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Abstract—In this work, we compute the Wigner distribution
from wavefunctions that are generated by solving the Schrödinger
equation. Our goal is to propose an avenue of research that
may help better understand certain limitations of deterministic
Wigner transport equation solvers, such as negative electron
densities or limited charge drops in presence of potential barriers.
We evaluate the numerical accuracy required by the Schrödinger
solver to compute the Wigner function and compare the perfor-
mance of an analytic and a numerical solver applied to a constant
potential profile, as well as to single- and double-barrier one-
dimensional structures. Then, we investigate how the Wigner
function boundary conditions vary in these same structures as
the contact length increases. We also investigate the range of
the wave vector grid required to accurately compute the charge
from the Wigner function. Finally, we carry out the same study
on biased structures.
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I. INTRODUCTION

THe constant drive toward increasing integration densities

is pushing the size of electronic devices down, ever closer

to the nanometer scale. As an example of this trend, the oxide

barrier in ULSI MOS transistors was expected to shrink to

a thickness below one nanometer by the 45 nm technology

node, prior to the introduction of high-permittivity dielectrics.

Another example is the channel length of this same type of

transistors, which is expected to drop below 10 nm within

the next few technology process generations, according to the

current ITRS roadmap [2].

As the size of electronic devices approaches the nanometer

scale, quantum phenomena begin to affect the charge carriers’

distributions and currents, and TCAD simulators must be

capable of accounting for these phenomena in order to model

device operation accurately. Instead, current commercial sim-

ulation software mostly implements classical models such as

the drift-diffusion, thermo- and hydrodynamic ones [3]. These

models are derived from the phase-state Boltzmann Transport

Equation (BTE) and do not take into account the wave nature

of charge carriers. Quantum effects are in general treated

only tangentially, to simulate parasitic phenomena such as

tunneling currents and confinement levels. In order to be

capable of accurately simulating next-generation electronic

devices, TCAD software needs to implement full-quantum

models. This would enable engineers not only to better predict

and characterize parasitic effects in current devices, but also to

explore innovative quantum-based designs, such as Resonant

Tunneling Diodes (RTD) and quantum dots.

The Schrödinger Equation (SE) is the starting point for a

number of approaches that model quantum phenomena. In its

one-dimensional (1D) transient form, this equation represents

carriers as wavefunctions ψ(x, k, t) of energy E(k), which

propagate through a lattice potential energy U(x). x indicates

the real space and k the wave vector space. The carriers are

given an effective mass m∗ = mrm0, where mr is the relative

mass and m0 the electron mass in vacuum. The SE is thus

given by:

ih̄
∂

∂t
ψ +

h̄2

2m∗

∂2

∂x2
ψ = Uψ (1)

h̄ is the reduced Planck constant. Although the SE can

be solved analytically or numerically through a number of

different schemes, it remains ill-suited to simulate carrier

transport. A major shortcoming is that it is difficult to match

the electron wavefunction to measurable physical quantities at

the boundaries of a system. It is also problematic to account

for parasitic phenomena such as carrier-carrier interactions.

One way to address these shortcomings is to use the Wigner

Function (WF) instead of the SE to compute charge densities

and currents. The WF is a quasi phase-space distribution

function that is obtained by solving the Wigner Transport

Equation (WTE), which is itself derived from the SE. The

WTE was first studied by Wigner [4], and was implemented

numerically much later by Kluksdahl, to simulate quantum

tunneling [5], [6], and by Frensley, to study a 1D RTD device

[7], [8]. Frensley’s implementation uses a first-order differenti-

ation scheme and assumes a constant effective mass across the

structure. Higher-order schemes were later studied by Jensen

and Buot [9]–[14], while Tsuchiya [15] and Gullapalli [16],

[17] applied a varying effective mass. Implementations on

RTD devices are also studied by Miller [18] and Wu [19].

