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Abstract—Recording audio or video is nowadays easier than 

ever. Almost every phone can do this task with high quality. 

This has some serious implications in forensic: almost every 

dialogue or event can be recorded and used as evidence in 

trials. The problem is that editing multimedia content has also 

become a very accessible operation. The advances of editing 

software make it possible with very convincing results for the 

untrained audience. Forged recordings could be used in trials. 

The need for multimedia forensic is imminent. There are two 

main directions of this field: probe authentication and noise 

reduction. This paper presents the research activities 

conducted to extract speech signal masked by loud music. The 

developed system is based on an adaptive system identification 

configuration. Various scenarios are studied showing the 

advantages and disadvantages of the adaptive algorithms that 

were tested. The influence of the acoustic environment over the 

performances of the proposed system is also studied and the 

results can help to determine if placing a microphone in a 
specific room could be used to intercept a speech. 

Keywords-adaptive algorithms; system identification; noise 

reduction; multimedia forensic. 

I. INTRODUCTION 

The technological advances made the recording of high 
quality multimedia content available to almost everyone. 
Phones have rapidly turned into small pocket computers and 
they are more affordable as time passes. Since phones are 
mainly used for speech communication, it is self-understood 
why audio recording is an easy task, but most of them are 
also fitted with at least one video camera allowing the user to 
capture full HD video for a decent period, like tens of 
minutes. On high end terminals, even state of the art 4K 
video can be recorded.   

From the security point of view, there are two sides of 
this situation, explained onwards. The first implication is: if 
anyone can store a clear multimedia recording of an event, it 
means that many trials should end very quickly. With clear 
evidence of the events, very little is, apparently, remaining to 
be evaluated. It is necessary to mention that along the 
evolution of the recording devices, the industry of 
multimedia editing software also grew, allowing one can edit 
the recordings before presenting them as evidence. This 
brings to light the second implication: the multimedia 
content can be edited and the verdict may not reflect the 
consequence of the real events. Special training to use these 
editing software is not needed, and some of them are 

available for free, so the malicious editing can be considered 
as easy as the recording. To the untrained audience, the 
forgeries could be very convincing. These two implications 
show the necessity of some authorities and technologies to 
counteract these illegal actions. This paper concentrates on 
the latter part. 

Before allowing some multimedia content as evidence 
into a trial, it must be determined if it is the original, 
unaltered version. This process is called content 
authentication and it represents one large field of multimedia 
forensics. There are other situations in which the material is 
not forged, but greatly affected by noise in such way that the 
key element (some specific spoken phrase or a zone of an 
image) is heavily masked. This is another research direction 
called noise reduction. The work presented in this paper is 
part of this topic and it extends the results shown in [1]. 

In [2], power spectral subtraction based methods for 
speech enhancement are presented. These methods could 
give very good results if the noise is slowly varying in time 
and the speech signal is not drowned into it. Other methods 
based on Wiener filtering or which use singular values 
decomposition (SVD) are presented in [3][4]. The method 
presented in this paper has the advantages of simplicity and 
good performances in harsh signal-to-noise ratio conditions, 
but, unlike the other methods, it is specifically designed for 
one particular situation. 

Besides this introduction, the rest of this paper is 
organized as follows. Section II describes a speech recovery 
method, Section III thoroughly describes the suitable 
adaptive algorithms [5][6], Section IV presents and discusses 
the results, and Section V concludes the paper. 

II. THE DESCRIPTION OF THE SPEECH RECOVERY 

APPROACH 

The studied situation is the following: if a group of 
people would like to speak about something confidential, it is 
obvious that they will take some measures to avoid being 
intercepted. If they suspect that there is a high chance for a 
microphone to be placed in the room, the easiest way to 
avoid being recorded when talking is to turn very loud any 
nearby music player. This will make the speech signal (i.e., 
the secret discussion) to be heavily masked (or “drowned”) 
by the loud music. The captured audio signal will be 
dominated by the music and could be considered useless. It 
is a very high chance that the source for the musical signal is 
a radio station or a labeled CD and so the melody has some 
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notoriety. Music identification software (like Shazam or 
SoundHound) very rarely fail to recognize even the most 
exotic tunes nowadays and they could be used to determine 
the masking melody. The original, studio quality, full length 
melody can be bought (or simply downloaded in many cases 
since an important part of artists give their music for free) 
and made available to the forensic engineer. The problem 
restates as: if the recorded signal is a mixture of the sought 
speech signal and a masking melody and if the melody is 
identified and available in studio quality, can the latter be 
processed in a way that could make it match the recorded 
melody so by subtracting these two signals, the speech 
would be recovered? This is a typical adaptive system 
identification situation.  

