
A Team Allocation Technique Ensuring Bug Assignment to Existing and New

Developers Using Their Recency and Expertise

Afrina Khatun

Institute of Information Technology
University of Dhaka
Dhaka, Bangladesh

Email: bit0411@iit.du.ac.bd

Kazi Sakib

Institute of Information Technology
University of Dhaka
Dhaka, Bangladesh

Email: sakib@iit.du.ac.bd

Abstract—Existing techniques allocate a bug fixing team using
only previous fixed bug reports. Therefore, these techniques may
lead to inactive team member allocation as well as fail to include
new developers in the suggested list. A Team Allocation approach
for ensuring bug assignment to both Existing and New developers
(TAEN) is proposed, which uses expertise and recent activities
of developers. TAEN first applies Latent Dirichlet Allocation
on previous bug reports to determine the possible bug types.
For new developers, TAEN identifies their preferred bug type,
and adds them to the list of other developers, grouped under
the identified bug types. Upon the arrival of a new bug report,
TAEN determines its type and extracts the corresponding group
of developers. A heterogeneous network is constructed using
previous reports to find the collaborations among the extracted
developers. Next, for each developer, a TAEN score is computed
combining the expertise and recency of their collaborations.
Finally, based on the incoming report’s severity, a team of N
members is allocated using the assigned TAEN score and current
workloads. A case study conducted on Eclipse Java Development
Tools (JDT), shows that TAEN outperforms K-nearest-neighbor
Search And heterogeneous Proximity based approach (KSAP)
by improving the team allocation recall from 52.88 up to 68.51,
and showing the first correct developer on average at position
1.98 in the suggested list. Besides, a lower standard deviation of
workloads, 30.05 rather than 46.33 indicates balanced workload
distribution by TAEN.

Keywords—Bug Assignment; Team Allocation; Bug Report;
Latent Dirichlet Allocation (LDA).

I. INTRODUCTION

With the increasing size of software systems, bug assign-
ment has become a crucial task for software quality assurance.
For example studies reveal that, near the release dates, about
200 bugs were reported daily for Eclipse [1]. As developers
generally work in parallel, this turns bug resolution into a
collaborative task as well. It is reported that Eclipse bug reports
involve on average a team of 10 developers contributions.
However, due to large number of bug reports, manually
identifying developer collaboration is error-prone and time-
consuming. Besides, industrial projects have reported the need
for collaborative task assignments to utilize both existing and
new developers [2]. It is common that new developers join
the company or project during software development. Random
bug report assignment to new developers always results in
unnecessary bug reassignments, and increases the time needed
for the bug to be fixed. In this context, an automatic approach
can facilitate bug assignment by allocating teams utilizing both
existing and new developers.

In order to assign newly arrived bugs to appropriate de-
velopers, available information sources such as bug reports,

source code and commit logs are analysed. Recent commits
generally exhibit developer’s recent activities and previous
bug report represent their expertise on fixing particular types
of bugs. Team assignment is generally done by analysing
previously fixed bug reports, which can help to recommend
experienced developers. With the passage of time, developers
may switch projects or company, therefore inactive members
may be recommended. On the other hand, developers who
joined recently, do not own any fixed bug reports or commits.
So, the approaches which learn from these information sources,
fail to assign tasks to new developers. Existing developers
get overloaded with a queue of bug reports, whereas new
developers are ignored in the allocation procedure. This leads
not only to prolonged bug fixing time, but also to improper
workload distribution.

Understanding the importance of bug assignment, various
techniques have been proposed in the literature. BugFixer,
a developer allocation method has been proposed by Hao
et. al [3]. This method constructs a Developer-Component-
Bug (DCB) network using past bug reports, and recommends
developers over the network. This allocated list becomes less
accurate with the joining of new developers. Baysal et al. have
proposed a bug triaging technique using the user preference of
fixing certain bugs [4]. The technique combines developer’s
expertise and preference score for ultimate suggestion. How-
ever, this technique also considers only historical activities.
Afrina et. al [5] have proposed an Expertise and Recency based
Bug Assignment (ERBA) approach that considers both fixed
reports and commit history for recommendation. This tech-
nique is applicable for single developer recommendation, and
it cannot allocate tasks to new developers. A team assignment
approach using K-nearest-neighbor Search And heterogeneous
Proximity (KSAP) has been proposed by Zhang et al. [6]. It
creates a heterogeneous network from the past bug reports, and
assigns a team based on their collaboration over the network.
The main limitation of this technique is that it over-prioritizes
previous activities.

