
Developing Software for Mobile Devices:
How to Do That Best

Invited Panel

Hermann Kaindl(1, Roberto Meli(2, Andreas Kurtz(3, Bernhard Bauer(4, Petre Dini(5
1) TU Wien, Institute of Computer Technology, Vienna, Austria

2)DPO Srl, Italy
3)BMW AG, Integration Electric/Electronics, Software, Munich, Germany

4)University of Augsburg, Institute for Computer Science, Augsburg, Germany
5) Concordia University, Canada | China Space Agency Center, China

Emails: {hermann.kaindl@tuwien.ac.at, roberto.meli@dpo.it, Andreas.Kurtz@bmw.de, bauer@informatik.uni-augsburg.de,

petre@iaria.org}

Abstract—Including computers and applications into mobile
devices creates a major break-through in the applicability of
computing systems and in the impact this had on users and
even the society. While software development has always been
costly and challenging, it is even more challenging for mobile
devices. This raises the important question of how to best
develop software for mobile devices.

Keywords-mobile device; software development; user inter-
face; Apps; testing.

I. INTRODUCTION

Mobile devices are comparably new and have differences
to more traditional computers like mainframes and PCs
(Personal Computers), such as the following:

• Different and possibly adaptive mobile user
interfaces

• Context-aware/context-sensitive mobile
applications

• Ubiquitous interactions, e.g., with wearables

Because of these differences, especially the software
development for mobile devices poses challenges beyond
that of traditional software development. This raises the
important question of how to do that best.

The remainder of this paper is organized in the following
manner. First, automated tailoring of user interfaces for
smartphones and tablet computers is sketched and discussed
in the context of mobile devices. Then, Apps development
for mobile devices is contrasted with software measurement.
After that, test automation is presented for cars viewed as
mobile devices. Finally, challenges on designing and testing
both Apps and wearable devices are presented.

II. TAILORED USER INTERFACES FOR SMARTPHONES

AND TABLET COMPUTERS
(HERMANN KAINDL)

A fairly obvious difference between, e.g., PCs and
mobile devices such as smartphones and tablet computers is
given through their relative screen sizes. Simply looking up a
Web page prepared for a screen of a typical PC from a
smartphone reveals problems like a tunnel view, which
impair the usability. Sites looked up very often like those of
CNN or airlines; therefore, they present their content tailored
for large or small screens, respectively. This means extra
effort for preparing these Web pages twice. In fact, there is a
whole spectrum of screens sizes due to the large variability
of screens of tablet computers and smartphones. When
tailoring for a larger number of screen sizes, even more
effort is required.

This issue calls for support through automation. In fact,
technology exists for automated generation of Graphical
User Interfaces (GUIs) [7][12][13]. In particular, also
automated tailoring through optimization techniques is
available [15]. Sample GUIs created (semi-)automatically
can be viewed online:

• A demo flight booking GUI, see [1]
• An accommodation booking GUI, see [2], reverse-

engineered from a real-world site (which is not
online any more)

Of course, GUIs cannot be generated through magic.

This approach requires high-level Discourse-based
Communication Models [7][13] as well as (simple) device
specifications to be created manually. While the effort for
creating such models may not always pay back for
generating GUIs of a single device, it most likely will for
generating GUIs for multiple devices from a single model.

Unfortunately, the usability of fully-automatically
generated GUIs is insufficient at the current state of the art.

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

So, we devised the so-called Custom Rules for addressing
usability problems in a persistent way, which even showed
that such rules can, in principle, be reused for multiple
devices [16].

Still, there are obstacles for a wide-spread applicability of
such an approach. Recently, we removed the problem of
persistently including Custom Widgets through a GUI
designer. The flight booking application [1] includes a seat
picker widget as usual in real-world applications but
unavailable in usual widget libraries.

