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Abstract—In this paper we propose a simulation modeling
approach based on aggregate process times for the performance
analysis of order picking workstations in automated warehouses
with first-in-first-out processing of orders. The aggregate process
time distribution is calculated from tote arrival and departure
times. We refer to the aggregate process time as the effective
process time. An aggregate model uses the effective process
time distributions as input to predict tote and order flow times.
Results from experimental settings show that the aggregate model
accurately predicts the mean and variability of tote and order
flow times. As a case study, we develop an aggregate model to
predict flow times for a real, operating warehouse. The resulting
flow time predictions give satisfactory accuracy for both tote and
order flow times. Meaningful insights are obtained for improving
the performance of the warehouse.

Keywords—Order picking; Polling system; Simulation; Aggre-
gation; Performance analysis

I. INTRODUCTION

Order picking has been identified as the most expensive
process in a warehouse. It is estimated that 55% of the total
warehouse operating expenses is caused by order picking only
[2]. Even in automated warehouses, order picking remains a
very capital intensive operation [3]. This fact alone highlights
the importance of performance analysis and improvement of
order picking systems.

In this paper we consider a product-to-picker, end-of-aisle,
unit-load order picking system [4], with totes as unit-loads.
An AS/RS (Automated Storage/Retrieval System) is used to
retrieve product totes from a storage area. The totes are then
transported using conveyors to an order picking workstation.
At the workstation, a picker takes the required amount of
products from the totes. Afterwards, totes with remaining
items are stored back by the AS/RS.

For automated warehouses, the existing literature mostly
focuses on the AS/RS [5]. Koh, Kwon and Kim [6] developed
an analytical model for a miniload AS/RS with a horse-shoe
style buffer. Park, Foley, and Frazelle [7] analyzed the per-
formance of a miniload AS/RS with two-class storage. Bozer
and Cho [8] derived closed-form analytical results to evaluate
the performance of AS/RS under stochastic demand. Hur et
al. [9] developed an M/G/1 queueing model to estimate

∗This article is an extended version of [1].

the performance of a unit-load AS/RS. Other references on
performance analysis of similar AS/RS are available in the
recent review by Roodbergen and Vis [4].

An order picking workstation can be regarded as a spe-
cial type of polling system, where a number of queues is
attended by a single server in a certain order. Several analytical
queueing models of such systems exist, see e.g., references
[10] [11] [12] [13]. Typically these methods consider gated
or exhaustive service policies, or a combination of the two.
Another variation is the k−limited polling system where the
server continues to work at a queue until either a predefined
number of customers k is served or until the queue becomes
empty (see e.g., [14]). These polling variants, however, do not
fully correspond to the order picking workstation we consider.
In our case, a picker always completes an order before starting
to pick items for the next order. Hence, a picker may be idle
at one queue (i.e., waiting for the remaining totes to arrive)
while other queues are filled with totes.

We present a simulation model for quantifying the mean
and variability of tote and order flow times for this type of
order picking workstation. A key aspect of our model is that
we do not model in detail the various outages that contribute
to the flow time performance. That is, the human pickers,
picking faults, setup times, picking equipment failures, etc.
are not modeled in every detail. In practice, these are typically
difficult to quantify [15]. Instead, we model them by means
of an aggregate process time distribution. The idea is that we
want to obtain the aggregate process time distribution from tote
arrival and departure events of the order picking workstation
in operation. Here we start from the concept of EPT (Effective
Process Time) by Hopp and Spearman [16] and the concept of
measuring EPT distribution from arrival and departure events
[17], using a sample path equation [18].

Gu et al. [19] concluded in their recent literature review
that studies describing validated or applied design models,
and practical case studies will give important contributions
to warehouse research in the future. This paper includes an
extensive warehouse case study based on data obtained from
a real, operating warehouse.

The remainder of this paper is organized as follows. Sec-
tion II describes the order picking workstation. Section III
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Fig. 1. Order picking workstation.

describes the simulation model. Section IV elaborates the ag-
gregation method and the EPT measurement method. Section
V discusses a number of validation experiments. Section VI
provides a case study to see the performance of the proposed
method in a realistic setting. Section VII concludes the paper.

II. SYSTEM DESCRIPTION

Figure 1 shows the layout of the order picking workstation
under study. This system can be classified as a product-to-
picker system [20]. Pickers work to fulfill orders. An order
consists of a number of order lines. The number of order lines
in an order is referred to as order size. Order sizes may vary
significantly. Internet orders, for example, may have a small
order size while orders from supermarkets may have a very
large order size. An order line represents the required number
of items from a certain SKU (Stock Keeping Unit). A product
tote contains items of the same SKU type.

At the order picking workstation, arriving product totes form
queues on buffer conveyors. Once the picker and the required
product tote are available, the product tote will be removed
from the buffer conveyor and transported to the pick position
where the picker stands. The picker then picks a number of
required items from the product tote and puts them in an order
tote. The picker works on one order at a time until all lines of
the order have been picked and the order is said to be finished.
When an order is finished, the picker moves the finished order
tote to a take-away conveyor that brings the order tote to a
consolidation area. It is possible that more than one order tote
is needed to fulfill an order due to the number of required
items in that order or the size of the items being picked. In
that case we assume the order has been split into suborders
accordingly, which means that in the remainder of this paper
we assume that every order corresponds to a single order tote.
If a product tote is not yet empty after item-picking, the tote
will be returned to the storage area using a return conveyor.