Biegel compares various differentiation and self-consistency

schemes and applies them to the simulations of RTD devices

[20]. Grubin looks at the resolution of the transient WTE

[21], while Nedjalkov analyzes the issue of interactions [22].

Yamada studies a 3D mixed self-consistent scheme applied

to a silicon nanowire transistor, by solving the SE across

the device’s cross-section and the WTE along the transport
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direction, using a differentiation scheme up to the third order

[23]. Finally, Kefi-Ferhane simulates a thin 2D MOS transistor

by applying a WTE solver along the channel and a Schrödinger

solver perpendicularly [24].

In this paper, we discuss a number of issues that we encoun-

tered when implementing the 1D deterministic numerical WTE

solver described by Frensely. In order to better understand

these issues, we study a method to compute the WF directly

from the SE, rather than by solving the WTE. We hope that

this approach may give us better insight into the nature of

the WF and help us in the future in addressing the problems

encountered. In this paper, we present some significant initial

results, as we look at the WF boundary conditions in unbiased

and biased structures and estimate the minimum contact length

that has to be applied to a device in a simulation. In addition,

we investigate the minimum range that has to be used for

the wave vector mesh in order to accurately compute carrier

densities from the WF.

II. DERIVATION OF THE WIGNER EQUATION

The WTE is derived from the SE by calculating the Density

Matrix Function (DMF) and then carrying out a variable

change and a Fourier Transform (FT). In the formulae that

follow, the transient nature of the wavefunction is implied.

The DMF ρ(r, s) is derived by correlating the wavefunction

on (r, s) couples of points in real space. In the case of a

1D structure with entry and exit contacts (the “Emitter” and

“Collector” respectively), this gives [8]:

ρ(r, s) =

2m∗

EmitterkBT

h2

∫
∞

0

ψ(r)ψ(s)fFD(E(k)) dk

+
2m∗

CollectorkBT

h2

∫ 0

−∞

ψ(r)ψ(s)fFD(E(k)) dk

(2)

h is the Planck constant, kB the Boltzmann constant, and

T the absolute temperature, which is set to 300 K in all

the simulations presented in this work. The first term of the

formula represents wavefunctions incident at the emitter, i.e.,

with a positive wave vector k, while the second represents

wavefunctions incident at the collector, i.e., with a negative

wave vector. The wavefunctions are weighed by the carrier

energy spectrum density, which is given by a Fermi-Dirac Dis-

tribution (FDD) fFD(k) integrated over transverse momenta:

fFD(k) = ln

[

1 + exp

(

−
E(k)− EF

kBT

)]

(3)

EF is the Fermi energy level at the contact. Assuming a

parabolic band, the carrier energy E is given by:

E(k) =
h̄2k2

2m∗

Contact

(4)

By applying the SE to the DMF and then carrying out the

following variable change:

r = x+ y/2 , s = x− y/2

u(x, y) = ρ(x+ y/2, x− y/2) (5)

the Liouville - von Neumann Transport Equation (LNTE)

is derived [8], [25]:

∂

∂t
u− i

h̄

m∗

∂

∂y

(
∂u

∂x

)

+
i

h̄

[

U
(

x+
y

2

)

− U
(

x−
y

2

)]

u = 0

(6)

The WTE is derived by applying a FT to the LNTE [8]:

(
∂fW
∂t

)

Scattering

=
1

2πh̄

∫
∞

−∞

[δU(x, k − k′)fW ] dk′

︸ ︷︷ ︸

Drift term

+
h̄k

m∗

∂fW
∂x

︸ ︷︷ ︸

Diffusion term

+
∂fW
∂t

︸ ︷︷ ︸

Transient term

(7)

In this formula, fW (x, k, t) designates the WF. The formula

includes a scattering term that accounts for carrier interactions.