A Team Allocation technique for ensuring bug assignment
to both Existing and New developers (TAEN), using expertise
and recency of developers has been proposed. TAEN allocates
a team in five steps. The Bug Solving Preference Elicitation
step takes bug reports, and applies Latent Dirichlet Allocation
(LDA) model on these reports to determine the possible
types of bug reports. For new developers, TAEN first elicits
their bug solving preference by presenting them with main
representative terms of each bug type, and groups them under
the corresponding type. The New Bug Report Processing step

96Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

extracts the summary, description and severity of incoming
reports, and determines their bug types to identify the potential
fixer group. Next, the Developer Collaboration Extraction step
generates a heterogeneous network using attributes (four types
of nodes and eight types of edges) extracted from previous
bug reports, and finds collaborations among the identified
fixer group members over the network. The Expertise and
Recency Combination step then assigns a TAEN score to
each developer by combining the number and recency of their
extracted collaboration. Finally, based on the severity of the
incoming report, the Team Allocation step suggests a team of N
developers using the TAEN score and current workloads. After
each reported bug is fixed, this step also updates developers
contribution status.

A case study on an open source project, Eclipse Java
Development Tools (JDT) has been conducted for assessment
of TAEN. To evaluate compatibility, TAEN has been compared
with an existing technique, KSAP [6]. A total of 2500 fixed
and 676 open bug reports have been taken under consideration
[7]. A test set of 250 fixed and 30 open bug reports have been
applied on both techniques. The results showed that TAEN
improved the recall of the allocated team from 52.88 up to
68.51. A decrease in the average position of the first correct
developer from 3.1 to 1.98 indicates the increased effectiveness
of TAEN. Besides, a lower standard deviation (30.05 instead
of 46.33) of developer workloads shows more balanced task
distribution by TAEN.

The remainder of the paper is organized as follows. Section
II describes the existing efforts in the field of automated bug
assignment. Section III presents the overall team allocation
procedure of TAEN by discussing the detailed processing of
each step. Section IV shows a case study on Eclipse JDT
while applying TAEN. Lastly, Section V concludes the paper
by summarizing its contribution and possible future directions.

II. RELATED WORK

Due to the increased importance of automatic bug assign-
ment, a number of techniques have been proposed. A survey
on various bug triaging techniques has been presented by
Sawant et. al [8]. The survey divided bug triaging techniques
into text categorization, reassignment, cost aware and source
based techniques etc. Studies focusing on industrial needs of
bug assignment have also been proposed in literature [2], [9].
Significant related works are outlined in this section.

Text categorization based techniques build a model that
trains from past bug reports to predict the correct rank of devel-
opers [1], [3], [4], [10], [11]. Baysal et al. have enhanced these
techniques by adding user preference in the recommendation
process [4]. The framework performs its task using three com-
ponents. The Expertise Recommendation component creates a
ranked developer list using previous expertise profiles. The
Preference Elicitation component collects and stores a rating
score regarding the preference level of fixing certain bugs
through a feedback process. Lastly, knowing the preference
and expertise of each developer, the Task Allocation component
assigns bug reports. The applicability of this technique depends
on user ratings, which can be inconsistent. Besides, for rec-
ommendation the technique does not take new developers into

account. As a result, imbalanced workload distribution among
developers may occur.

Reassignment based techniques have also been developed
by researchers [12], [13], [14]. The main focus of these
techniques is to reduce the number of passes a bug report
goes through due to incorrect assignment. In such techniques,
a graph is constructed using previous bug reports [13], [14].
As mentioned above, consideration of these past activities fail
to accommodate the new developers in final recommendation.
A fine grained incremental learning and multi feature tossing
graph based technique has been proposed by Bhattacharya et.
al [12]. It is an improvement over previous techniques because
it considers multiple bug report features, such as product and
component, when constructing the graph. Because it considers
previous information, the technique results in search failure in
case of new developers arrival.

CosTriage, a cost aware developer ranking algorithm has
been developed by Park et. al [15]. The technique converts
bug triaging into an optimization problem of accuracy and cost,
which adopts Content Boosted Collaborative Filtering (CBCF)
for ranking developers. As the input to the system is only
previous bug history, the technique contains no clue regarding
new developers to assign tasks.

