
feature the same name and are of type pointer. 

Additionally, the number of the different values should be 
stinted. However, a fix definition of where the border of 
“stinted” is exceeded cannot be given because this depends on 
the particular operational scenarios as well as the user’s 
preferences. Instead, the analysis’s focus lies on the repeated 
assignment of the same pointer values to corresponding 
attributes. Hence, it will be recommended to introduce an 
enumeration if at least two different values are repeatedly 
assigned to the same set of corresponding attributes. An 
example for a valid scenario is shown by Figure 9. It 
represents a model with six instances that all contain an 
assignment to the imaginary attribute phase. The derived 

meta model only consists of the concept Job, which manifests 

the aforementioned attribute phase. Since it is a pointer 

attribute and the literal PRE as well as the literal DEFAULT are 

used by at least two associated assignments (namely J1, J3, 

J5 and J4, J5, respectively), a hint is generated that suggests 
to introduce an enumeration. 

VI. DERIVING META MODEL CHANGES 

When deriving meta model changes, the fundamental 
principle is to keep those changes to a minimum. Thus, the 
existing meta model only gets adapted insofar that modified 
or newly added example models become valid. This is 
necessary because users are allowed to commute meta models 
arbitrarily. In case an existing meta model is always discarded 

and a complete re-generation takes place, all manually 
performed modifications would be lost. Which modifications 
are performed at the meta model automatically during the 
repeated derivation is explicated in the first subsection. 

In the second subsection, we seize the idea of 
recommendations. Primarily, these recommendations can be 
seen as counterparts to the explicit and implicit impacts on the 
meta model presented in Section IV and Section V. 

A. Required changes 

In order to ensure the conformity of the example models 
with regards to the meta model, in any case those artefacts of 
the models need to be extracted that conflict with the meta 
model. Potential for conflicts is carried by the LMM’s parts, 
which are extended about schemalessness (Section II.B). On 
the one hand, these are type names of concepts and on the 
other hand these are names of assignments. 

If free modelling mode is enabled, the user may equip new 
instance concepts with a type name of a not yet available type 
(meta concept). Suchlike instances are handled the same way 
as during the initial inference of a meta model (Section IV). A 
user may also change a type name of an existing instance 
concept, which is already linked with a meta concept, such 
that it does not fit with any other available meta concept. Then, 
this concept is considered as new, too. Furthermore, 
potentially present assignments are broken away from their 
underlying attributes. Afterwards, processing can continue in 
the same way as with completely new instances. 

The free mode enabled, new dynamic assignments (i.e., 
assignments without an underlying attribute) can be created 
inside of instance concepts, which already have an associated 
meta concept. For every suchlike assignment an appropriate 
attribute is generated, but without putting it into a meta 
concept. After that, per meta concept sets of equally-named 
attributes are determined. Each of these sets is merged to one 
attribute and added to a particular meta concept, according to 
the method described in Section IV.A. Thereby, an existing 
meta concept is expanded by an attribute that matches one or 
more dynamic assignments. 

Furthermore, assignments with an underlying attribute 
may feature arbitrary values on the right side provided that the 
respective intention (referential or literal) is not violated. 
Assuming that there is an integer attribute with name “height”, 
then assignments may be of any other literal type in free mode. 
For instance, a meaningful value would be 3.5 although it is 
outside the value range of integers. Deriving the according 
meta model changes would convert the “height” attribute’s 
type to float. Here again, strategies are reused, which have 
been introduced for inferring an initial meta model (Section 
IV). In case of an underlying literal attribute, a type 
conversion occurs towards a larger value range (examples are 
depicted by TABLE II). For referential attributes, however, a 
common base concept is required, which has to be created if 
not yet existent. 

In addition, enumeration attributes need to be handled 
separately. Valid values are basically pointers that do not 
reference another concept. If values are specified without a 
suitable enumeration literal, an according literal is generated 
and added to the enumeration. Beyond pointers, string values 

Job J1 

  phase = PRE 

 

Job J2 

  phase = POST 

 

Job J3 

  phase = PRE 

 

Job J4 

  phase = DEFAULT 

 

Job J5 

  phase = DEFAULT 

 

Job J6 

  phase = PRE 

Figure 9. Example model that induces a recommendation for introducing an 

enumeration 
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can also be assigned to enumeration attributes while free 
modelling. This, however, leads to converting the underlying 
attribute to a string attribute. Besides, all enumeration literals 
are converted to strings as well. All other data types are not 
permitted and will result in aborting the derivation process in 
case they are used. 