Order picking workstations have a typical characteristic that
distinguishes them from ordinary manufacturing workstations.
An order picking workstation receives a number of product
totes for different orders. In the type of system that we consider
here, the picker can only pick items from the product totes that
belong to the order currently being processed, known as the
active order. As such, only product totes required to fulfill the
active order are sent in a FIFO (First-In-First-Out) sequence
from the buffer conveyor to the pick position, while all other
product totes wait in the queue. If there are no product totes
in the queue that belong to the active order, then the picker
will be idle although totes for other orders may be present. In
this system, totes of three orders may arrive simultaneously
at the buffer conveyor. They are sorted such that the picker
always has access to the totes of the active order.

Once all order lines of the active order are finished, the next
order is processed following a FIFO sequence. Subsequently,
product totes for this new order are sent to the pick position.
Note that only one active order is allowed in the system under
consideration as shown in Figure 1. In other order picking
systems it might be possible that more than one active order
is processed, allowing the picker to pick items for multiple
orders simultaneously. We do not consider these here.

Two performance measures are particularly of interest for
this order picking workstation, namely the tote and order flow
times. Tote flow time is defined as the total time spent by
a tote at the order picking workstation, which starts when a
tote arrives at the workstation and ends when it departs the
workstation. Order flow time is defined as the time required
to complete an order, which starts when the first product tote
of an order arrives at the workstation and ends when the last
product tote of the order has left the workstation. A complete
order means that all items required for the order have been
picked into the order tote.
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Fig. 2. Order picking workstation as a polling system.

III. SIMULATION MODEL DESCRIPTION

Figure 2 shows the simulation model representation of
the order picking workstation. The workstation is modeled
as a polling system with a single server S and k infinite
queues. The queues are denoted by Qi, i = 0, 1, 2, ..., k − 1.
The number of queues k indicates the maximal number of
orders for which product totes simultaneously arrive in the
workstation; that is, order IDs of arriving product totes may
be shuffled. Totes arrive with a rate of λ. Each tote has an
id that denotes the order ID to which the tote belongs. All
arriving totes with the same id are put into the same queue.

When the first tote of a new order enters a queue, a gate is
immediately set for that queue. The gate indicates the number
of totes required for the order, which equals to the order length.
The gate is kept open until all totes for the corresponding
order have arrived at the queue. Once the last tote of the order
has arrived, the gate is closed. In Figure 2 an open gate is
represented by a dotted line and a closed gate is represented
by a solid line in the queue.

A new order is created each time the gate for another order
has been closed. The variable id is increased by one and the
totes arriving for new order are put in queue Qi where i =
id modulo k. In Figure 2, for example, the gates of orders
0 and 2 have been closed and thus two new orders can be
started. If the number of queues k = 5 (as in Figure 2), then
the new orders 5 and 6 are put into queues Q0 and Q1.

The server attends the queues in a cyclic direction, causing
the orders to be served in FIFO sequence. The server will
switch to the next queue only if the gate for the current queue
has been closed and all totes in front of the gate have been
served. If the server is done processing all totes in front of the
gate but the gate is still open, then the server will become idle
at the queue. In this case, the server waits until the remaining
totes for the queue arrive.

Fig. 3. Aggregation method.

IV. AGGREGATION METHOD AND EPT MEASUREMENT

The process time used in this paper represents an aggrega-
tion of all components that contribute to the processing time
at the order picking workstation. We refer to the aggregate
process time as the effective process time or EPT for short (see
[16]). Jacobs et al. [17] presented an algorithm to compute
EPT realizations directly from arrival and departure events
for infinitely buffered workstations with single-lot processing.
Subsequent studies using this concept have been conducted
for equipments in manufacturing lines with blocking [18],
equipments in assembly lines [21], and batch equipments [22].
The former two studies employed sample path equations to
calculate EPT realizations. We will do so here as well.

An order picking workstation is characterized by several
process time components (see Figure 3). At the core of
the process is the time required for picking items, which is
referred to as the raw pick time. In addition to the raw pick
time, pickers may require some setup time (change-over time)
between processing of orders. Conveyor systems may break
down, causing unavoidable delays. Picker availability is also
an issue since it is likely that a picker is sometimes not present
at the workstation. In our aggregate model (see Figure 3) these
components are aggregated into a single EPT distribution. The
idea is then to reconstruct the EPT distribution directly from
tote arrival and departure times registered at the operating or-
der picking workstation under consideration, with the obvious
advantage that one does not need to quantify each component
contributing to the process time.

Fig. 4. Gantt chart example.
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An EPT realization is calculated for each departing tote,
which equals the total amount of time a tote claims capacity
even if the tote is not yet in physical process. When EPT
realizations for all departing totes have been obtained, an EPT
distribution with mean te and squared coefficient of variation
c2e is created. We typically assume a gamma distribution,
but other distributions may equally well be used. A gamma
distribution is relatively easy to construct since the scale and
shape parameters are readily obtainable from the mean and
variance of the empirical EPT realizations.

Figure 4 shows an example of arrivals and departures of six
totes at an order picking workstation. Totes 1, 2, and 3 belong
to order p, Tote 4 belongs to order q, and Totes 5 and 6 belong
to order r. An arrival Ai occurs at the moment a product tote i
enters the buffer conveyor of the order picking workstation. A
departure Di occurs when item picking has been finished and
the respective product tote i is moved to the return conveyor
or to the take-away conveyor (see Figure 1).

EPT realizations are calculated using the following sample
path equation:

EPTi = Di −max{Ai, Di−1} (1)

here Di denotes the time epoch of ith departing tote. Ai de-
notes the arrival epoch of the corresponding ith departing tote.
The bottom part of Figure 4 illustrates how EPT realizations
are obtained using Equation (1).