Source based bug assignment techniques have also been
proposed. Matter et. al have suggested DEVELECT, a vo-
cabulary based expertise model for recommending developers
[11]. The model parses the source code and version history to
index a bag of words representing the vocabulary of source
code contributors. For new bug reports, the model checks the
report keywords against developer vocabularies using lexical
similarities. The highest scored developers are taken as fixers.
Another source based technique has been proposed in [16].
The technique first parses all the source code entities (such
as name of class, attributes, methods and method parameters)
and connects these entities with contributors to construct a
corpus. In case of new bug reports, the keywords are searched
in the index and given a weight based on frequent usage and
time metadata. The main limitation of these techniques is, it
suggests novice developers without considering their experi-
ence and preference. As these techniques require minimum
one source commits, these also fail to include new developers
in final suggestion.

Vaclav et al. have presented a study to compare the trend
of bug assignment in the open source and industrial fields
[2]. The study applies Chi-Square and t-test for evaluating the
variability of those two fields dataset, and reports identical
trends in terms of distribution. Most importantly, it concludes
with some findings highlighting the need for balanced task
assignment to individuals and team recommendation. Zhang et
al. developed a team assignment technique called KSAP [6]. It
initially constructs a heterogeneous network using existing bug
reports. When a new bug report arrives, the technique applies
cosine similarity between the document vectors of new and
existing bug reports, and extracts the K nearest similar bug
reports. Next, the commenters of these K similar bugs are
taken as the candidate list. Finally, the technique computes a
proximity score for each developer based on their collaboration
on the network. The top scored Q number of developers
are recommended as fixer team. Although this technique can
meet the need of team recommendation, it fails to cover the

97Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

requirement of balanced task distribution due to ignoring new
developers in the assignment process.

Various techniques for automatic bug fixer suggestion have
been proposed in the literature. Most of the techniques learn
from previous fix or source history of software repositories.
Consideration of only one of these information sources leads
to inactive or inexperienced developer recommendation. Again,
both of the sources lack information regarding the newly joined
developers. As a result, all of these techniques fail to delegate
tasks to newly joined developers resulting in unequal workload
distribution.

III. METHODOLOGY

In order to allocate teams by ensuring task allocation to
both existing and new developers, a technique called TAEN is
proposed. Most of the existing techniques learn from previous
fixed reports for recommending expert developers. Due to ig-
noring recent activities, these approaches may suggest inactive
developers. Using only expertise information cannot satisfy
the required information provided by the source contributions.
Both information sources need to be considered to allocate
expert and recent group of developers. Therefore, an expert
and recent team allocator capable of allocating tasks to both
existing and new developers is required. TAEN allocates a
team in five steps which are described below.

A. Bug Solving Preference Elicitation of New Developers

As bug tracking and version control systems do not contain
any record regarding the activities of new developers, existing
approaches fail to recommend new developers. In this case,
bugs are assigned randomly to these developers regardless
of their abilities and preferences in solving the bugs, which
always results in reassignment and prolonged fixing time. This
step determines the bug solving preference of new developers
in two phases - Developer Group Creation and Preference
Elicitation.

1) Developer Group Creation: This phase groups devel-
opers based on the types of bugs they have worked on. In
this context, first, the possible types of bugs needs to be
determined. Therefore, this step takes bug reports as input
in Extensible Markup Language (XML) format. A bug report
generally contains a number of attributes such as id, status,
resolution, fixer, commenter, severity, summary, description,
activity history etc. For training and evaluation purpose, the
bug reports which have resolved and verified as status, and
fixed as resolution property are taken into consideration. Be-
sides, in order to determine developers current workloads, the
bug reports which have bug status either of new, reopened and
started are collected.

Next, the summary and description property of each report
are extracted and processed to represent its vocabulary. The
processing steps are discussed in Subsection III-C. For iden-
tifying the type of bug reports, LDA modeling is used. Given
a list of documents having mixtures of (latent) topics, LDA
tends to determine the most relevant topic of the document.
So, the bug reports are represented as documents, and fed into
the LDA model to be divided into n types. At the end, the
LDA model determines the most relevant type for each bug

report. Each bug type is represented with the probabilities of
each word to be in the type.

Once all the bug reports are labeled with one of the n
types, the developers who have worked on similar types of
bugs are grouped together. Hence, the algorithm in Figure 1 is
proposed for creating developer groups. The GroupDevelopers
procedure of Figure 1 takes the processed bug reports as input.
This procedure keeps the grouped developers in a complex data
structure called bugTypes, as shown in line 2. The outer map of
bugTypes links each type to developers who have contributed
to that specific type of bugs. The inner map connects each
developers name to their contribution frequency on that type
of bugs.