 The real situation has some specific elements like the 
acoustic properties of the room that were not discussed in the 
short description above. All the audio signals that propagate 
in a room will be affected by the acoustic impulse response 
of the room. The microphone will record the direct wave, but 
also all the waves that are reflected by the various objects 
present in the room. Since the recorded signal will be 
composed of multiple delayed replicas of the direct wave, the 
propagation of the sound waves between two points in a 
room can be modelled using a finite impulse response (FIR) 
filter. Taking this added element into consideration, a more 
accurate situation is illustrated in Figure 1. The properties of 
the impulse response (length, sparsity, etc.) have great 
impact on determining the solution that could be used to 
extract the speech from the masking music, as it is shown in 
the following sections. 

 Let us denote with sspeech(n) the speech signal unaffected 
by the acoustic environment (i.e., that speech signal that 
would be recorded if the microphone and the speaker are in 
open space conditions) and with nmusic(n) the studio quality 
masking musical signal. The signal recorded using the 
microphone that is placed in the room [r(n)] is modelled as a 
mixture of the two aforementioned signals filtered with the 
acoustic impulse response, denoted with h(n). Keeping in 
mind the speakers’ intention to conceal their dialogue, the 
musical signal dominates the mixture. The recorded signal is 
analyzed using a music identification software, and the 
masking song is found and acquired. Furthermore, the louder 
the masking music is turned, the easier becomes the job of 
the music identification software. This means that in their try 
to conceal their secret, the speakers could unintentionally 
help the extraction of the masked dialogue. There are high 
chances that the music being played in the room is in the 
same format as the music that is acquired in studio quality, 
since radio stations use the commercially available version 
also. If the music is played from a CD, a CD can also be 
made available. In the event that the music is transcoded, the 
problem gets tougher because the CD version must be 
encoded using various codecs, various encoding settings, 
then decoded and processed by the forensic software. This 
scenario involving the estimation of the encoder is not 
considered in this paper. The final element that is required to 
recover the speech is a good estimate for the room’s acoustic 
impulse response denoted with hest(n), which could be 
determined using an adaptive filter connected in the system 

identification configuration. The result of filtering the 
acquired studio quality melody with hest(n) and then 
subtracting it from the recorded mixture will be called the 
error signal [e(n)] and it will represent a good estimate for 
the secret speech signal. In fact, in the ideal situation of 
perfect extraction (no trace of music can be identified in the 
extracted signal), the recovered speech will be the ideal 
speech (the direct sound wave) filtered with the room’s 
acoustic impulse response. This is not a problem since this 
kind of signals are heard every day when speaking with 
somebody in a room. The presented method is practical in 
the considered scenarios. 

 

III. ADAPTIVE ALGORITHMS 

 
 The operation that is at the foundation of eliminating the 

masking music is the identification of the system that models 
the acoustic properties of the room. An adaptive filter will 
evolve in such way to match the filter that models the sound 
waves’ propagation in the room. Generally, an adaptive 
algorithm’s task is to minimize a cost function. Updating the 
impulse response of the adaptive filter can be done in 
multiple ways, using various adaptive algorithms. 

Typically, an adaptive algorithm has two input signals 
denoted with x(n) and d(n). Usually x(n) is called the input 
signal and d(n) is known as the desired signal. In the 
described system identification problem, the signal d(n) is 
the output of the unknown filter (i.e., the acoustic impulse 
response of the room). The vector containing the coefficients 
of the unknown filter is denoted onward with wo and the one 
containing the coefficients of the adaptive filter is denoted 
with w because these are the common notations used in 
literature. The quantity that gives and characterizes the 
quality of the estimation is known as the misalignment and is 
evaluated as: 

      om n n n w w  

where   is the l2 norm of a vector. 

Another variant to evaluate the performance of the 
algorithm is the normalized misalignment, computed as: 

 
Figure 1.  The adaptive noise reduction configuration in the proposed 

approach. 
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 A cost function based on the error signal [the difference 
between d(n) and the output of the adaptive filter, denoted 
with y(n)] is considered and its minimization represents an 
optimization problem. Various approaches are used by 
different algorithms to give the solution. Only real signals 
are considered in this paper (the signal samples and filter 
coefficients are real numbers). 