The first tote of an order typically may have a different
EPT distribution compared to the other totes in an order.
The reason is that each time a picker starts working on a
new order, a number of extra activities are performed. These
activities include moving the active order tote to the take away
conveyor, scanning the barcode of a new order tote to be
used for the next order, and placing the order tote at the pick
position. Furthermore, pickers may leave their workstations
for a break after finishing an order. These are setup activities,
which usually only take place in preparation of picking items
from the first product tote of a new order. Consequently, EPTs
of the first tote typically include a setup time whereas the
remaining totes do not. Therefore, we sort EPTs into EPTs
for the first totes and EPTs for the remaining totes. So in
our aggregate model we will use two distribution functions,
accordingly, which we refer to as the 1st tote difference EPT
approach.

Fig. 5. EPT-based aggregation.

V. VALIDATION EXPERIMENTS

This section presents simulation experiments to validate
the proposed aggregate modeling method. First, we create a
detailed model to be used as a test case representing the ”real-
life” operating order picking workstation. We simulate this
detailed model at a certain utilization level (referred to as the
training point) to generate tote arrival and departure events.
Subsequently, these events are used as input for the sample
path equation to calculate EPT realizations. Two gamma EPT
distributions are constructed namely for the first totes and
the remaining totes. Next, we simulate the detailed model at
various utilization levels to measure the mean and variability
of tote and order flow times.

In the aggregate model, we use the EPT distributions to
sample the aggregate process time for totes that are being
processed. The aggregate model is then simulated at the same
utilization levels as the detailed model. We compare the mean
and variability of tote and order flow times from the aggregate
model with those of the detailed model. In this way, we
assess the accuracy of flow time predictions by the aggregate
modeling method.

A. Detailed model

The detailed model represents the real system under study,
namely the order picking workstation with a number of process
time components including raw picking time, setups and
disturbances. This system is modeled as a polling system
with three queues shown in Figure 5. As such, we assume

TABLE I
DATA OF ORDER SIZES AND THEIR FREQUENCIES.

Size Freq. Size Freq. Size Freq. Size Freq. Size Freq.
1 331 11 80 21 20 31 11 41 11
2 243 12 67 22 20 32 6 42 10
3 257 13 41 23 12 33 5 43 11
4 181 14 24 24 13 34 12 44 12
5 195 15 34 25 7 35 11 45 7
6 208 16 42 26 10 36 12 46 2
7 147 17 19 27 6 37 7 47 3
8 91 18 14 28 12 38 9 48 5
9 134 19 17 29 20 39 8 49 3

10 90 20 27 30 5 40 6 50 1
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that totes for three orders are generated simultaneously to the
workstation, each with an exponential rate of 1

3λ. Orders have
different sizes as given in Table I.

The server S in Figure 5 represents a picker, which is
characterized by the mean values of raw pick time E(B), order
tote setup E(S), and other disturbances E(X). The raw pick
time is assumed to be gamma distributed with a mean of 17.5
seconds and an SCV (Squared Coefficient of Variation) of 0.8.
The SCV is defined as the variance divided by the square of
mean raw pick time. An order tote setup is performed each
time a picker starts working on a new order. We assume that
the order tote setup is uniformly distributed between 10.0 and
15.0 seconds. Other disturbances such as incorrect product
tote administration, unreadable barcode on the product tote,
distraction from other pickers, etc. occur during item picking.
These disturbances are assumed to take place on average every
30 minutes, with a duration of on average 2 minutes. Both
times are assumed to be exponentially distributed.

This model has been implemented using the process algebra
based simulation language χ (Chi) 1.0 [23]. χ uses a pseudo-
random number generator based on Mersenne Twister [24]
to generate samples from distributions. But other simulation
packages may of course be used as well.

The experimental setup used for the detailed model is as
follows. The arrival and departure data are generated in a
single simulation run of 1,000,000 totes. To measure the mean
and variability of tote and order flow times we perform 30
simulation runs of 300,000 totes and a warm up period of
30,000 totes at utilization levels ranging from 0.30 to 0.95.

B. Measured EPT

To measure EPT realizations we first generate arrival and
departure events from the detailed model at a training point of
0.8δmax, where δmax is the maximum throughput of the detailed
model. Through simulation we obtain δmax = 0.05 totes per
second. Arrival and departure events of 1,000,000 product
totes are then generated. Subsequently, EPT realizations are
calculated using Equation (1).

We apply the 1st tote difference as explained in Section IV.
Two EPT distributions with parameters te,1 = 31.15 seconds,
c2e,1 = 0.59 and te,2+ = 18.69 seconds, c2e,2+ = 1.61 are
obtained for the first and remaining totes of orders, respec-
tively. Suppose now we do not apply the 1st tote difference.
That is, we do not distinguish between EPT realizations of the
first totes and the remaining totes of orders. Without the 1st

tote difference we obtain one EPT distribution with parameters
te = 20.08 seconds and c2e = 1.44.

Figure 6 shows the CDF (Cumulative Distribution Function)
of EPT realizations with and without 1st tote difference. With
the 1st tote difference we obtain two significantly different
EPT distributions for the first and remaining totes of orders.
Without the 1st tote difference, the EPT distribution of all totes
is very similar to the EPT distribution of the remaining totes
using the 1st tote difference. This is because the number of
EPT realizations of remaining totes is significantly larger than
the first totes.
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Fig. 6. CDF of EPT realizations.