This approach for automated tailoring even allows
choosing different strategies such as tabbing or vertical
scrolling, when the content does not fit the given screen size
[15]. We found some evidence that the more wide-spread
vertical scrolling is more efficient for use [14].

With respect to different screen sizes, we found some
evidence that a user is typically more efficient on screens of
larger sizes [17]. Of course, there is a trade-off with the
mobility of such devices.

III. APP DEVELOPMENT & MEASUREMENT:
ALLIES OR ENEMIES?

(ROBERTO MELI)

Mobile application engineering is a relatively new branch
of software engineering. Mobile application development
and maintenance are characterized by:

 Small project sizes and short schedules
 Volatile scope
 Use of diverse technologies,
 User interface and user experience relevance
 Multimedia integration
 Geographical information integration
 Social remote and local interaction

These elements require an organizational approach based

on:
 Time responsiveness
 Agile or evolutionary processes
 Small and very integrated teams
 Strong user involvement
 Interdisciplinary skills
 Supportive architectures and tools

Due to the deadline and uncertainty resolution focus and

production orientation, teams are usually not too interested in
“traditional” engineering practices, especially in
measurement activities. They are perceived as “overhead”. If
any measurement is taken in the App project it is often a
technological measurement.

A. Useful or not?

Nevertheless, “Functional” and “Non-Functional” Size
Measurement Methods might be very useful in
circumstances like the following:

 Corporate context
 Tender / Contract Management
 Project oriented development
 Prioritized and variable resource allocation

 Internal User driven
 Project productivity assessment needs
 Cost control emphasis

On the other side, measurement is not particularly

significant in these situations:
 Personal context
 Informal internal contracts
 Service oriented development
 Self-managed team management
 Fixed resource allocation
 Market User driven
 Business Unit productivity assessment needs
 Time to market emphasis

When we consider Apps development effort, duration
and staff estimation, apparently, there is no spread adoption
of formal methods. Expert judgment seems to be the most
adopted strategy. Unfortunately, the quality of these
estimates is dependent on the quality of the estimators and
many times it is impossible to compare different situations
and to share expertise among different teams [1].

B. Typycal Processes & Deliverables

The process to develop an App is not so different from
those applied to multimedia product or web-based
applications [19]. A typical process should be:

 Agile-oriented
 Iteration-oriented
 Supported by tools

and should include phases like the following:

 Feasibility Study
 Collection of Functional and Non-Functional

requirements
 App Wireframe creation
 Target architecture definition (Android, IOS,

etc.)
 Back end

o Defining the back end structure
o Management of users
o Server side logic
o Customization of User Experience
o Data integration (remote/local)
o Push notification services

 Front end
o Caching of data
o Synchronization of App data
o Mock ups Wire framing
o UI design and development
o UI improvements
o Testing
o Deployment

Developing an App is “project-oriented” but maintaining

it may be “service oriented” with a continuous improvement
process in place.

“The biggest issue, in mobile application development,
still seems to be the diversity of platforms and devices.

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Offering an App, be it enterprise specific or publicly
available, means to provide different versions at least for the
most widespread platforms (e.g., Android, Apple iOS,
BlackBerry OS), operating system versions (with each
version providing new functions or even altered appearance)
and device types (with different display sizes and
resolutions, controls and navigation styles). Since no
standard cross-platform development approach has emerged
so far, this plethora of combinations results in considerable
development effort.” [1]

Deliverables are documents and products in the
multimedia domain and developing an App is not only a
matter of Programmers and ICT people.

C. Which Measurement and Models?

Any adopted measurement model should be:
 Light
 Quick
 Simple
 Used by developers
 Complete
 Standard
 Product-oriented
 Easy to learn

Simple Function Point [21] has these characteristics for

functional sizing. Measurement should be used for the
governance of the process and the relationship among the
different stakeholders.

In order to estimate effort, duration and staff, a complete
model should be used which takes in account not only the
functional requirements, but also the non-functional and
process requirements like the one presented in [10].