A for loop is defined at line 4 for iterating on the inputted
bug reports. Each iteration of the loop first extracts the bug
report’s type determined by the LDA model. This task is done
by calling a method, GetBugType, as shown in line 5. The
method takes the summary and description of the report, and
returns its type. The GroupDevelopers procedure also extracts
and stores the contributor’s name of each bug report in a Set
of strings named contributors. Here, the contributors refers to
the reporter and fixers of the bug report.

1: procedure GROUPDEVELOPERS(List < BugReport >
BugReports)

2: Map<String,Map<String, Integer> > bugTypes
3: Map<String, Integer> developers, String type
4: for each b ∈ BugReports do
5: type← GETBUGTYPE(b.summary, b.description)
6: Set < String > contributors← b.contributors
7: developers ← bugTypes.get(type)
8: if developers == null then
9: developers← new Map<String, Integer>()

10: for each c ∈ contributors do
11: developers.put(c, 1)

12: bugTypes.put(type, developers)
13: else
14: for each c ∈ contributors do
15: if devlopers.contains(c) then
16: developers.replace(c, developers[c]+1)
17: else
18: developers.put(c, 1)

19: bugTypes.replace(type, developers)

Figure 1: The Algorithm of Developer Group Creation

Next, the procedure gets the list of developers mapped
against the identified bug type (line 7). If no developers are
yet mapped against this type, a new instance of inner map
named developers is initialized (line 8-9). All the contributors
are then populated into the developers map which links each
developer to their initial contribution frequency (line 10-11).
This developers map is then put against the identified bug type
(line 12). On the other hand, if a list of developers is already
mapped against the identified type, another for loop is declared
for updating the developers list (line 14). The loop then checks
whether the developers list already contains the contributors
and updates the contribution frequency of each contributor,
c (line 15-18). Finally, the procedure updates the outer map
bugType with the changed developers list (line 19).

98Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

2) Preference Elicitation: This step focuses to elicit the
bug solving preference of new developers for ensuring their
inclusion in the allocated team. When a new developer arrives,
the list of most representative words of each bug type is
offered to the developer. The chosen bug types are initially
considered as the types of bugs the developer can contribute
to. So, the developer is then grouped with the developers who
have worked on similar bugs determined by the previous step.

B. New Bug Report Processing

On arrival of a new bug report B, the type of the report
needs to be identified for extracting the developer group
to which it can be assigned. The summary, description and
severity properties of the report are extracted and processed.
As these property values generally contain irrelevant and noisy
terms, pre-processing is done. The processing step includes
identifier decomposition based on CamelCase letter and sep-
arator character, number and special character removal, stop
word removal and stemming. A score for each bug type is
computed using (1) similar to [15], as follows-

typeScore(i) =
∑

∀w∈B

(Probabilityi(w) ∗Distributioni(w)) (1)

where, i represents the i-th type in the LDA model, w
represents each word in B, Probabilityi(w) is the probability
of w in the i-th bug type, and the distribution of w in the
new bug report is indicated by Distributioni(w). Finally, the
bug type which gets the highest score having most similar
vocabulary with the new bug report, is determined as the type
of the new bug report. Thus, the developer’s group associated
with the determined bug type is selected. The top-K members
of this group, who have higher contributions are considered
as the developers from which a bug fixing team needs to be
allocated.

C. Developer Collaboration Extraction

It is mentioned above that bug resolution is a collabo-
rative task. To allocate a team, the collaboration among the
developers needs to be considered. So, this step extracts the
collaboration among the developers of the identified group.
A heterogeneous directed network is constructed from the
previous fixed bug reports [6]. The four types of nodes include
- Bug (B), Developer (D), Component (C) and Comment (T).
The eight types of possible relations among these nodes are
listed in Table I. For example, Type 1 relationship connects a
D node to a B node depicting the developer (D) has worked on
the bug report (B). The term work refers assignment, report,
reassignment, reopening, fixing, verifying or tossing event of
a bug. Similarly, Type 4 and Type 5 relations denote that a
comment (T) is contained by a bug (B), and a developer (D)
has written the comment (T), respectively.Developer collaboration can be identified by factors such as
how frequently two developers contribute to the same bugs and
components of the system. Keeping these factors in mind, six
types of paths similar to [6] are extracted from the network
each of which connects two developers using combinations
of the above relation edges. The paths are listed in Table II.
For example - ’D-B-T-D’ represents that a developer (D) has
worked on a bug (B), which has a comment (T) written by
another developer (D). Similarly, ’D-B-C-B-D’ depicts that