The presented five cases encompass all possible 
modification kinds of instance models that require a 
subsequent adaption of the underlying meta model to achieve 
validity when modelling stringently. 

B. Change recommendations 

The different types of change requirements can be divided 
into three categories. In the first category there are all 
recommendations that affect the value ranges of attributes. 
The second category encompasses recommendations to delete 
certain concepts of the meta model. The third one contains 
those recommendations that refer to a removal of language 
patterns. Therewith this class stands inverse to the suggestions 
presented in Section V. 

1) Narrowing of attribute contraints 
During the derivation of attributes all restriction in the 

model are softened. This is desirable for reasons of manual 
adaption.  Instead, under certain circumstances narrowing the 
attribute’s multiplicity or type can be recommended. For 
recommending the narrowing of an attribute’s multiplicity, 
the minimum and maximum have to be handle separately. If 
all instances that can define an assignment do have such an 
assignment, a change of the minimum from 0 to 1 is 
suggested. Furthermore, narrowing the maximum of the 
multiplicity can be useful if the current value is * and all 
assignments are just single valued.  

Dealing with the attribute’s type requires again to 
distinguish between literal and referential attributes. A literal 
attribute can be checked whether all according assignments 
have a lower range than previously defined (TABLE II). In 
this case a replacement of the old type with the new literal type 

can be recommended. One could imagine that an attribute’s 
type is float and all assigned values are within the integer rage. 
Hence, a change of the attribute type may be expedient. 

Referential attributes can be handled in a similar way. 
However, they are tested whether a generalization of their type 
can be replaced by a specialization of it. Thereby, all assigned 
values have to be checked again. An example would be an 
attribute of type ProcessOrAnd. This type has been chosen 
because until now only processes and AND gateways have 
been assigned. During the next derivation of changes it is 
detected that only instances of Process were used as values. 

According to that, changing the attribute’s type to Process is 
recommended.   

2) Concept removal 
Based on changed instance models, a sure decision 

whether a concept is not needed any longer and thus can be 
deleted is hard to make. Every meta concept may be used in a 
model repository out of the current scope or needed within a 
code-generation step. That is why deleting a meta concept is 
not done automatically but could be done by a modelling 
expert who is supplied with a recommendation of an 
according deletion operation. A typical representative would 
be a non-abstract meta concept, which is not instantiated. Such 
a concept is a candidate for removal. 

3) Revocation of single inheritance 
As stated above, the next case can be seen as opposite to 

the introduction of language patterns explicated in Section V.  
However, it claims for removing meta concepts, which again 
may lead to invalid external references. Hence, a model expert 
has to decide whether (s)he wants to adapt the model or not. 
If an abstract concept has exactly one specialization this 
concept is often obsolete. Thus, every concept that fulfils this 
constraint is a candidate for inlining into its specialization. 
One could imagine that the concept PaperTask (Figure 6) 
was removed manually. After that, a hint will be generated 
recommending the move of the two attributes title and 

Figure 10. Manually modified example model 
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duration from Task to the specialization Electronic-

Task and replacing the concept Task by ElectronicTask 
afterwards. 

C. Example 

The example model depicted by Figure 10 largely 
represents the same process as shown by Figure 1. Both 
models only vary on three user-performed changes, which are 
highlighted in Figure 10 using red color. For the original 
example, a meta model has already been generated. Also, it 
has been adapted by the user so that it corresponds to the 
variant from Figure 2. Now, this meta model constitutes the 
foundation for deriving changes based on the modifications of 
the example model described below. 

The first change concerns the Request concept’s 

duration assignment that is already bound to a float 

attribute. The assignment of the floating point number 0.5 is 

replaced by the string "0.5" (fourth issue in Section VI.A). 
During the incremental meta model derivation, the type of the 
existing literal attribute is widened to string (concept Task in 
Figure 11) and all previously assigned values to this attribute 
are converted to their string representation. For instance, the 
value 1 from Search concept’s duration assignment 

becomes "1". 
Directly below the modified duration assignment, a new 

assignment (waitForReturn) has been added without an 
underlying attribute (third issue in Section VI.A). Since it 
affects the one and only instance of PaperTask, this meta 
concept is simply extended by an appropriate Boolean 
attribute. 