IV. SOFTWARE BASED TEST AUTOMATION APPROACH

USING INTEGRATED SIGNAL SIMULATION
(ANDREAS KURTZ AND BERNHARD BAUER)

New operating concepts are pushing from the Consumer
Electronics Sector (CES) in the automotive industry. This
change characterizes the development in the automotive
industry and makes vehicle manufacturers increasingly
become software developers. Software is an enabler for
flexible and fast growing innovations. Especially the
development cycle in the CES challenges the automotive
industry not to lose connection. Vehicles nowadays must be
linked with the customers’ mobile devices and so become a
mobile device. In today’s vehicles, classic switches have
almost become obsolete. “The automobile is the ultimate
mobile device.” [22]. Modern vehicles can be considered as
mobile devices with Human-Machine Interfaces (HMI) such
as displays, touch screens, gesture control and sensor
operation. With increasing networking and alternative
control options of functions, this change confronts the testing
of customer functions of a vehicle with enormous challenges.

A. Challenges

Developing suitable software testing methods is the main
challenge in software development for mobile devices to get

high quality software. The speed of the hardware
development, and software development cycles of the
consumer electronic industry infuses the automotive
industry. Because of changing trends, the growing
networking of systems needs an innovative approach to be
able to test the developed software fully automated.
Innovative automation methods are a key part to handle the
time pressure. In order to meet this challenge needs, a
software-based approach with possibility to test the entire
chain of reaction. A software-based approach allows reacting
flexibly and fast on changes of software, especially changes
on the interfaces.

Particularly, in the field of HMI, the technology is
changing increasingly towards sensors without mechanical
haptics. From the perspective of the user, the sensors and
actuators on the HMI are fused to one single interface,
touchscreens or sensor areas. This helps the designers to
reduce costs because of being able to change the visual
surface via software.

Further steps for interacting with the mobile device will
be contactless input, gestures or the so-called air touch
technology [9]. Following the term 'mobile devices' includes
vehicles or subsystems of a vehicle.

The changing types of sensors with the innovation speed
lead to new automation methods, to a software-based
integrated approach being able to be adapted as fast as the
software and hardware changes. Software-based integrated
testing methods are missing due to consistent approaches,
and lack of standardization. Especially in the automotive
industry, software does not have a common architecture.
This causes special/customizable solutions for each
implementation.

B. Status

As mentioned before, an automobile becomes a mobile
device. Depending on the point of view, the vehicle system is
a mobile device second order. This means it is a distributed
system combining severally mobile devices to a bigger
mobile device. This consideration is possible because of the
comparable basic architectures of networked Systems-On-a-
Chip (SOC) or on the automotive domain networked
software components on Electronic Control Units (ECUs)
being SOCs. To show current solutions for automated testing
these are separated in external- and software-internal
solutions. With focus to model based testing methods [18],
the testing is separated in four testing steps, in hierarchical
order, and refers at each solution.

 Component test
 Integration test
 System test
 Acceptance test

1) External Automation Solution

Test automation with external automation solution makes
only sense at component test, integration test or part system
test (part system is a system cut in domain systems e.g.,
power-train system). However, the effort to adapt the
interfaces increases enormous at part system test.
Automation solutions for testing customer functions are

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

stimulating the component with physical hardware signals or
remaining bus simulation.

2) Software-internal Automation Solution
A different solution, usable at any test layer, are

additional software functions for an interaction in the
software to trigger customer functions. This allows switching
values or triggering customer functions, but needs for each
customer function a custom-developed and integrated
additional function. If the customer function is changed or
moved to another hardware the additional function for
software-based interaction has to be changed, too.
Duplication of effort, in conjunction with increasing
probability of errors may result.