A. The least-mean-squares and the normalized least-

mean-squares algorithms 

The cost function used in the case of the least-mean-
squares (LMS) algorithm is the square error, hence the name 
of the algorithm. It is defined as: 

    2C n e n  

where e(n) denotes the aforementioned error signal. 
The minimization of the cost function is done with 

respect to the w vector. The solution gives the impulse 
response of the adaptive filter at the n sample time: 

            T1 1 ,n n n d n n n       w w x w x  

where µ is a parameter known as step-size and {}T
 is the 

transposition operator. If the length of the adaptive filter is 
considered equal to L, the structure of the input data vector 
involved in (4) is: 

        
T

, 1 , , 1n x n x n x n L      x  

The step-size will be chosen by making a compromise 
between a better estimation quality (given by a smaller step-
size) and a faster, but coarser estimation. The µ parameter 
cannot take any value. For assuring the convergence of the 
algorithm, µ must respect the following relation: 


 

2
0

tr
 

R
 

Where tr{} is the trace of a matrix and R is the 
autocorrelation matrix of the input signal computed as: 

     TE n nR x x  

where E{} is the statistical expectation. 
A great disadvantage of the LMS algorithm arises from 

equations (6) and (7): in practice, choosing a step-size that 
will guarantee convergence is a difficult task since the LMS 
depends on the scaling of the input signal. This important 
problem is solved in the normalized LMS (NLMS) algorithm 

by scaling the step-size with the power of the input signal. 
Equation (4) becomes: 

    
       

   

T

T

1
1

n d n n n
n n

n n

    
  

x w x
w w

x x
 

where µ must now respect only 0 2  . The greatest 

convergence speed is obtained when 1  . Since the 

behavior of the algorithm on the 0 1  interval is similar 

with the behavior on the 1 2   interval, the first one is 

preferred in practice because it greatly reduces the risk of the 
algorithm going out of convergence.  

Since in (8) a division to the power of the input signal is 
computed, this could generate problems if x(n) is almost 
zero. To avoid the situation, a small positive number named 
the regularization parameter (usually denoted with δ) is 
introduced, and the final update equation for the NLMS 
algorithm becomes: 

    
       

   

T

T

1
1

n d n n n
n n

n n





   
  



x w x
w w

x x
 

The main advantages of the NLMS algorithm are its 
simplicity and reduced computational cost. One disadvantage 
could be considered the limited performance tweaking 
parameters (in this form, only the step-size can be adjusted 
by the user). 

B. The affine projection algorithm 

One cause of the performance limitation in the case of 
the NLMS algorithm is the fact that it uses only one input 
signal vector [x(n)]. The performance worsens for correlated 
input data. The affine projection algorithm (APA) increases 
the performance in the mentioned situation by using more 
than one input signal vector. The number of the input signal 
vectors used by the algorithm is controlled by a specific 
parameter named “projection order”, denoted with M. The 
existence of this new tweakable parameter increases the 
flexibility of the algorithm in terms of the convergence 
speed/misalignment compromise. The obvious consequence 
of this operation is an increase in the computational 
complexity. The M L  matrix containing the M input signal 
vectors, denoted with A, is constructed as: 

        T  =  , 1 ,..., 1n n n n M +   A x x x  

Using this new matrix approach, it can be shown that 
equation (9) becomes: 

            
1

T T1 + ,Mn n n n n n 


   
 

w w A A A I e 

where IM is the M order identity matrix and now 
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      = ,n n ne d y  

        
T

, 1 ,..., 1n d n d n d n M     d  

      1n n n y A w  

A major computational load represented by the inverse of 
a matrix can be observed in (11). Larger projection orders 
lead to an increase in the convergence speed, but also to a 
worse system identification. Another observation is that the 
NLMS algorithm is a particular case of APA, obtained 
when 1M  . An actual topic of interest is the convergence 
of the APA. If the evolution of the misalignment can be 
computed in some sufficiently general situations, M and µ 
can be chosen to obtain the desired performances. The 
quality of the estimation can be evaluated by: 

        2 2

oE   En n n c w w  

In a more realistic situation, a zero mean white noise (named 
system noise) denoted with v(n), having a variance equal to 

where v

 is intervening at the output of the unknown 

system, transforming the desired signal in: 
 

      o =  +n n nd A w v  

with v(n) respecting the structure in (13). In these conditions, 
by denoting: 

        
-1

T T    + Mn n n n  
 

C A A A I  

 
 equation (15) becomes: 



  
          

          

2

2T

2 T T

E  = 

tr E 1 1

+ tr E E + ,M

L

n

n n n n

n n n n T





  

c

c c I C A

v v C C

 

where 

            T

 

2 tr E 1 .