TABLE I. EIGHT TYPES OF RELATIONSHIPS AMONG NODES

Type No. Specification
1 D works on B
2 B is worked on by D
3 B contains T
4 T is contained by B
5 D writes T
6 T is written by D
7 B contains in C
8 C is contained by B

TABLE II. SIX TYPES OF DEVELOPER COLLABORATION

Path Type Collaboration on Path
1 Same Bug D-B-D
2 Same Bug D-B-T-D
3 Same Bug D-T-B-T-D
4 Same Component D-B-C-B-D
5 Same Component D-B-C-B-T-D
6 Same Component D-T-B-C-B-T-D

depicts that a developer (D) has worked on a bug (B) of a
component (C), having another bug (B), which was worked
on by another developer (D).

D. Expertise and Recency Combination

As mentioned before, ignorance of recent activities may
result in inactive developer assignment. So, this step adds re-
cency information with the extracted developer’s collaboration.
The more recent developers work or comment on a bug, the
higher the priority of that developer. For combining the recent
activities, the time when the developers collaborate on the
bug, is considered. The algorithm in Figure 2 is proposed to
compute a score called TAEN score for each developer, by
combining the expertise and recency of collaboration.

The CalculateScore procedure of Figure 2 takes a complex
data structure, named devInfos as input. This data structure
maps the developers to their identified collaboration informa-
tion of type DeveloperCollaboration.

1: procedure CALCULATESCORE(Map < String,
DeveloperCollaboration > devInfos)

2: Map < String,Double > devScores
3: for each d ∈ devInfos do
4: for each path ∈ d.sameBugs do
5: ADDSCORE(path.firstEdge,

BugReport.date)
6: ADDSCORE(path.lastEdge,

BugReport.date)
7: procedure ADDSCORE(Edge e, Date date)
8: if e.srcNode = D then
9: dev ← e.srcNode

10: else
11: dev ← e.destNode
12: if !devScores.keys.contains(dev) then
13: devScores← 1/(date− e.Date)
14: else
15: devScores+← 1/(date− e.Date)

Figure 2: The Algorithm of Expertise and Recency Combination

99Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Each instance of DeveloperCollaboration contains two
properties - sameBugs and sameComponents. The former
property contains a list of paths which depicts the associated
developers collaboration on same bugs. Similarly, the later
one represents developers collaboration on same components.
The CalculateScore procedure represents the partial score
calculation process based on the same bugs only. A similar
approach is also used for calculating the collaboration score
of same components. The procedure starts with defining a data
structure called, devScores which connects the developers to
their calculated TAEN score (line 2). An outer for loop is
defined for iterating on each developer and an inner loop is
defined for iterating on their collaborated paths (line 3-4).
Each collaboration path generally connects two developers.
Therefore, for each collaborated path the score of the two
developers needs to be added or updated (line 5,6). To perform
this task, another procedure, AddScore is declared (line 7).

This procedure takes an edge and a date as input. It is seen
from Table I that developers directly collaborate by working
or commenting on bugs. So, the collaboration edge is sent as
parameter for the AddScore function. Besides, for adding the
recency information of these activities, the collaboration date
is also sent to this function. It first extracts the developer node
from the inputted edge (line 8-11). It then checks whether the
developer has a TAEN score already assigned (line 12). Based
on this checking, it adds or updates the score (line 13-15).
The score for each collaboration path is initially considered
as 1. However, this score is divided by the date difference
between the reporting date of the new bug report (date) and
the collaboration date of the developer (e.date). The smaller
the difference, the more recent the developer collaborated on
the bug, thus the higher the score the developer gets. Lines 13-
15 ensure the effect of recency information on the developer’s
TAEN score.

E. Team Allocation

Finally, for allocating a team consisting of N developers
where N<K, the technique first checks the severity property
of the newly arrived bug report. The severity property refers
to how severe the bug is, or whether it is an enhancement
request. If the severity value is any of blocker, critical and
major [7], the reported bug is considered as one that needs to
be handled by existing developers. So, TAEN considers only
the top-K contributors and sorts the developers based on their
TAEN score. The top scored N developers are allocated as the
fixer team.