Note that the FT transforms the space variable y into the wave

vector k. δU(x, k−k′) is the non-local potential, given by [8]:

δU(x, k) = 2

∫
∞

0

sin(ky)
[

U
(

x+
y

2

)

− U
(

x−
y

2

)]

dy

(8)

The WF can be either computed by solving the WTE, or

calculated directly from the DMF [4], [8]:

fW (x, k) =

∫
∞

−∞

e−ikyρ
(

x+
y

2
, x−

y

2

)

dy (9)

The charge n(x) can be computed from either the DMF or

the WF [8]:

n(x) = ρ(x, x) =
1

2π

∫
∞

−∞

fW (x, k) dk (10)

III. WTE IMPLEMENTATION ISSUES

At present, commercial simulation software typically deals

with quantum parasitic phenomena by applying ad-hoc models

to the areas of a device that are most affected. As the device

size decreases and these areas become relatively larger, full-

quantum simulators might eventually come to replace current

classical models. Even after repeated shrinks, however, some

regions in a device might still behave classically (e.g., the

contacts), and quantum models should therefore be capable

of smoothly handling the transition between quantum and

classical transport.

In the specific case of WTE solvers, when simulating

sufficiently large devices with negligible quantum effects, the

values of the charge and the current should be consistent with

those obtained by solving the BTE. On smaller devices, as

quantum effects begin to appear, the simulated characteristics

should be consistent with those yielded by other, comparable

quantum models.

Fig. 1 tests these consistency constraints by showing an

edge-case classical structure that is sufficiently small to let

quantum effects begin to appear. The simulated structure is an

abrupt silicon N+P+N+ double junction. Each region is 15 nm

long; the device is not biased. The figure displays the electron
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Fig. 1. Absolute-value electron densities obtained on a N+P+N+ silicon
structure with self-consistent Boltzmann, Wigner and Schrödinger solvers.
The dopant profiles are abrupt and each region is 15 nm long. N+ = P+ =
5×1019 cm−3.

density plots obtained by solving the WTE, the BTE and the

Schrödinger equations self-consistently with the same mesh

numerical parameters. The details concerning the Schrödinger

solver implementation are discussed in Section IV. For the

time being, note that this solver should be considered as the

one providing the most accurate results when quantum effects

are taken into account.

The preponderant classical nature of the simulated device

can be seen from the large drop in the electron density

(over 20 decades) given by both the BTE and Schrödinger

solvers. Quantum effects result in a less abrupt slope in the

middle-region valley in the Schrödinger plot compared to the

BTE one. This can be explained by taking into account the

penetration of the electron wave packet into the P+ barrier. The

slope in the WTE plot is consistent with the Schrödinger one,

which indicates that quantum effects are correctly accounted

for. However, the WTE plot shows a glaring artifact, as the

electron density in the middle of the valley takes negative

values, which has no physical sense. Moreover, the minimum

electron density in the WTE plot is 10 decades higher than

that in the Schrödinger one.

The shape of the WTE plot seems to suggest that the WTE

solver cannot handle a drop in the charge by more than a few

decades. This is consistent with the literature on the WTE,

which mostly presents simulations displaying limited drops in

charge and current. For example, the peak/valley current ratio

simulated in RTD devices is generally lower than one decade

[20], while the nanowire transistor simulated by Yamada has

an IOn/IOff ratio of about 100 [23]. If the WTE solver is indeed

accurate only for small variations of the simulated electric

macroscopic quantities, it could be problematic to use it to

simulate devices with a mixed quantum and classical character.

Investigating these issues with WTE solvers is somewhat

problematic, due to memory constraints. Indeed, as the WTE

contains an integral term, it is implemented numerically as a

block matrix [20], where the number of non-zero coefficients

increases with the square of the mesh density in the wave vec-

tor space. The rapidly-growing memory footprint thus limits

the resolution at which the WF can be calculated, as well as the

ability to investigate its properties. By computing the WF from

the SE, rather than from the WTE, we are able to reduce this

footprint; this enables us to define much denser meshes than

those used in a WTE solver, and thus to thoroughly investigate

the issue of boundary conditions in single- and double-barrier,

classical and quantum 1D structures.