M

L

T

n n n n n 



    v c I C A C
 

The general solution in the case of a first level of 
approximation [7] shows that:  



       

    
 

2 2 2

2 2 2

2

E  = E 0 , ,

, , , 1- , ,
+ ,

1- , ,

n
x

n
x v x

x

n a M,L

b M,L a M,L

a M,L

 

    

 

c c

 

where x

is the variance of the input signal and 

  2 2 2 41 2x x xa ,  , M, L  =  M + LM       

 

  2 2 2 2 2,  ,  ,  = x v x v Mb M,  LL M +T       


2

   
+xL




 
 

Equation (21) gives the convergence speed, while the 
residual misalignment can be computed using (22). Under 
the convergence condition, in this first level of 
approximation the residual misalignment is found as: 

   
   

2

2

2

2
lim E  

2 1 , ,

v

n
x

M

x

L

L

T
n

a M,L

 

   







c  

with 0,MT  which would mean that the residual 

misalignment is independent of M. Experimental results 
contradict this statement.  

The analysis done using a second order approximation 
shows that: 

      
1

1
2 2 2 2 2

=1

 2 1 1

M
m

M x x v x

m

T   L L M m L      




     

This analysis can be used to decide on choosing the APA 
working parameters to satisfy the necessities of a specific 
situation. Further details based on less restrictive conditions 
are given in [8].  

C. Proportionate variants of APA 

The aforementioned adaptive algorithms do not make use 
of any information about the filter to be estimated. In 
particular situations, some properties of the unknown filter 
can be known a priori. In the context of the application 
presented in this paper, the unknown system is represented 
by acoustic impulse responses, which are usually sparse (a 
small part of coefficients is significant and the rest are almost 
equal to zero). The residual misalignment in a situation when 
only the significant coefficients are estimated (and the others 
are considered equal to zero) will be almost equal with the 
residual misalignment when the filter evolves to estimate the 
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whole impulse response. It would clearly be an advantage to 
prioritize the estimation of the significant coefficients 
because it would lead to increase the convergence speed. The 
proportionate variants of adaptive algorithms exploit these 
properties. The update equation of APA in this case 
becomes: 

          T 11 + 1n n n n n   w w G A Z e  

      T1 Mn n n   Z A G A I  

where  1n G is a L L diagonal matrix of gains 

representing the way of exploiting the properties of sparse 

impulse responses. Each element of the  1n G matrix is 

computed using [9]: 

    
 

 
1

0

11
1 1

2
2 1

l

l L

k

k

w n
g n

L
w n










   

 
 

with  0, 1l L  , 1 1    and wl representing the 

elements of the w vector. Typically, the w vector is initially 
filled with zeros, which would lead to similar problems as 
the ones discussed about equation (8). The problem is solved 
in a similar manner, by introducing a small positive constant 
denoted with ε. This version of APA is named improved 
proportionate APA (IPAPA). In the particular case of M=1, a 
proportionate NLMS algorithm is obtained. 

The operations presented in (26) can be simplified by 
exploiting the structure of the A matrix. A more efficient 
version of IPAPA was proposed in [10]. The update equation 
for this algorithm is: 

            
1

1 +n n n n n n 


    w w P A P I e  

where the structure of P matrix is 

        1 2, ,..., Mn n n n   P p p p  

The elements of P can be computed recursively as: 

        21   1Mn n n n    P g x P  

where  2 1M nP is a 1L M  matrix containing the last 

1M   columns of  1n P : 

        2 2 31 1 , 1 ,..., 1M Mn n n n      P p p p  

and is the Hadamard product. The structure of 

 1n g can be found by knowing: 

        11 nn n n  Gg x x  

This variant of IPAPA is called memory IPAPA 
(MIPAPA).  