If the severity value contains normal, minor, trivial or
enhancement [7], it can be handled by new developers. In
this case, TAEN considers the new developers along with the
top-K, and counts their current workload (assigned bugs). The
N developers with least workload are included in the team.
This step ensures bug assignment to new developers based
on their bug solving preference. If two developers have the
same workloads, the tie is resolved using the TAEN score.
When a bug report is fixed by a developer, this contribution is
updated in the groups of Subsection III-A. This update ensures
incremental contribution enhancement of developers as well as
their participation in bug resolution.

IV. CASE STUDY

For initial assessment of compatibility, TAEN was applied
on an open source project, Eclipse JDT [17]. This project was
chosen because this has been used for evaluation in various
related approaches [15]. Secondly, the bug repository of JDT
is available in open source. A total of 2500 fixed bug reports
between years 2009 and 2015, and 676 open bug reports
between 2015 and 2016 have been collected for experimental
analysis of TAEN.

As stated before, TAEN first takes system bug reports in
XML format [7]. The summary and description properties are
collected from the <short_desc> and <thetext> tags respec-
tively. It then applies LDA on the properties to determine the
most relevant type of each bug report. Various techniques are
available in the literature for identifying the natural number of
topics when applying LDA [15]. The case study divides the
bug reports into n=17 distinct types, as 17 has already been
used as number of topics in Eclipse [15]. The contributors,
severity, reporting time, activity properties are also extracted
from different XML tags in a similar manner. The contributors
are then grouped against the corresponding bug types identified
by LDA.

Now, on arrival of new developers, they are presented
with the most representative words of each bug type. Table
III shows a few top most representative words of bug Type-
2 and 11. The table depicts that the representative keywords
give an idea about the corresponding type. For example, the
enlisted keywords against Type-2 indicates User Interface (UI)
related terms as well as bugs. If a developer selects Type-2,
the developer is added to the group of developers associated
with Type-2 bugs.

TABLE III. FEW TOP REPRESENTATIVE WORDS OF BUG TYPE-2 AND 11

Type 2 Click Editor Select Display Dialog Event
Type 11 Mozilla Agent Gecko Build User Windows

For comparative analysis, TAEN is compared with a team
assignment approach, KSAP [5]. A randomly selected test
dataset containing 250 fixed and 30 open bug reports have been
used for checking the allocation validity. The experimental
analysis allocates a team of N developers, where N is set to
10. The reason behind setting N to 10 is that it is reported that
Eclipse bug reports include on average 10 developers contribu-
tions [6]. Besides, for ensuring validation consistency between
KSAP and TAEN, K=50 top most contributors are taken from
both techniques for processing of Developer Collaboration
Extraction step.

The compatibility of TAEN is evaluated using the follow-
ing metrics - recall, effectiveness and workload distribution.
Recall@N refers to whether the top N allocated developers
contain the actual developers who fixed the report. The higher
number of actual developers included in the top N places, the
more correct the allocation is. The recall is calculated using
(2) similar to [6] -

Recall@N =
|{dev1, dev2, ..., devN} ∩ {GroundTruth}|

|GroundTruth|
(2)

Here, {dev1,dev2,...,devN} is the set of N allocated developers,
and {GroundTruth} refers to the set of actual fixers containing

100Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

the reporter, fixer and commenters. Table IV illustrates the
average Recall@10 achieved by TAEN and KSAP. TAEN had
a higher average recall (68.51) than KSAP. Consideration of
both recent and previous activities enabled TAEN to improve
the recall from 52.88 to 68.51.

TABLE IV. COMPARISON OF AVERAGE TEAM ALLOCATION RECALL@10

Approaches Average Recall@10
KSAP 52.88

TAEN 68.51

Effectiveness refers to the position of the first GroundTruth
developer in the allocated list. Not all the members of a team
generally play similar roles in an assigned task. Therefore, the
ranking in the suggested team plays a vital role in determining
task division. Approaches that allocate relevant developers at
the top of the list are considered more effective. A lower value
of this metric indicates higher effectiveness of the allocated
list. The values in Table V shows allocation effectiveness of
TAEN and KSAP. They also show the percentage of suggesting
the first relevant developer at Position 1 to 3. In 66.36% cases
TAEN shows the first revelant developer at Position 1 whereas
KSAP shows that in only 2.73% cases. The consideration of
recent activities enables TAEN to prioritize active developers
at top of the list. The percentage of Position 2 and 3 for TAEN
is less than KSAP because, TAEN covers most of the cases at
Position 1. The last column shows TAEN shows the relevant
developers on average near position 1.98 which is lower than
KSAP (3.1).