C. Analytical EPT

The mean EPT for this system can be obtained analyti-
cally by applying the EPT formula for nonpreemptive and
preemptive outages consecutively [16]. Order tote setup is a
nonpreemptive outage because the setup only occurs between
picking. Other disturbances, on the contrary, can be seen as a
preemptive outage since they occur during picking. Since the
formula in [16] assumes no distinction between job types, the
resulting analytical mean EPT is as if the 1st tote difference
is not applied.

Let t0, σ2
0 , and c20 be the mean raw pick time, its variance,

and its SCV, respectively. The order tote setup is characterized
by the mean setup time ts, its variance σ2

s and the number of
jobs between setup Ns (or the mean order size from Table I).
The mean EPT te, effective variance σ2

e , and effective SCV
c2e after including the order tote setup (nonpreemptive outage)
are [16]:

te = t0 +
ts
Ns
, σ2

e = σ2
0 +

σ2
s
Ns

+
Ns − 1

N2
s

t2s , c
2
e =

σ2
e
t2e

(2)

Next we include other disturbances (preemptive outage) in
the EPT calculation. te, σ2

e , and c2e obtained previously become
t0, σ2

0 , and c20. Mean EPT te and effective SCV c2e after
including the preemptive outage are [16]:

A =
mf

mf +mr
, te =

t0
A
, c2e = c20 + (1 + c2r )A(1−A)

mr

t0
(3)

where mf is the mean time between two consecutive distur-
bances, mr is the mean repair time, and c2r is the SCV of the
repair times.

Applying the above formula with assumptions used in the
detailed model, we obtain te = 20.06 seconds and c2e = 1.43.
Comparing these values with the measured EPT without 1st

tote difference (see Section V-B), we get errors of 0.11% and
0.81% for te and c2e , respectively. This result validates our
method of measuring EPT realizations from tote arrival and
departure events.
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Fig. 7. Flow time prediction with 1st tote difference.

D. Aggregate model

The aggregate model comprises a single-server with ag-
gregate process times sampled from EPT distributions. With
the 1st tote difference, two EPT distributions with means
and SCVs te,1, c2e,1, and te,2+, c2e,2+ are used for the first
and remaining totes, respectively. Without 1st tote difference,
the EPT distribution has mean te and SCV c2e . The sampled
aggregate process time represents the duration in which the
capacity is claimed by a tote.

The aggregate model is simulated at the same utilization
levels as the detailed model (see Section V-A). At each
utilization level, 30 simulation runs of 300,000 totes and a
warm up period of 30,000 totes are performed. We evaluate
the flow time prediction accuracy of the aggregate model with
and without 1st tote difference by comparing the flow times
from the aggregate model with that of the detailed model.

E. Flow time prediction

Figure 7 shows the tote and order flow time predictions with
1st tote difference. The first tote of an order is assigned with
an aggregate process time that is significantly larger than the
remaining totes (see the values of te,1 and te,2+ in Section
V-B). This imposes a longer flow time for the first totes of
orders. Therefore the remaining totes have to wait longer
before they are processed. Consequently, the aggregate model
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Fig. 8. Flow time prediction without 1st tote difference.

correctly predicts both tote and order flow times. Errors for
mean and variability of flow time prediction are less than 0.5%
and 3.0%, respectively for both tote and order flow times.

Figure 8 shows the tote and order flow time predictions
without 1st tote difference. Flow time predictions by the aggre-
gate model are consistently lower than the flow times from the
detailed model. This observation can be explained as follows.
The processing time for all totes in the aggregate model are
sampled from an EPT distribution with parameters te = 20.08
seconds and c2e = 1.44 (see Section V-B). However, this te
is significantly lower than the mean EPT of the first totes of
orders te,1 = 31.15 seconds when using 1st tote difference.
This causes the aggregate model to underestimate the flow
times of the first totes of orders because they are processed
much faster in the aggregate model than in the detailed
model. The flow times of the remaining totes are affected as
well. These totes have shorter waiting time in the buffer and
therefore their flow times become lower as well.

Figure 9 compares the percentage error in flow time predic-
tions with and without 1st tote difference. It is clear that the
1st tote difference approach increases the flow time prediction
accuracy.
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Fig. 9. Percentage error of flow time prediction

F. Effect of order size distribution

We investigate the effect of using different order size
distributions on the accuracy of flow time prediction by the
aggregate model. Geometric and uniform distributions are used
for this purpose. A geometric distribution allows us to model
an order pattern with many small orders (e.g., internet orders,
slow-moving products) or an order pattern with many large
orders (e.g., supermarket orders and fast-moving products). A
uniform distribution allows us to model an order pattern with
a predefined maximum order length.

The geometric distribution for order size is given by its
probability mass function:

P{X = n} = (1− p)(n−1)p

where n is the order size and two values of p are used namely
0.8 and 0.2. With p = 0.8 the order size distribution is short-
tailed and most orders will have a size of 1 tote. On the
contrary, with p = 0.2 the order size distribution is long-tailed
and most orders will have a size larger than 1 tote.

For the uniform distribution, we set the maximum order size
nmax = 20. As such, the probability that an order size takes
any value between 1 and 20 is fixed at 0.05.

Each order size distribution is used in a simulation exper-
iment with 30 replications of 300,000 totes and a warm up
period of 30,000 totes. Again, we evaluate flow time predic-
tions from two aggregate models namely with and without 1st

tote difference. In each simulation replication, the mean and
variability of individual flow times are calculated as ϕ and
c2ϕ, respectively. We take the average of all 30 replications
to get the mean values of both performance measures ϕ̄ and
c̄2ϕ. Subsequently, a two sample t-test at significance level
α = 0.05 is conducted to compare the mean flow time from
the detailed model ϕ̄D with that of the aggregate model ϕ̄A.
The following two-sided hypothesis is tested.