D. The recursive least-squares algorithm 

The algorithms presented above have difficulties in 
situations in which the input signals are highly correlated. 
The recursive least-squares (RLS) algorithm offers a higher 
convergence rate in such situations, but its drawback is its 
high computational complexity. This algorithm is part of the 
Kalman filters family. Unlike the LMS and the NLMS 
algorithms, the RLS uses more than one sample of the error 
signal in its coefficients update equation. The cost function 
that is used by the RLS is: 

     
2

1

λ ,
n

n l

L

l

C n e l n



w  

where λ is the RLS specific parameter called “forgetting 
factor”. For real signals: 

        T,e l n d l n l w x  

The coefficients of the adaptive filter are found by 
minimizing the cost function with respect to the w vector. 
The solution is found as: 

      L Ln n nR w D  

where RL is the correlation matrix and DL is the cross-
correlation vector. These two quantities are computed as: 

      T

1

λ
n

n l

L

l

n l l



R x x  

      
1

λ
n

n l

L

l

n l d l



D x  

Keeping in mind that x is a vector with the length equal 
to L, solving the above equations would require more and 
more memory as the time index n grows. Fortunately, as the 
name implies, the w vector can be computed recursively. 

The relations that define the RLS algorithm are: 

      T( ) 1e n d n n n  w x  
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  
   

     

1

T 1

1

λ 1

L

L

n n
n

n n n








 

R x
k

x R x
 

        1n n n e n  w w k  

          1 1 T 11
1 1

λ
L L Ln n n n n       R R k x R  

where k(n) is called the Kalman gain vector. 
The forgetting factor, in the classical approach, is a 

positive constant ( 0 λ 1  ) that affects the convergence 
speed, the residual misalignment, the stability and, very 
important in the stated problem, the tracking capabilities in 
the case in which the unknown system changes over time. 
Unfortunately, a compromise must be made between the 
previous performance elements [11]. A forgetting factor very 
close to 1 will make the RLS algorithm to function with 
good stability and low residual misalignment, but the 
tracking capabilities are affected. 

Typically, in a system identification configuration, the 
output of the unknown filter is summed with another signal 
called system noise, as shown in (16). In the context of 
extracting a speech signal from loud music, the speech signal 
plays the role of the system noise. The main objective is to 
make the error signal equal to the speech signal, not to make 
it equal to zero. It is shown in [12] that a low forgetting 

factor would determine        T

oy n n n v n x w which 

means    y n d n and   0e n  , while in the case of 

λ 1 the output of the adaptive filter would be 

     T

oy n n n x w and consequently    e n v n . It can 

be concluded that in the system identification configuration, 
the RLS algorithm should work with a forgetting factor very 
close to 1. While the initial convergence speed would be 
satisfactory, the algorithm would lack tracking capabilities. 
A smaller λ would improve the tracking, but will 

determine   0e n  , so a compromise must be made, which 

led to the development of the variable forgetting factor RLS 
(VFF-RLS) algorithms. 

E. The variable forgetting factor recursive least-squares 

algorithm 

The e(n) signal in (39) uses  T 1nw , hence its name 

could be considered a priori error, with its power being 

    2 2E ee n n . Starting from it, an a posteriori error 

can also be defined as: 

              T T1n d n n n e n n n      w x x k  

In the stated problem, the aim is to recover the speech 
signal which is, at this stage, modeled by the system noise 

leading to imposing   2 2E vn  . Using this new 

condition in (43), if the input signal is not correlated with the 
error signal, the result is: 


 

   

 

 

2 2

2
E 1

λ

v

e

p n n

n p n n





   
   

    

 

where        T 1 1Lp n n n n x R x . Another assumption 

is that the forgetting factor is time dependent and 
deterministic. The quadratic equation (44) has the following 
solution: 

  
 

 
p v

e v

n
n

n

 


 



 

where     2 2E pp n n . Statistical expectation is avoided 

in practice, so another method is used to estimate the power 

of the   ,e n  p n  and  v n signals. By using exponential 

windows: 

        2 2 2ˆ ˆ 1 1e en n e n       

        2 2 2ˆ ˆ 1 1p pn n p n       

where the weighting factor is  1 1/ ,K L    with 

2K  . The initial values of the two power estimates 

are    2 2ˆ ˆ0 0 0e p   . If a longer exponential window is 

used, the power of  v n  can be estimated from  e n , from 

practical reasons, resulting: 

        2 2 2ˆ ˆ 1 1v vn n e n       

with  1 1/ K L    , K K  . 