TABLE V. COMPARISON OF AVERAGE EFFECTIVENESS

Approaches Average No. of Cases (%) Average
EffectivenessPosition 1 Position 2 Position 3

KSAP 66.36 7.27 10.91 1.98
TAEN 2.73 57.27 11.82 3.1

In order to validate the task assignment to new developers,
current workload among the developers are counted from open
bug reports of 2016. The developers who do not have any past
history, i.e. they are not grouped under any of the bug types
are considered as new developers in the experimentation. The
bug solving preference of these new developers is determined
by the type of bugs they are currently assigned to. Based on
this preference, these developers are initially grouped with one
of the bug types. The 30 above mentioned open bug reports
are analyzed on both KSAP and TAEN. A partial view of
workload distribution among developers preferring bug Type-
15 is shown in Figure 3. The bars of Figure 3 clearly show that
KSAP assigns no tasks to the 6 new developers plotted at the
right end of the graph. However, TAEN successfully allocates
the new developers based on their preference.

For better understanding the variability of task assignment,
standard deviation of the workloads is calculated. Standard
deviation of a dataset depicts the variability of the data from
their mean point. A lower value of this metric represents less
variability i.e. equal workload distribution among developers.
The average standard deviation of workloads assigned by
the two techniques are enlisted in Table VI. TAEN has a

Figure 3: Workload Distribution of KSAP and TAEN

lower standard deviation of 30.05 than KSAP (46.33). The
preference based inclusion of new developers in the assignment
process, enabled TAEN to achieve lower standard deviation.
This significant decrease in the value of standard deviation
represents higher consistency of resource utilization by TAEN.

TABLE VI. COMPARISON OF VARIABILITY IN WORKLOAD DISTRIBUTION

Approaches Average Standard Deviation
KSAP 46.33

TAEN 30.05

V. CONCLUSION

Team allocation is generally done from previous fixed
reports. Due to ignoring recent activities, these approaches
may allocate inactive fixers. Both previous reports and recent
commits do not contain any information regarding the newly
joined developers. Not considering new developers in the
final allocation leads to improper workload distribution. To
overcome these limitations, TAEN is proposed, which assigns
bugs to both existing and new developers combining the
expertise and recency information.

The Bug Solving Preference Elicitation step first deter-
mines new developer’s choice of fixing certain types of bugs,
and adds them to the group of developers of the chosen type.
The New Bug Report Processing step identifies the type of
the incoming reports to extract the corresponding grouped
developers. Next, the Developer Collaboration Extraction step
generates a heterogeneous network from the previous reports
to find the collaboration of the extracted developers over
the network. The Expertise and Recency Combination step
then assigns a TAEN score to each developer based on their
collaboration expertise and recency. After checking the severity
of incoming reports, the Team Allocation step allocates a fixer
team by using TAEN score and current workloads.

For performing a case study on Eclipse JDT, 2500 fixed and
676 open bug reports were collected. A test set of 250 fixed and
30 open bug reports were used for comparison with an existing
technique, KSAP. The result shows that TAEN improves recall
from 52.88 to 68.51, and achieves increased effectiveness by
identifying the correct bug fixer near position 1.98. The results
also depict a significant decrease of standard deviation from

101Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

46.33 to 30.05 which indicates equal workload distribution. In
future, bug reports which are not previously handled by any
developers should be observed to check TAEN’s performance.

ACKNOWLEDGMENT

This work is supported by the fellowship from ICT Divi-
sion, Bangladesh. No - 56.00.0000.028.33.065.16 (Part-1)-772
Date 21-06-2016.

REFERENCES

[1] S. Banitaan and M. Alenezi, “Tram: An approach for assigning bug
reports using their metadata,” in Proceedings of the 3rd International
Conference on Communications and Information Technology (ICCIT),
June 19–21, 2013, Beirut, Lebanon. IEEE, 2013, pp. 215–219,
URL: http://info.psu.edu.sa/psu/cis/malenezi/pdfs/TRAM.pdf [accessed:
2016-10-30].

[2] V. Dedík and B. Rossi, “Automated bug triaging in an industrial
context,” in Proceedings of the 42th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), August
31–September 2, 2016, Limassol, Cyprus. IEEE, 2016, pp. 363–367,
URL: https://www.researchgate.net/profile/Bruno_Rossi2/publication/
308417176_Automated_Bug_Triaging_in_an_Industrial_Context/links/
57e3e3df08ae8d5908c1617b.pdf [accessed: 2016-12-01].