H0 : ϕ̄D = ϕ̄A
H1 : ϕ̄D 6= ϕ̄A

The results are shown in Tables II and III. Prediction errors
(in %) are indicated in the columns labeled with % e.

The aggregate model with 1st tote difference predicts the
mean flow times of both tote and order significantly better
than the one without 1st tote difference. This can be seen from
the resulting p-value of the t-test. Without 1st tote difference,
the p-value is significant at some utilization levels (p < 0.05).
At those values we reject H0 and conclude that the mean flow
times from the detailed and aggregate model are different.
However, all p-values are not significant for the aggregate
model with 1st tote difference. Hence, we cannot reject H0 and
accept that the mean flow time of the detailed model is similar
to the mean flow time predicted by the aggregate model.

The errors for flow time SCV are larger for the order size
distribution that has high probability of small orders (see
columns % e c̄2ϕA

and % e c̄2ϕA1
in Tables II and III). For

this type of order size distribution, setups between orders
are performed more frequently. The error occurs because the
gamma distributed EPTs do not correspond fully to the setup
time, which is a convolution of a uniform and a gamma
distribution. Consequently the errors of flow time variability
increase as the EPT distribution is sampled more frequently.
In this case, a more detailed fit for the EPT distribution of
the first totes is required. We refer to [25] for alternative EPT
distribution fits. However, if the probability of having small
orders is low, then using a gamma distribution is sufficient.

For geometrically distributed order size with p = 0.8,
the errors for mean flow time prediction without the 1st tote
difference % e ϕ̄A are all positive. That is, the predicted flow
times from the aggregate model consistently overestimate the
real flow times. This can be explained as follows. Recall that
without 1st tote difference all EPT realizations are collected
into a single bucket. In the case of geometric distribution with
p = 0.8, most orders have a size of 1 tote. Therefore, most
EPT realizations are high because EPTs include setup time
for orders with size of 1. The resulting EPT distribution has
a high mean EPT te. Since only one EPT distribution is used
for sampling the aggregate process time, totes that do not
require setup time (remaining totes of an order) also have high
aggregate process times. This causes extra waiting for totes in
the buffer and consequently higher flow times.
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TABLE II
TOTE FLOW TIME (IN SECONDS) AND ITS VARIABILITY.

u Detailed (D) Aggregate without 1st tote difference (A) Aggregate with 1st tote difference (A1)
ϕ̄D c̄2ϕD ϕ̄A c̄2ϕA % e ϕ̄A % e c̄2ϕA p-value ϕ̄A1 c̄2ϕA1 % e ϕ̄A1 % e c̄2ϕA1 p-value

Geometric p = 0.8
0.3 200.47 2.35 203.47 2.30 1.50 −2.32 0.00 200.42 2.34 −0.02 −0.73 0.92
0.4 179.69 1.81 182.82 1.76 1.74 −3.06 0.00 179.62 1.79 −0.04 −1.39 0.86
0.5 174.53 1.38 177.71 1.33 1.82 −4.09 0.00 174.37 1.35 −0.09 −2.54 0.67
0.6 180.91 1.05 184.06 0.99 1.74 −5.69 0.00 180.68 1.00 −0.12 −4.49 0.58
0.7 200.80 0.80 203.87 0.73 1.53 −8.07 0.00 200.57 0.74 −0.11 −7.21 0.63
0.8 245.98 0.63 248.88 0.57 1.18 −10.33 0.00 246.08 0.57 0.04 −9.24 0.89
0.9 379.11 0.60 381.60 0.54 0.66 −10.03 0.27 380.24 0.55 0.30 −8.44 0.62
0.95 625.63 0.66 630.62 0.62 0.80 −5.61 0.57 637.12 0.63 1.84 −3.70 0.25

Geometric p = 0.2
0.3 1071.00 1.22 1064.40 1.23 −0.61 0.86 0.03 1070.40 1.22 −0.06 0.08 0.83
0.4 875.53 1.07 868.49 1.08 −0.80 1.16 0.01 874.89 1.07 −0.07 0.07 0.80
0.5 771.43 0.91 763.87 0.93 −0.98 1.43 0.00 770.88 0.91 −0.07 −0.02 0.81
0.6 719.18 0.76 710.85 0.77 −1.16 1.71 0.00 718.62 0.76 −0.08 −0.17 0.80
0.7 707.24 0.61 697.83 0.62 −1.33 1.87 0.00 706.43 0.60 −0.11 −0.43 0.72
0.8 744.15 0.46 732.88 0.46 −1.52 1.49 0.00 742.79 0.45 −0.18 −1.32 0.61
0.9 899.89 0.33 886.05 0.33 −1.54 −0.41 0.01 896.99 0.31 −0.32 −4.03 0.56
0.95 1184.60 0.31 1173.30 0.32 −0.96 2.79 0.46 1187.20 0.31 0.22 −0.67 0.87