Care must be taken in practice when evaluating (45) 
because it is constructed using power estimates. A solution is 

to impose   maxλn  in the case of: 

    ˆ ˆ ,  with 1 2e vn n      

The forgetting factor can now be evaluated using [13]: 

  
     

   max

ˆ ˆ,  

ˆ ˆλ ,  

computed e v

e v

n n n
n

n n

  


 

 
 


 
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  
   

   
max

ˆ ˆ
min ,λ

ˆ ˆξ

p v

computed

e v

n n
n

n n

 


 

 
  

   

 

where ξ  is a small positive constant to prevent problems that 

could occur when    ˆ ˆ
e vn n  . Before the algorithm 

converges (i.e., the adaptive filter is not yet a very good 

estimation of the unknown system),  ˆ
e n is larger than 

 ˆ
v n and the forgetting factor will have lower values, 

determining fast convergence. This situation occurs when 
there is a change in the unknown system. The lower value of 
λ(n) will offer also good tracking capabilities. In the other 
case, when the algorithm reaches the steady-state, 

   ˆ ˆ
e vn n   and   maxλ ,n  which assures low residual 

misalignment. 

IV. RESULTS 

A. The forensic speech recovery software based on the 

recursive least-squares algorithm 

A forensic application for recovering speech signals 
drowned in loud music, based on the principles described in 
Section II and which uses the RLS algorithm for identifying 
was initially implemented using Simulink. Its interface is 
presented in Figure 2. All the parameters can be controlled 
very ergonomically by turning knobs. Its functioning is 
detailed onwards. 

Before using this software, the user must have at his 
disposal the two input signals, the mixture recorded in the 
room and the studio quality masking melody, identified with 
a music identification software. The studio quality melody is 
recommended to be processed before loading it into the 

system from two points of view. First, its sample rate must 
match the sample rate of the recorded mixture, which is 
typically 8 kHz since the targeted signal is a speech and 
speech signals, thanks to their spectral properties, are 
sampled with 8 kHz in most general-purpose applications. 
Second, the masking signal in the recorded mixture, in most 
of the situations, is not temporarily aligned with the studio 
quality masking melody (i.e., the recorded mixture does not 
start at the very beginning of the masking melody) and the 
two input signals should be pre-aligned. This aspect can be 
handled by the adaptive filter if its length is sufficiently 
large, but the length of the filter increases the computational 
complexity. A very important aspect is the fact that the 
adaptive filter can only delay the input signal to align it with 
the studio quality melody. The user must take into account 
this very important necessity. The pre-alignment operation 
can be done in multiple ways [14] and itself it represents an 
independent field of research. 

After these operations are done, the two signals are ready 
to be processed by the forensic software. The signals must be 
available in PCM (Pulse Code Modulation) Wave format. 
The multimedia file reading blocks, named “From 
Multimedia File” load the input signals. The next block in 
the way of the signals is a splitter with the structure 
presented in Figure 3, which will determine if the signals are 
routed directly into the adaptive algorithm or each of them 
will pass through a band pass filter. The splitter is controlled 
by the rocking switch labeled “Band-pass filtering”. If it is 
set to “On”, the signals are routed through the band-pass 
filter. In the other case, the signals are fed straight into the 
adaptive algorithm. The parameters of the band-pass filter 
(i.e., the central frequency and the bandwidth) can be set 
using two knobs: “Central frequency knob” and “Bandwidth 
knob”. The role of the band-pass filters is to pre-select the 
spectral band of interest (the band in which the speech signal 

 
Figure 2.      The forensic software for speech recovering based on the RLS algorithm. 
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is concentrated). This way some efforts of the adaptive filter 
are removed, increasing the efficiency. It is obvious that the 
two band-pass filters must be identical, or else the effect of 
an unbalance must be countered by the adaptive filter, 
increasing the computational effort. 

The “RLS Filter” block implements the RLS algorithm 
described in the previous section. The forgetting factor of the 
algorithm can be tuned in real time using the “Forgetting 
factor knob”. The recorded mixture will represent the desired 
signal and the studio quality melody (after pre-processing) 
will represent the input signal. The speech signal will be 
recovered as the error signal.  

The last very important parameter is the length of the 
adaptive filter, which can be set using the “Filter length 
knob”. The theory states that the adaptive algorithm will 
work if its length is equal or greater that the length of the 
unknown system. It is also intuitively true: if a filter with a 
length equal to L1 is estimated using an adaptive filter with a 
length equal to L2>L1, in the ideal case, the first L1 
coefficients of the adaptive filter will be equal to the 
coefficients of the filter that is estimated and the remaining 

L2L1 coefficients of the adaptive filter will be equal to zero. 
If L2<L1, then only L2 coefficients of the unknown filter can 
be estimated. Depending on the difference of the two lengths 
and the properties of the unknown filter, a good enough 
estimation can be obtained, but clearly it cannot be 
guaranteed. Because the system can work using various 
sample rates, the length of the adaptive filter is set in 
milliseconds, to simplify the user’s task to compute it in 
samples for each sampling frequency that is used. The length 
of the adaptive filter greatly affects the computational 
complexity. If information about the physical properties of 
the room (volume, furniture etc.) is known, the length of the 
filter which will represent the acoustic impulse response of 
the room can be roughly determined a priori using acoustic 
notions like reverberation time. 