IV. COMPUTATION OF THE WF WITH A SCHRÖDINGER

SOLVER IN UNBIASED STRUCTURES

In order to test whether the WTE solver can accurately com-

pute high charge and current drops, one could try to increase

the x- and k-grid resolutions (Nx and Nk respectively). How-

ever, memory constraints rapidly limit this technique, as the

size of the drift term matrix increases proportionally to NxN
2
k

[20]. In fact, it would be more efficient to apply the solver to

only a small region of interest where quantum phenomena

take place, e.g., between the two ends of a potential barrier.

The memory overhead of meshing the contact regions could

thus be avoided. However, this technique poses the problem of

what boundary conditions to apply to the solver as, according

to Frensley, a FDD can be used only if the boundaries are

distant from the quantum region [8]. Moreover, to the best of

our knowledge, no study has yet been conducted to evaluate

the minimum contact length at which equilibrium conditions

can be applied.

In order to investigate the matter of the minimum contact

length, we implement a solver that computes the WF directly

from the SE. Its ultimate purpose in future studies will be to

apply its solution to the WTE as a boundary condition. This

section focuses on developing an accurate implementation of

this solver, and on assessing its limitations. The Schrödinger

solver algorithm is implemented as follows: first, a number

of wavefunctions are cast into a given potential profile; then

(2) is applied to compute the DMF, and finally (9) is used

to calculate the WF. The solver thus works on three different

1D grids to account for the x, y and k variables. Nx, Ny
and Nk denote the respective grid resolutions. The details

of the numerical implementation, including grid spacing, are

discussed further at the end of this section.

The solver has been applied to three potential profiles at

zero bias: (a) a constant potential over a length of 50 nm; (b)

one with two contacts separated by a 7 nm-thick rectangular

barrier and (c) one with two contact regions and two 1 nm-long

barriers separated by a 3 nm well. The optimal length of the

contact regions is discussed in Section VI. In all three cases,

the Fermi level is set equal to the conduction band energy at

both contacts. For the constant potential profile, a relative mass

of 0.5 is taken. For the other two, two different combinations

are tested: (a) a relative mass of 0.5 and a barrier height of

1.5 eV, which are representative of a generic silicon/nitride

structure, and (b) a relative mass of 0.067 and a barrier height

of 0.3 eV, which are representative of a generic III-V structure.

The solver used in this work is not self-consistent, as the

purpose of this study is simply to compute the WF from

a given potential profile. However, self-consistency can be

implemented, as for the plot in Fig. 1.

Fig. 2 illustrates how wavefunctions are computed. Starting

at the emitter contact, plane wavefunctions ψEmitter(x, k) of the

form:
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(a) (b)

Fig. 2. Schematic view of the SE solver implementation on a single- (a) and a double-barrier (b) potential profile. Wavefunctions are cast into the structure
from the emitter and collector contacts, within an 1 eV-wide range from the conduction band upwards. The x, xB , xW and xC axes, as defined in (11) and
(13)-(15), are displayed and their origins are marked.

ψEmitter(x, k) = eikx + bEmitter(k)e
−ikx (11)

are cast into the device, where k is the positive wave vector

and the carrier energy E is given by (4). These wavefunctions

are used to compute the first integral term in (2). Each

wavefunction contains a normalized incident component with a

positive wave vector and a reflected component with a negative

wave vector and a complex reflection coefficient bEmitter(k).
For each incident wave vector, the wavefunction is computed

at each node on the x-grid through either an analytic or a

numerical scheme.

The analytic scheme applies the transfer-matrix method.