Uniform nmax = 20
0.3 1161.10 0.90 1157.60 0.90 −0.30 0.22 0.05 1163.00 0.90 0.16 −0.21 0.28
0.4 938.48 0.80 934.43 0.80 −0.43 0.29 0.01 939.91 0.79 0.15 −0.26 0.31
0.5 815.37 0.69 810.86 0.69 −0.55 0.29 0.00 816.49 0.69 0.14 −0.38 0.36
0.6 746.40 0.58 741.42 0.58 −0.67 0.18 0.00 747.17 0.58 0.10 −0.59 0.51
0.7 716.53 0.48 710.72 0.48 −0.81 −0.09 0.00 716.55 0.47 0.00 −0.94 0.99
0.8 730.08 0.37 722.78 0.37 −1.00 −0.90 0.00 728.51 0.36 −0.22 −1.79 0.26
0.9 845.82 0.29 836.96 0.28 −1.05 −4.59 0.01 841.58 0.28 −0.50 −5.57 0.21
0.95 1089.00 0.31 1089.40 0.31 0.05 0.40 0.97 1087.90 0.30 −0.10 −3.29 0.94

TABLE III
ORDER FLOW TIME (IN SECONDS) AND ITS VARIABILITY.

u Detailed (D) Aggregate without 1st tote difference (A) Aggregate with 1st tote difference (A1)
ϕ̄D c̄2ϕD ϕ̄A c̄2ϕA % e ϕ̄A % e c̄2ϕA p-value ϕ̄A1 c̄2ϕA1 % e ϕ̄A1 % e c̄2ϕA1 p-value

Geometric p = 0.8
0.3 272.23 1.65 275.21 1.64 1.09 −0.75 0.00 272.16 1.64 −0.02 −0.56 0.91
0.4 233.51 1.33 236.61 1.31 1.33 −1.17 0.00 233.42 1.31 −0.04 −1.14 0.84
0.5 217.59 1.05 220.76 1.03 1.46 −1.96 0.00 217.41 1.02 −0.08 −2.23 0.68
0.6 216.79 0.81 219.94 0.78 1.45 −3.44 0.00 216.55 0.78 −0.11 −4.20 0.59
0.7 231.56 0.63 234.62 0.59 1.32 −6.02 0.00 231.32 0.58 −0.10 −7.12 0.64
0.8 272.85 0.51 275.78 0.47 1.07 −8.99 0.00 272.98 0.46 0.05 −9.49 0.86
0.9 402.98 0.52 405.54 0.47 0.64 −9.52 0.26 404.19 0.47 0.30 −8.54 0.60
0.95 648.27 0.61 653.30 0.57 0.78 −5.37 0.57 659.89 0.58 1.79 −3.54 0.25

Geometric p = 0.2
0.3 1917.30 0.42 1911.20 0.43 −0.32 1.29 0.12 1917.20 0.42 0.00 0.15 0.99
0.4 1510.30 0.38 1503.50 0.39 −0.45 1.83 0.03 1510.00 0.39 −0.02 0.17 0.92
0.5 1279.30 0.34 1271.80 0.35 −0.58 2.34 0.01 1278.90 0.34 −0.03 0.07 0.90
0.6 1142.40 0.30 1134.20 0.31 −0.72 2.91 0.00 1142.00 0.30 −0.04 −0.11 0.87
0.7 1070.10 0.25 1060.70 0.26 −0.88 3.46 0.00 1069.40 0.25 −0.07 −0.44 0.77
0.8 1061.80 0.20 1050.40 0.21 −1.07 3.36 0.00 1060.50 0.20 −0.13 −1.62 0.64
0.9 1182.30 0.16 1168.30 0.16 −1.18 0.91 0.01 1179.50 0.15 −0.24 −5.15 0.58
0.95 1452.10 0.19 1440.80 0.19 −0.78 4.00 0.46 1454.80 0.18 0.19 −0.86 0.87

Uniform nmax = 20
0.3 2728.70 0.15 2729.70 0.15 0.04 0.39 0.75 2732.20 0.15 0.13 −0.33 0.25
0.4 2106.20 0.14 2106.40 0.14 0.01 0.56 0.94 2108.90 0.14 0.13 −0.46 0.25
0.5 1742.50 0.13 1742.10 0.13 −0.02 0.69 0.84 1744.60 0.13 0.12 −0.69 0.26
0.6 1512.30 0.11 1511.30 0.12 −0.06 0.75 0.58 1513.90 0.11 0.11 −1.03 0.34
0.7 1366.50 0.10 1364.60 0.10 −0.13 0.60 0.26 1367.10 0.10 0.05 −1.65 0.66
0.8 1292.30 0.09 1288.90 0.09 −0.27 −0.27 0.04 1291.10 0.08 −0.09 −3.07 0.45
0.9 1339.30 0.09 1334.00 0.08 −0.40 −5.35 0.13 1335.10 0.08 −0.32 −8.11 0.20
0.95 1553.20 0.13 1556.90 0.13 0.23 1.90 0.81 1551.70 0.12 −0.10 −3.76 0.91

42

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VI. CASE STUDY

A case study with data obtained from an operating auto-
mated warehouse is used to illustrate the applicability of our
method in a real warehouse setting. The warehouse shown
in Figure 10 distributes slow-moving products to a number
of supermarkets in the Netherlands. Three processing units
are present in the warehouse, namely miniloads, a conveyor
loop, and order picking workstations. Miniloads provide tem-
porary storage spaces for product totes. The conveyor loop
transports product totes from the miniload to the order picking
workstations, and the other way around. Three order picking
workstations, with a similar structure as shown in Figure 1,
are available to process customer orders. We predict the flow
time of totes and orders at the order picking workstation using
an aggregate simulation model. These flow times exclude the
time spent while retrieving the totes from the miniload and the
time spent by the totes while traveling on the conveyor loop.
That is, the tote and order flow times start when a tote and the
first tote of an order arrive at the order picking workstations,
respectively.