The software features a decimation knob named 
“Decimation factor switch” which, as the name suggests, 
will decimate both input signals before processing. It is 
useful when the recorded mixture has a higher sample rate or 
when a quick test run is desired, to reduce the computational 
complexity and the processing time consequently. 

For testing the software, a speech signal was mixed with 
a musical signal (which played the role of the masking noise) 

in 40 dB signal-to-noise ratio. Afterwards, this mixture was 
filtered using an acoustic impulse response illustrated in 
Figure 4. The filtered mixture and the original musical signal 
were used as input signals in the presented software. The 
RLS algorithm provide very fast convergence rate and good 
misalignment, visible in Figure 5, which can be observed in 
the very accurate recovery of the speech signal in Figure 6. 
In this case changes in the unknown system were not 
considered. 

B. The forensic speech recovery software based on the 

variable forgetting factor recursive least-squares 
algorithm 

In a real situation, the people that are having the 
confidential conversation that they try to conceal will not 
remain perfectly still. Instead, naturally, they can move 
around affecting the acoustic impulse response of the room. 
The impulse response of interest is the one that characterizes 
the propagation of the masking signal. To subtract the 
musical signal, this impulse response must be accurately 

 

Figure 4.      The impulse response used to model the acoustic 

environment. 

 

 

 
 

Figure 5.      The variation of the misalignment for the RLS algorithm. 

 

 

Figure 3.      The contents of the Split block that was created to permit the 

selection of the signals to be fed in the adaptive filter (original signals or 

band-pass filtered signals). 
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estimated. Other events could happen, which also will lead to 
the modification of the discussed impulse response like the 
opening or closing of a door, the entrance or exit of a person 
in/from the room, the opening of a window, etc. In 
conclusion, a real-world unknown system has a high chance 
of changing over time.  

Testing the RLS based software in such situations 
confirmed the poor tracking capabilities of the algorithm 
when the forgetting factor is close to 1, as it can be observed 
in Figure 7. After 5 seconds, the unknown system changes 
(the impulse response was shifted with 8 samples). The 
absolute error means the absolute values of the signal 
obtained by subtracting the recovered signal from the 
original (reference) signal. In practice, the reference signal 
would not be available. It is used here to highlight the 
performances of the proposed software. The RLS algorithm 

gives a very high recovery error after the change, which 
decreases very slowly. The VFF-RLS algorithm tracks the 
system change very quickly [15]. The largest absolute value 
of the recovery error for the VFF-RLS is still much smaller 
than the error given by the classical RLS algorithm. The 

 

Figure 6.      The performances of the RLS algorithm in the given 

situation. 

 

 

Figure 7.      The performances of the RLS and VFF-RLS algorithms in 

the case in which a change in the acoustic parameters occurs. 

 

 

Figure 8.    The variation of the VFF-RLS parameters (see the title of each 

graph for identifying the parameters). 

 

Figure 9.    The variation of the forgetting factor. 

 

Figure 10.      The variation of the misalignment for the two adaptive 

algorithms. 
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variation of the VFF-RLS specific parameters and of the 
forgetting factor can be observed in Figure 8 and Figure 9, 
respectively. The variation of the misalignment is presented 
in Figure 10. 

C. The impact of the acoustic environment on the proposed 

forensic software 

The acoustic impulse response greatly affects the 
performances of the proposed system. One key parameter is 
its length. Since the unknown system can be considered that 
it changes frequently, it becomes of importance to determine 
the length of the unknown system for which the 
performances are acceptable.  

For these experiments, a longer impulse response was 
used (512 samples long), depicted in Figure 11. The length 
of the impulse response used in the experiments was 
progressively increased, starting with 128 samples and 
incrementing it with 64 samples. It was determined that 
acceptable quality of the recovered speech signal is achieved 

when the misalignment reaches 20 dB. The results are 
illustrated in Figure 12.  