In short, this method is composed of four steps: first, the

structure is divided into separate regions, namely the contacts,

the barriers and the well. Then, the wavefunction is calculated

symbolically in each region by solving the SE. As the SE

is a second-degree differential equation relative to space, its

solution in region i is the linear combination of two functions

fi(x, k) and gi(x, k), and has the form:

ψ(x, k) = ai(k)fi(x, k) + bi(k)gi(x, k) (12)

ai(k) and bi(k) are the wavefunction coefficients in the

region. In the third step, these coefficients are evaluated by

setting up a system of two equations at each interface between

adjacent regions; these equations express the continuity of the

wavefunction and of its first derivative at the interface. When

all interfaces are accounted for, solving the overall system

yields the wavefunction coefficients in each region. Finally,

the wavefunction can be evaluated at all points.

The potential profile in each region needs to be regular

enough so that there exists a symbolic solution for the SE.

This is possible for instance if the potential is constant, as

discussed further in this section, or if it varies linearly, as seen

in Section VII; in the latter case, the solutions are given by

Airy functions, which can be evaluated to a high precision with

appropriate numerical libraries. With a flat or linear potential

profile, the wavefunction can be calculated symbolically at all

points in the structure, and to evaluate it numerically as a last

step.

In the barriers, for a constant potential U(x) = UB the

solutions of the SE take the form:

ψEmitter(xB , k) =






aBarrier(k)e
ikBxB + bBarrier(k)e

−ikBxB E(k) > UB

aBarrier(k)xB + bBarrier(k) E(k) = UB

aBarrier(k)e
kBxB + bBarrier(k)e

−kBxB E(k) < UB
(13)

In this formula, kB =
√

(2m∗|E(k)− UB|)/h̄ and xB is

the x coordinate with the origin set at the left foot of the

barrier. In the case of a double barrier, the solution in the well

is:

ψWell(xW , k) = aWell(k)e
ikxW + bWell(k)e

−ikxW (14)

The origin of xW is set at the left end of the well. Finally,

the solution at the collector contact is of the type:

ψCollector(xC , k) = aCollector(k)e
ikxC (15)

This wavefunction has no negative wave vector, as no wave

is incident at the collector. The origin of xC is set at the start

of the collector region.

The numerical scheme solves the SE by applying the

Numerov method [26]. Once again, the process can be divided

into four steps. The computation starts at the collector, where

the wavefunction has only one component. This component is

temporarily normalized, i.e., aCollector is set equal to 1. This

makes it possible to use (15) to evaluate the wavefunction at

the first two nodes in the collector region:

ψCollector Normalized(xC = 0) = 1

ψCollector Normalized(xC = ∆x) = eik∆x (16)

Then, from these two data points, the Numerov method

is applied to compute the wavefunction backwards into the

structure. When the emitter contact is reached, the following

step consists in evaluating the wavefunction coefficients aEmitter

and bEmitter in this region. At the emitter boundary, the function

and its first derivative are given by (11) and have the form:

ψEmitter(x = 0) = aEmitter + bEmitter

∂ψEmitter

∂x
(x = 0) = ikaEmitter − ikbEmitter (17)
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Note that aEmitter is not equal to 1 because the wavefunctions

are normalized at the collector instead of the emitter, for

the time being. The numerical value of the first derivative

is computed by applying a differentiation scheme [26] cen-

tered on the emitter boundary node. Having computed both

the wavefunction and its derivative, the system (17) can be

solved for the two coefficients. Finally, all wavefunction values

calculated across the structure are divided by aEmitter, so that

they are correctly normalized.

According to Pang [26], the Numerov method can be

considered to be of order O(N4
x). However, its present ap-

plication limits convergence to the order O(N2
x ), because of

the evaluation of the wavefunction derivative at the emitter

contact. Once the wavefunction packet incident at the emitter

has been evaluated, normalized wavefunctions are similarly

cast into the structure from the collector, in order to compute

the second integral term in (2).