A. Data processing

The data consist of event logs collected via Programmable
Logic Controllers (PLC) from all processing units in the ware-
house. From this PLC data we extract tote arrival and departure
events at the order picking workstations. EPT realizations are
then calculated using Equation 1. Other parameters are also
extracted from the event data, including the interarrival times
of totes, order lengths, and the order release strategy. These
parameters are the input for the aggregate simulation model to
predict tote and order flow times. Subsequently, we compare
the predicted flow times with the flow times measured from the
data. This demonstrates the prediction accuracy of the method
when applied to the data from a real, operating warehouse.

Work-
station

product
totes

Conveyor

product
tote

buffer
lane

Mini-
load

product totes from
replenishment

order tote

to consolidation
empty
product tote

take-away
conveyor

operator active order tote

Order
Sequence
Point

Fig. 10. Layout of an automated warehouse.

Figure 11 depicts the flow chart of activities performed in this
case study.

Arrival and departure events from three working days are
extracted from the PLC data for all three order picking
workstations. An event consists of type (arrival or departure),
time, order ID, order length, and tote ID. Some recorded
events may be inconsistent or extreme outliers; e.g., a tote may
have an arrival recorded without a departure, or the other way
around. Extreme outliers are present when some exceptionally
large delays occur between two events, for instance due to
lunch breaks. These breaks occur also when there are some
totes still waiting in the buffer. The outliers cause very large
values for the EPT of the next required tote waiting to be
served, the tote flow times of all totes in the buffer, and
the order flow times pertaining to the totes in the buffer.
Therefore, we filter the arrival and departure events to exclude
inconsistent events and large delays between two events if they
are longer than 60 seconds. This threshold has been chosen
based on the observation that it is very unlikely that there is
no arrival or departure event at all within 60 seconds from the
previous event. Only 2.8% of all arrival and departure events
are discarded due to data filtering. The remaining arrival and
departure events (97.2%) are used to extract EPTs, interarrival
times, order lengths, and order release strategy.

The calculated EPTs are sorted based on the 1st tote
difference rule into EPTs of the first totes and EPTs of the
remaining totes. We observed that many large EPTs occur
when not all totes for the active order are present in the buffer
as the picker starts picking. That is, the EPTs are smaller
when the picker finds all totes for the active order present in
the buffer. This observation holds for both the EPTs of the
first totes and the EPTs of the remaining totes. As such, we
further sort the EPTs based on the completeness of totes in
the buffer when the picker starts picking a tote. This results

Fig. 11. Case study flow chart.
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Fig. 12. Sorting of EPTs.

in four types of EPT as shown in Figure 12, namely EPTs
first totes complete (1st, c), EPTs first totes incomplete (1st, i),
EPTs remaining totes complete (2+, c), and EPTs remaining
totes incomplete (2+, i). We use shifted gamma distributions
to represent all four EPT distributions because the EPTs can
never be smaller than a certain value. Hence, using a shifted
gamma distribution with the minimum EPT value as offset
should produce a better fit than using a gamma distribution as
previously done in Section V. Figure 13 visualizes the EPT
distributions gathered from workstation 1. The EPTs have been
normalized due to data confidentiality. We can see that there
are significant differences between all four EPT distributions.
It is therefore important to distinguish the EPTs based on the
1st tote difference approach and completeness.

The interarrival distribution can be easily extracted from
the tote arrival times at the workstation. However, these
interarrival times alone are not sufficient. We also need to
reconstruct the order release strategy used in the operating
warehouse. Such strategy determines to which order the next
arriving tote belongs. Since tote and order flow times are
affected by the sequence in which totes arrive, the flow time
prediction accuracy also depends on how accurate the order
release strategy is modeled in the aggregate simulation model
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Fig. 13. CDF of four types of EPT from workstation 1.

as compared to the reality. The order release strategy is recon-
structed also from the arrival and departure events, as follows.
We create several so-called buckets for each order length.
When the first tote a new order arrives at the workstation,
the order length of that order is registered. Afterwards, we
count the number of totes arriving subsequently for this order
until the arrival of the first tote of the next order. The resulting
number of totes is then collected into the corresponding bucket
based on the order length. Next, an empirical distribution
function of the number of totes is created for each bucket.
These distributions will be used in the aggregate simulation
model to sample the number of totes to be generated for the
active order before generating the first tote of the next order.

To assess the quality of the reconstructed order release
strategy, we compare the interarrival time of orders from the
real data with the simulation. The order interarrival time is
defined as the time between the arrival of the first totes of
new orders. The result is depicted in Figure 14. The interarrival
times have been normalized due to data confidentiality. The
reconstructed order release strategy resembles the order release
strategy used in the operating warehouse.

B. Flow time prediction

The aggregate simulation model shown in Figure 15 is
used to predict the tote and order flow time of the operating
warehouse. We model the system as a closed queueing network
with two sequential servers namely the miniload and the
workstation. The input parameters used in each server are
shown in the figure.

The miniload generates new totes for the workstation if there
is a space available in the finite buffer of the workstation. For
each tote generated, the miniload determines the interarrival
time of the tote, the tote ID, the order ID, and the order length.
Since totes from multiple orders are generated simultaneously,
the order release strategy reconstructed previously is used to
determine the order ID indicating the order to which a tote
belongs. The order release strategy works as follows. Suppose
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Fig. 14. Distribution of interarrival times of orders.
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Fig. 15. Aggregate simulation model of the operating warehouse.

the system is empty and the miniload generates the first tote
of order X with an order length of 5 totes. At that moment
we say that a new order, i.e., order X , has entered the system.
We sample from the corresponding bucket, that is the bucket
for order length 5, the number of totes N to be generated
for order X before generating the next order. Suppose we
sample N = 3, this means the next three generated totes will
belong to order X . The fourth generated tote belongs to a new
order, e.g., order Y . Now two orders are in the system and the
miniload will decide based on a certain probability whether the
tote generated next belongs to order X , order Y , or another

new order. If all totes of order X has been generated, then the
value N will be sampled again from the correct bucket based
on the order length of order Y . The interarrival time of totes
are sampled from the interarrival time distribution.