[3] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based on
historical bug-fix information,” in Proceedings of the 25th International
Symposium on Software Reliability Engineering (ISSRE), October 23–
26, 2014, Toulouse, France. IEEE, 2014, pp. 122–132, URL: https:
//hal.inria.fr/hal-01087444/document [accessed: 2016-05-20].

[4] O. Baysal, M. W. Godfrey, and R. Cohen, “A bug you like: A
framework for automated assignment of bugs,” in Proceedings of the
17th International Conference on Program Comprehension (ICPC),
May 17–19, 2009, British Columbia, Canada. IEEE, 2009, pp.
297–298, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.143.7283&rep=rep1&type=pdf [accessed: 2016-10-29].

[5] A. Khatun and K. Sakib, “A bug assignment technique based on bug
fixing expertise and source commit recency of developers,” in Proceed-
ings of the 19th International Conference on Computer and Informa-
tion Technology (ICCIT), December 18–20, 2016, Dhaka, Bangladesh.
IEEE, 2016, pp. 592–597, URL: http://sci-hub.cc/10.1109/iccitechn.
2016.7860265 [accessed: 2017-03-05].

[6] W. Zhang, S. Wang, and Q. Wang, “Ksap: An approach to bug report
assignment using knn search and heterogeneous proximity,” Information
and Software Technology, vol. 70, pp. 68–84, 2016, ISSN: 0950-5849.

[7] “Afrina/TREN,” Jan. 2017, URL: https://github.com/Afrina/TREN/
blob/master/TeamAssignMSTestProject/Data/TeamData/bug_data_
2009_2015.xml [accessed: 2017-01-10].

[8] V. B. Sawant and N. V. Alone, “A survey on various techniques for bug
triage,” International Research Journal of Engineering and Technology,
vol. 2, pp. 917–920, 2015, ISSN: 2395-0056.

[9] R. V. Sangle and R. D. Gawali, “Auto bug triage a need of software
industry,” International Journal of Engineering Science, vol. 6, pp.
8668–8670, 2016, ISSN: 2321-3361.

[10] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Proceedings of the 28th International
Conference on Software Maintenance (ICSM), September 23–30, 2012,
Trento, Italy. IEEE, 2012, pp. 451–460, URL: http://www.cs.wm.
edu/~mlinarev/pubs/ICSM’12-DevRecAuthorship.pdf [accessed: 2016-
10-20].

[11] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a
vocabulary-based expertise model of developers,” in Proceedings of the
6th International Working Conference on Mining Software Repositories
(MSR), May 16-17, 2009, Vancouver, Canada. IEEE, 2009, pp. 131–
140, URL: http://flosshub.org/system/files/131AssigningBugReports.pdf
[accessed: 2016-02-26].

[12] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging,” in Proceedings
of the 26th International Conference on Software Maintenance (ICSM),
September 12–18, 2010, Timisoara, Romania. IEEE, 2010, pp. 1–
10, URL: http://www.cs.ucr.edu/~pamelab/icsm10bhattacharya.pdf [ac-
cessed: 2016-02-26].

[13] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug
tossing graphs,” in Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering (ESEC/FSE), August 24–28,
2009, Amsterdam, Netherlands. ACM, 2009, pp. 111–120, URL: http://
143.89.40.4/~hunkim/images/6/65/Papers_jeong2009fse.pdf [accessed:
2016-05-30].

[14] L. Chen, X. Wang, and C. Liu, “An approach to improving bug
assignment with bug tossing graphs and bug similarities,” Journal of
Software, vol. 6, pp. 421–427, 2011, ISSN: 1796-217X.

[15] J.-W. Park, M.-W. Lee, J. Kim, S.-W. Hwang, and S. Kim, “Cost-aware
triage ranking algorithms for bug reporting systems,” Knowledge and
Information Systems, vol. 48, pp. 679âĂŞ–705, 2015, ISSN: 0219-3116.

[16] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “A time-based
approach to automatic bug report assignment,” Journal of Systems and
Software, vol. 102, pp. 109–122, 2015, ISSN: 0164-1212.

[17] “JDT Core Component - Eclipse,” Jan. 2017, URL: https://eclipse.org/
jdt/core/ [accessed: 2017-01-10].

102Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