C. The Methodological Approach

Figure 1 shows the methodical approach. Projecting this
approach, based on an AUTOSAR [6] architecture, to other
software architectures is possible. Various intermediate steps
create a system model and test model for the requirements.
Integrating an additional Software Component (SWC), called
SIMulation Agent (SIM Agent) and deploying it to all ECUs,
generate a software-based distributed simulation, with the
help of an extended driver module to get access to the new
simulation module. This allows simulating signal sequences
in the driver layer with the advantage of reduced data types
and a standardised interface. All other steps of the
methodology are automated. From the test model, abstract
test cases with abstract interfaces are created. These abstract
interfaces become specific with the help of the deployment
files. This allows performing the same test cases on various
hardware platforms by adjusting the mapping 'Config', e.g.,
testing the same software on different mobile phones.

D. Alternative Proposals

An alternative approach could be a different interaction
layer for this kind of simulation approach to avoid changes in
the AUTOSAR architecture used in automotive domain. This
is more compliant to the actual AUTOSAR standard but
increases the number of data types.

V. CHALLENGES ON DESIGNING AND ON TESTING FOR

WEARABLE DEVICES AND APPS
(PETRE DINI)

Three complementary activities are specifically identified
in new market communications activities, namely building
wearable devices, designing Apps dedicated to them, and
testing the solutions. The challenges are driven by several
specific features characterizing each of them, but also by the
nature of services they are used for and the human behavior.
As some of the services are related to life threatening, testing
the systems becomes a cornerstone process. The diversity of
the devices, the heterogeneity of platforms, the absence of
specific APIs and the scattered nature of system parts add to
the complexity for verification and validation activities.

There is a continuously growing market boosted by
Apple Watch very recently. Analysts predict a 42% growth
for the wearable market within the next 5 years, while the
Apps market should follow [3].

A. Challenges in Apps Development

The challenges faced by Apps developers are essentially
induced by the wearable devices.

1) Devices and Apps
Some of the devices have always the screen on (like

Peeble) that should be considered when designing an App to
save as much energy as possible. Multiple screen sizes and
formats (round, squared, e-paper display) need a fully
adapted User Interface (UI) design. Computation options
should also be limited to the minimum needed, as developers
face limited computed power on a wearable device.

Wearable software is fragmented is more visible than for
handheld devices is its intended purpose. Because of lack of
established API, all coding of features takes place
individually. So far, no accepted development cross-
platforms exist; there are several operating systems, but no
industry standard. There are ongoing industrial activities:
Google is developing their Android wearable software
development kit, NTT Docomo’s Device Connect WebAP,
GitHub is sharing the API as open software to enhance both
technical specifications and API for mass commercialization.

There is a tendency to simply re-implement everything in
the existing App on the wearable from an existing mobile
App. This is not a recommended approach, as the interaction
with the wearable watch is different that the interaction with
a phone device. As a result, appropriate methodologies and
guidelines should be developed and adopted. The current
development platforms have limited features for an
appropriate animation.

Troubleshooting wearable devices and Apps together
leads to time-intensive development process and this is due
to the frequency of troubleshooting on the new platforms.

There is a market push for reaching harmonization for
Apps development. Juniper Research estimates the health
related wearable devices industry will reach $53 billion in
four years [4]. As a result, there is a potential that
standardization and methodologies see a quick development.
The finance sector is also helping, e.g., the introduction of
Apple Pay along with the Apple Watch are current solutions;
even more, payment-capable bracelets are offered by
CaixaBank and Barclays.

The growing segment in the Apps marketplace will need
a support for security and privacy. Practically, an embedded
approach of wearable devices and Apps is a vital solution.

2) Thermal Considerations
A specific aspect is that wearable devices introduce some

unique thermal design challenges that should be considered
for devices, Apps and the entire system. This is not only
referring to operability, but also to a required comfort level
for humans. This design challenge is mainly for processor-
intensive applications and units with complex displays.