The numerical implementation of (1), (2) and (9) requires a

certain care in order to avoid aliasing of the discrete FT. To be

consistent with Frensley’s scheme, the condition ∆y = 2∆x
is imposed, where ∆x and ∆y are the x- and y-grid spacings

respectively. In this way, the x-grid vertices can be reused

for the y-grid. In addition, in (9), the k-grid is implemented

symmetrically to k = 0, such that [8]:

ki = {−kMax + (i + 1/2)∆k}i=0..(N−1) (18)

where ∆k is the k-grid spacing. The y-grid is defined as:

yi = {−yMax + i∆y}i=0..(N−1) (19)

kMax and yMax are the half-ranges of the two grids, which

have the same number of nodes N = Ny = Nk. kMax and

yMax are related by:

yMax = π/∆k = πN/(2kMax) (20)

Note that this last condition cannot be fully satisfied,

because yMax is rounded to the nearest node on the x-grid.

The error on yMax is, however, equal to ∆x/2 at most, i.e., less

than 1% for N > 50. Also note that, in order to fully mesh

the y-grid, the x-grid must be extended by yMax/2 beyond

the emitter and collector contacts. The k-grid defined in (18)

should be reused in (2) in order to calculate the wave vectors

that are cast into the SE. However, we observed that this is

not necessary: in [1], we determine that 500 vectors spaced

linearly over a 8 eV wide range from the conduction band

upwards are sufficient to compute the DMF and WF without

significant aliasing. In a subsequent study, we determine that

even lower values (250 vectors over a 1 eV range) can be used

[27], [28].

V. COMPARISON OF THE ANALYTIC AND NUMERICAL

SOLVERS

Fig. 3 shows the WF computed on the emitter node for a

constant potential profile. For such a profile, (2) and (9) resolve

to:
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Fig. 3. Absolute WF vs. wave vector plots at x = 0, obtained by applying the
analytic and numerical SE solver. Default simulation parameters: mr = 0.5,
250 wavefunctions, kMax = 10 nm−1, Nx = 144, Nk = 1000.

0 5 10

10
10

10
15

10
20

10
25

k’ (nm
−1

)

 [  
 

 f F
D

] 
d

k
 (

S
I)

 

 

 (y
/2

,−
y

/2
) 

=
 (

 2
m

* k
B

T
/h

² 
)  

y = 0 (A)

y = 0 (N)

y = 10 nm (A)

y = 10 nm (N)

y = 25 nm (A)

y = 25 nm (N)

y = 50 nm (A)

y = 50 nm (N)

y=50 nm (N)

y=25 nm (N)

y=10 nm (N)

ρ
×

ψ
ψ

×
∫

k
=

k
’

k
=

-k
M

ax

Fig. 4. ρ(y/2,−y/2) integral computed between −kMax and k′ at x = 0
for different values of y. The letter A denotes the analytic SE solver, while
N denotes the numerical one. Note that beyond y = 10 nm the value of the
integral for the numerical solver remains constant, as the plots for y = 10,
25 and 50 nm coincide. Default simulation parameters: mr = 0.5, 250
wavefunctions, kMax = 10 nm−1, Nx = 144, Nk = 1000.

ψ(x, k) = eikx

ρ
(
x+ y

2 , x− y
2

)
=

2m∗kBT

h2

∫
∞

−∞

eikyfFD(E(k)) dk (21)

fW (x, k) =
m∗kBT

πh̄2
fFD(E(k))

The first two plots in the figure are generated by casting 250

wavefunctions. A 1000-point k-grid is then used to calculate

the WF. The first plot is obtained from the analytic SE solver.

Consistently with (21), the WF is proportional to a FDD over

a range of 15 decades, i.e., within machine precision of the

IEEE 754 double data types used in the computations. This

result confirms that FT aliasing is negligible, even though the

number of wavefunctions is only half the k-grid resolution.