The RLS algorithm failed to track the change even in the 
shortest case and it was not tested for longer impulse 
responses. In the case of 512 samples, the VFF-RLS would 
take around one second to achieve the desired misalignment, 
meaning that the same duration of the recovered signal 
would be unintelligible. The results in this section could help 
in taking the decision if placing a microphone in a specific 
room is worth it or not. The length of the impulse response 
of the room can be coarsely determined by a trained person if 
he/she enters the room, by studying the volume of the room 
and the materials that are placed there. After the inspection, 
knowledge about acoustics can be used, like Sabine’s 
reverberation time formula detailed in (52), for determining 
the approximate length of the impulse response:  

 60 0.161
V

RT
S a




 

where V is the volume of the room, S is the total surface area 
of the room and a is the average absorption coefficient of the 
surfaces present in the room. 

D. The performances of the affine projection algorithm in 

the given situation 

The RLS gives very good results in recovering the speech 
signal if the unknown system does not change in time. It was 
shown that the VFF-RLS can handle the situations in which 
there are changes in the system to be estimated if its length is 
reasonably short. It is very important to remember that RLS 
and VFF-RLS have a great computational complexity and 
consequently the processing times can be very long. The 
affine projection algorithm is a good candidate for 
decreasing the computational complexity. The software was 
implemented with this algorithm and similar tests were 

 

Figure 11.      The impulse response used for studying the impact of 

acoustic parameters on the proposed software. 

 

 

Figure 12.    The variation of the misalignment for the two adaptive algorithms with respect to the length of the impulse response. 
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performed. For the 512 samples long impulse response, the 
results are illustrated in Figure 13 and Figure 14.  

The performances that were obtained qualify APA for 
solving the investigated situation, but they are lower than in 
the case of VFF-RLS. It is very important to observe the 
initial convergence in the case of the two algorithms. The 
RLS based solutions have a very fast initial convergence, 
while the convergence of APA is almost the same in the 
beginning as it is after a system change. 

Since the acoustic impulse responses are usually sparse, a 
proportionate version of APA could show better 
performances that the classical APA. The MIPAPA was 
tested and it achieved a better convergence speed than the 
classical APA, as it can be observed in Figure 15. For 
comparison, the NLMS algorithm and its proportionate 
version IPNLMS obtained by using a projection order equal 
to 1 in MIPAPA, were also tested and their misalignment 

was illustrated in the same figure. 

V. CONCLUSION AND FUTURE WORK 

This paper describes the importance of multimedia 
forensic field and presents a practical method for extracting a 
speech signal drowned in loud music. The core of a forensic 
software capable of succeeding at such task is a system 
identification problem, which is a typical adaptive systems 
application. 

Various adaptive algorithms were presented in detail to 
clearly observe their behavior and understand their suitability 
to be used in developing the desired forensic software. The 
unknown system in the stated problem is an acoustic impulse 
response which is usually sparse. A proportionate variant of 
the affine projection algorithm (MIPAPA) was also 
presented because this class could perform very well in such 
conditions. The importance of system tracking was 
highlighted and a variable forgetting factor recursive least-
squares algorithm was described. It combines the great 
performances of the RLS algorithm with a good capacity of 
tracking, without drastically increasing the computational 
complexity. 

A forensic software based on the RLS algorithm was 
implemented in Simulink to make its interface very easy to 
use. All the details about the implementation were given and 
the obtained performances were presented and discussed. 
The second variant was implemented based on the VFF-RLS 
algorithm and noticeable performance improvements were 
observed.  

The impact of the acoustic environment on the software’s 
performance was studied. Using the results in this paper, it 
can be determined if a microphone is worth to be placed in a 
certain room based on its acoustic properties.  

To decrease the computational complexity, the RLS 
based algorithms were replaced by APA, with an expected 
(but not dramatic) decrease in performance. Since most 
acoustic impulse responses are sparse, the MIPAPA was 
investigated and it was shown that it behaves better than 

 

Figure 13.      The variation of the misalignment for the estimation of an 

impulse response with L = 512, µ = 0.5 and various projection orders M, 
from 1 to 8. 

 

Figure 14.      The variation of the misalignment for the estimation of an 

impulse response with L = 512, µ = 0.2 and various projection orders M, 
from 1 to 8. 

 

 

Figure 15.      The variation of the misalignment of various adaptive 

algorithms when estimating the impulse response illustrated in Figure11 
with change after 15 seconds (M=2, L=512, µ=0.2). 
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APA. Since the computational complexity of the two 
algorithms is similar, the MIPAPA is preferred for solving 
this problem. 

Future work will include the investigation of the method 
when other types of impulse response changes are 
considered. 
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