According to Heussner [8] “electronics placed in direct
contact with the skin need to maintain an ideal operating
temperature at or below the core body temperature of 37°C
(98.6°F). Anything above this is generally considered to be
uncomfortable and hot (see Figure 2). Transitioning to much
higher heat (above 40°C or 104°F) will trigger discomfort
and pain for the wearer.”

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Figure 1. Software-based methodology for test automation in distributed systems.

Figure 2. Thermal Considerations [8].

3) Materials and Environment

The design should address issues related to material
interaction, reliability of interfaces, and impact on the
thermal environment (for devices, Apps, systems). Chemical
and a mechanical material interaction have to be calibrated;
testing to optimize the package, the coating, and
encapsulation is needed.

B. Testing Challenges

1) Testing Wearable
Wearable devices are deployed everywhere, with various

functions, such as sensing, computing, transmitting, alerting,
etc. A few characteristics make testing challenging, as listed
below.

2) Small Screen
The designers must redefine the wearable screens and

adapt their designing skills to miniaturization; dimensions
should be carefully decided, as every pixel matters. There are
certain limits at which a screen can be squeezed, yet being
conveniently useful. Little of known UI/UX methodologies
can be reused in designing new APIs.

3) Functional Testing
A big testing paradigm change was identified when the

mobile devices arrived. Wearable devices comprise also
different sensors and specific interactions that cannot be
functionally tested by using traditional methods

4) Interaction
Testing should consider a myriad of sensor interactions.

The large spectrum of interactions (Bluetooth, WI-Fi,
hardware) leads to large coverage needs.

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

5) Battery Life
Energy and battery-based operation raises special

maintenance issues and a real challenge for both wearable
App developers and testers. These need also suitable testing
criteria tuned to the new features of devices and Apps.

6) Testing for-Real
As wearable devices are quite specific, simply

substituting them with emulators is not suitable; as the
disciple is evolving in a rapid pace, trusting the results of
such emulator is doubtful. Still, there are a few wearable on
the market, e.g., Tizen, Android, etc.

7) Materials-oriented Testing
Due to metal migration concerns, biased testing is

increasingly important to validate sensitivity in moist
environments and to validate the risk of tin whiskers [8].

8) Testing body-wearable systems
There is a large variety of wearable devices and Apps,

from fitness bands (which are essentially data collectors) to
portable heads-up display; additionally, complex interactions
occur between the touch display, cameras, and fast data
communication with mobile platforms (see Figure 3).

Figure 3. Body wearable networks.

Complementary and specific components, like smart e-

textiles, integrate stretch, pressure, and contact-based sensor
elements, integrated within the fabric itself. Testing these
components and their interactions requires appropriate
experiments and calibration; this includes thermal aspects
and materials characteristics on top of standard development
guidelines of mobile devices and/or classic software
development process.

VI. CONCLUSION

Of course, we cannot ultimately clarify how to best
develop software for mobile devices. Still, we present a few
related viewpoints that should help to pave the way towards
a better understanding.

For instance, it is clear that different mobile devices need
different user interfaces. With regard to screen size,
automated GUI generation with automated tailoring may
become an option.

Even whole cars may be viewed from the perspective of
mobile devices today, since the automotive industry is
increasingly influenced by the consumer electronics industry.
This requires software-based integrated testing methods in
order to keep up with the development.

What is specific on designing and testing wearable
devices and Apps is that user experience is more relevant
than in traditional approaches. It is a challenge to develop
and test very specific features; e.g., “smart watches have
very small screens and almost no buttons, making the use of
space, navigation and user interaction incredibly important”
[5].

Overall, it seems as though there will not be any single
approach for developing software for mobile devices “best”.

REFERENCES
[1] http://ucp.ict.tuwien.ac.at/UI/FlightBooking
[2] http://ucp.ict.tuwien.ac.at/UI/accomodationBooking
[3] https://www.utest.com/articles/challanges-of-testing-

wearable-devices
[4] http://www.foxnews.com/tech/2015/02/23/top-wearables-for-

medical-issues.html
[5] http://www.belatrixsf.com/index.php/whitepaper-the-next-

frontier-of-technology-wearables
[6] AUTOSAR Partnership, AUTOSAR Layered Software

Architecture, 2014. [Online]. Available:
http://www.autosar.org/.