The workstation is modeled as a polling system with a finite
buffer. The EPT for each tote being processed is sampled from
one of the four EPT distributions, depending on the type of
the tote and the completeness of totes for the active order.
For example, if the tote is the first tote of an order and not
all totes for this order are present in the buffer at the start of
picking, then the EPT for this tote will be sampled from the
distribution of EPTs 1st incomplete.

The aggregate simulation model has been run with 50 repli-
cations each with a run length of 1,000,000 totes excluding
a warm-up period of 300,000 totes for all three workstations.
The predicted flow times from the aggregate simulation model
are then compared with the real flow times from the data.

The resulting flow time distributions shown in Figures 16
and 17 suggest that the aggregate simulation model accurately
predicts the flow time of totes and orders. Indeed, the errors of
mean tote and order flow time prediction are less than 5.5%.
We also observe that the tote flow time variability is better
predicted than orders flow time variability. That is, in Figure 16
the aggregate model consistently overestimates the occurrence
of small values of tote flow times.
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Fig. 16. Tote flow time distributions.
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Fig. 17. Order flow time distributions.
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C. Discussion

We found that tote and order overtaking exist in the real
warehouse. Overtaking of totes occur when the picker picks
a product tote that did not arrive the earliest for the active
order. Any time loss due to overtaking is not accounted for
in the EPT calculation using Equation 1. Overtaking of orders
occur if upon completion of an order the picker processes the
next order that is not the oldest in the buffer. We measured the
average percentage of tote and order overtaking from the three
workstations to be 18.3% and 4.6%, respectively. This may
explain the underestimation of mean tote and order flow time
prediction since overtaking is not considered in the aggregate
simulation model.

Another insight from the case study is that pickers hesitate
to wait for totes. If totes for the active order are not yet
complete in the buffer by the time the picker starts picking, it
is very likely that the picker will leave the workstation for a
while. Suppose that a tote for the active order arrives shortly
after the picker leaves, then the EPT for this tote will include
the time when the picker was leaving the workstation. This
will cause the EPT for this tote to become very large. To
account for this phenomenon, we have sorted EPTs based
on the completeness of totes in the buffer. In practice, one
may want to improve the order release strategy such that the
totes for the active order arrive more frequently than the totes
for other orders. One may also consider allowing pickers to
work on multiple orders simultaneously, hence reducing the
likeliness that the picker becomes idle waiting for the required
totes.

In this case study, the aggregate simulation model is able to
predict the tote and order flow time with satisfactory accuracy
based on real data of three working days. The aggregate model
may further be used to analyze the effect of different interar-
rival rates, order length distributions, order release strategies,
etc. on the system throughput and flow times. As an example,
Figure 18 shows the predicted performance of workstation 1
under various interarrival rates. One may also be interested in
analyzing the flow time distribution for a specific order length.
Furthermore, EPTs can be calculated in real-time to monitor
the performance of an operating order picking workstation

such that any deviations from the expected performance (e.g.,
extremely large EPTs) can be detected and the necessary
corrective actions can be performed timely.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a method to predict the mean
and variability of tote and order flow times for a single-
server order picking workstation by means of a simulation
model that is based on an aggregate process time distribution.
Arrival and departure data of totes are the only input required
to calculate the aggregate process time distribution. Inspired
by [16], we refer to the aggregate process time as Effective
Process Time. We actually distinguish two types of EPT
realizations namely for the first totes and for the remaining
totes of orders, which we refer to as the 1st tote difference EPT
method. We have demonstrated in the simulation validation
study that this separation is important because the EPTs of
the first totes are not identically distributed with the EPTs
of the remaining totes. Therefore we sort the EPTs into two
EPT distributions. We then fit a gamma distribution to these
empirical EPT distribution data, but in principle any other
suitable distributions may be used. The two gamma EPT
distributions are used to sample the aggregate process time
in the aggregate simulation model. We find that the proposed
method accurately predicts the mean and variability of tote
and order flow times.

We apply the method to data obtained from a real, oper-
ating warehouse. The flow time prediction by the aggregate
simulation model has satisfactory accuracy, even with the
relatively small amount of arrival and departure data. Practical
insights for performance improvement are proposed based on
the observation of EPTs from the real data. The resulting
EPT distributions represent the actual pick rate of an order
picking workstation, which for performance analysis purposes
can be compared to the expected pick rate. The aggregate
simulation model can further be used to evaluate the order
picking workstation’s performance under different settings.

The proposed method can also be used for manufacturing
workstations processing a number of different product types,
where switching from one product type to another requires
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Fig. 18. Predicted performance of workstation 1 under various interarrival rates.
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a setup time (see e.g., [26]). Here, the first job of a product
type will have a different process time distribution than the
remaining jobs. Hence, the 1st tote difference EPT approach
used in this paper is also valuable in other systems.

Current advancements in order picking technology have
allowed multiple orders to be processed simultaneously by a
picker, which is often the case in warehouses with fast-moving
products. Also, tote routings in large-scale automated ware-
houses may cause orders at the workstation to be processed
not in a FIFO sequence. Performance analysis of these types
of order picking workstation is subject to future work.
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