The third manipulation of the example model affects the 
Inform concept. Its type has been changed from 

DetachedTask to FreeTask, whereas no corresponding 
meta concept exists for the latter. According to the second 
issue in Section VI.A, a new meta concept called “FreeTask” 
is induced that also receives two attributes title and 

duration. As a result, there is no more concept, which 

instantiates DetachedTask. For that reason, the system 
suggests to the user to delete this concept (as per Section 
VI.B.2). 

VII. RELATED WORK 

As mentioned in the introduction, deriving a meta model 
from a set of model examples is not a totally new approach. 
Depending on their purpose, the available related work can be 
classified into two categories: meta model reconstruction and 
meta model creation. 

Meta model reconstruction stems from the field of 
grammar reconstruction and grammatical inference [21]. 
Thereby, many textual sentences (ideally positive and 
negative samples) are analyzed to infer a grammar [22].  

In current research, the Metamodel Recovery System 
(MARS) is one prominent representative for meta model 
reconstruction [5], [23]. It receives a set of model samples and 
transforms them to a representation that can be used by a 
grammar inference engine. The output of this engine (a 
grammar) is then converted back to an equivalent meta model. 
As the title suggests, MARS focuses on the recovery of meta 
models (e.g., if a meta model got lost). To obtain a meta 
model, which corresponds as much as possible to the original 
one, a large number of positive model samples is required. 
Otherwise, the resulting meta model is strongly restricted in 
its capabilities. Since we mostly receive only one or at least a 
small set of model examples this approach is not practicable 
for us. 

Up to our knowledge, there are three research groups that 
generate a meta model by deriving it from very few model 
examples. BitKit as one representative has a rather different 
intention [24]. Its authors aim at supporting the pre-
requirements analysis of software products by allowing to 
model in a freeform way just like with general purpose office 
tools. The resulting meta model is merely a means to an end. 
Primarily, BitKit semantically combines equally looking 
elements by deriving a common associated entity. After a 
meta model is inferred and, for instance, the color of such an 
element is changed the color of every other (equally looking) 
element is adapted accordingly. Due to the office tool 
intention of BitKit, the generated meta model is not intended 
to be processed in any further way. Consequently, its quality 
is not considered as well. 

Another approach is proposed in [25]. Like BitKit, it is 
also restricted to graphical DSLs. Nevertheless, we adopt their 
general idea for applying patterns when inferring a meta 
model. That meta model (which represents the abstract syntax 
as stated by the author) highly corresponds to the concrete 
syntax as well. This correspondence is obvious when 
investigating another publication of Cho and Gray. In [26], 
they introduce some design patterns well suited for meta 
models. However, the presented patterns are very specific for 
graphical DSLs and hence not universally valid. That can be 
verified when comparing these patterns to the meta models for 
visual languages defined in [27]. In contrast to our approach, 
they directly apply design patterns wherever possible. Owing 
to the visual information, they can resort to additional domain 

FlowElement

-title : string

-duration? : string

Task

ElectronicTask

-waitForReturn : boolean

PaperTask Start And ExitDetachedTask

-title : string

-duration : integer

FreeTask

*

nextnext

*

Figure 11. Automatically adapted meta model according to the modified example model 
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knowledge, which we do not have on hand. However, our 
recommendation framework can also be applied to their meta 
models and hint to artefacts of these meta models with 
potential for further refinement. 

In parallel to our research, a similar approach has been 
published in [14]. They infer a meta model from example 
models, which are specified using a predefined textual 
concrete syntax. From their approach, we adopted the idea of 
providing recommendations such that a meta model’s quality 
can be increased. Since [14] is rather an overview paper, the 
authors do not provide detailed solutions how detection of 
recommendations works. In this article, we minimized that 
gap and presented some concrete methods how constellations 
of meta model elements with potential for refinement can be 
identified.  

VIII. OUTLOOK 

The presented rapid design approach works well for meta 
models, which are formulated using a linguistic meta language 
as concrete syntax. For entire DSLs, further effort is necessary 
since each DSL features its own concrete syntax whose 
specification process should also follow the proposed rapid 
design principle. For sketching textual concrete syntaxes, we 
already published a method in [28]. 

Our next step is to combine the meta model derivation 
approach presented in the current paper with the construction 
of custom concrete syntaxes. Beyond textual syntaxes, we 
also contemplate to support graphical DSLs. 

To conclude, the overall goal is developing a system, 
which fosters the rapid design and usage of all artefacts DSLs 
consist of. This means that the intended system provides a 
seamless integration of free and stringent modelling when 
working with meta models and even entire DSLs. 
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