[7] Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., and
Arnautovic, E., A discourse model for interaction design
based on theories of human communication. In CHI ’06
Extended Abstracts on Human Factors in Computing Systems,
New York, NY, USA, 2006. ACM Press, pp. 754–759.

[8] Heussner, D. Texas Instruments, USA,
http://electronicdesign.com/digital-ics/wearable-technologies-
present-packaging-challenges

[9] Horn N., BMW Group at the CES 2016 in Las Vegas.. BMW
presents the principle of the contactless touchscreen with
AirTouch.

[10] Meli, R. A New Unified Model of Custom Software Costs
Determination in Contracts, Softeng2015, Barcellona, 2015.

[11] André Nitze, Andreas Schmietendorf, Reiner Dumke, An
Analogy-Based Effort Estimation Approach for Mobile
Application Development Projects, IWSM-MENSURA,
2014, pp. 99-103, doi:10.1109/IWSM.Mensura.2014.9

[12] Paterno, F., Santoro, C., and Spano, L. D. MARIA: A
universal, declarative, multiple abstraction-level language for
service-oriented applications in ubiquitous environments.
ACM Trans. Comput.-Hum. Interact. 16 (November 2009),
19:1–19:30.

[13] Popp, R., Raneburger, D., and Kaindl, H., Tool support for
automated multi-device GUI generation from discourse-based
communication models, in Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive computing
systems (EICS’13). New York, NY, USA: ACM, 2013. Tool
demo paper.

[14] Raneburger, D., Alonso-Rios, D., Popp, R., Kaindl, H., and
Falb, J., A User Study with GUIs Tailored for Smartphones,
in Proceedings of the 14th IFIP TC 13 International
Conference on Human-Computer Interaction - INTERACT
2013, Part II, Springer LNCS 8118, Springer LNCS 8118,
2013, pp. 505–512.

[15] Raneburger, D., Kaindl, H., and Popp, R. Strategies for
automated GUI tailoring for multiple device. In Proceedings
of the 48th Annual Hawaii International Conference on

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

System Sciences (HICSS-48), IEEE Computer Society Press
(Piscataway, NJ, USA, 2015), 507–516.

[16] Raneburger, D., Kaindl, H., and Popp, R. Model
transformation rules for customization of multi-device
graphical user interfaces. In Proceedings of the 7th ACM
SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS ’15, ACM (New York, NY, USA, 2015), 100–
109.

[17] Raneburger, D., Popp, R., Alonso-Rios, D., Kaindl, H., and
Falb, J., A User Study with GUIs Tailored for Smartphones
and Tablet PCs, in Proceedings of the 2013 IEEE
International Conference on Systems, Man and Cybernetics
(SMC'13), 2013, pp. 3727 - 3732.

[18] Roßner, T, C. Brandes, H. Götz and M. Winter. Basiswissen
modellbasierter Test. dpunkt.verl., Heidelberg, 1 edition,
2010.

[19] Ruhe, M., Jeffery, R., Wieczorek, I., Cost estimation for Web
applications, in Proceedings of International Conference on
Software Engineering (ICSE’03), 2003, 285–294.

[20] Seidl R., Baumgartner M., and Bucsics T. Praxiswissen
Testautomatisierung. dpunkt, Heidelberg and Neckar, 1
edition, 2011.

[21] SiFPA, Simple Function Point Functional Size Measurement
Method, Reference Manual SiFP-01.00-RM-EN-01.01,
http://www.sifpa.org/en/index.htm, [retrieved: January, 2016].

[22] Diess, H., CES-Keynote, 2016

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