Three plots in the figure show a much smaller drop: these

are obtained from the numerical SE solver. Because aliasing

is negligible, the lobe-like artifacts observed in these plots

can only be caused by numerical error. The figure shows that

doubling the number of wavefunctions or the x-grid resolution

does not significantly reduce this error. Note however that

the lobes have only a minor impact on the charge, as they
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Fig. 5. Absolute-value DMF (a) and WF (b) computed at the emitter contact of a silicon-based single-barrier structure with a varying contact length. For a
contact length between 20 and 30 nm, the WF is equal within machine precision to that obtained with a constant potential profile.
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Fig. 6. Absolute-value DMF (a) and WF (b) computed at the emitter contact of a III-V-based single-barrier structure with a varying contact length. For a
contact length between 50 and 60 nm, the WF is equal within machine precision to that obtained with a constant potential profile.

begin to separate from the central FDD peak about 4 decades

below the WF maximum. The charges given by the analytic

and numerical solvers are thus consistent within 1%.

Fig. 4 provides some insight into the nature of the nu-

merical error, by highlighting the computation of the DMF

ρ(y/2,−y/2) at x = 0. The different plots show how the value

of the partially-computed ρ integral varies as the upper bound

k′ increases up to its maximum value kMax. The plots obtained

from the numerical and analytic solvers are compared. For

y > 10 nm, the value of the integral peaks at k′ = 0 and then

drops as k′ increases. For y = 50 nm, the drop for the analytic

solver spans about 15 decades. By looking at this specific plot,

one realizes that the integral is subject to a variation of 15

orders of magnitude as it is computed. This means that, in

order for the DMF to be calculated accurately, the integrand,

i.e., the wavefunctions, must be evaluated to a relative accuracy

of the same order.

The analytic solver is shown to be capable of this level of

accuracy, as the three plots obtained for y > 10 nm drop to

clearly distinct values. On the contrary, the numerical solver

is not, because the same three plots are indistinguishable once

they drop by only two decades below their peak. In the case

of y = 50 nm, the accuracy of the numerical solver should

be improved by more than 10 orders of magnitude to match

the analytic one. Because of the insufficient accuracy of the

numerical solver, all simulations presented in the following

sections are based on the analytic one.

VI. STUDY OF THE MINIMUM CONTACT LENGTH AND OF

THE WAVE VECTOR GRID RANGE IN UNBIASED

STRUCTURES

The first part of this section presents a study of the length

of the emitter and collector contact regions. Its purpose is to

determine the minimum contact length where the WF at the

boundaries is equal to the equilibrium FDD within machine

precision. The second part discusses the range of the wave

vector grid that has to be applied to the WF in order to

accurately evaluate the charge densities at all points in a given

structure.

Fig. 5 shows the DMF and the WF computed at the

emitter contact of a silicon-based single-barrier structure with

varying contact lengths. The plots show that a minimum length

between 20 and 30 nm should be used. Fig. 6 shows similar

plots on a III-V based structure. In this case, the WF at the

boundary converges to a FDD profile for a contact length of
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Fig. 7. Absolute-value DMF (a) and WF (b) computed at the emitter contact of a silicon-based double-barrier structure with a contact length of 30 nm.
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Fig. 8. Minimum wave vector grid half-range, as defined in (18), required to compute the charge within a threshold error of 1, 5 and 10% in silicon-based
single- (a) and double-barrier (b) structures. The contact length is 30 nm. As kMax is almost constant in the contact regions, these are left out of the figures.

about 60 nm. As we explain in [27], this is due to the smaller

relative mass in the III-V materials.

As for double barriers, Fig. 7 shows the DMF and WF

computed at the emitter boundary of a silicon device. While

in a single-barrier structure the plot drops to the level of

numerical noise within less than 100 nm from the origin of

the y-axis, in the case of a double-barrier it keeps oscillating

with an amplitude that remains about constant over several

hundred nanometers. The WF plot is also quite different from

its single-barrier equivalent, as oscillating lobe-like artifacts

separate from the central FDD peak about 4 decades below its

maximum. This behavior is unaffected by the contact length.

In [1], we hypothesized that this behavior was caused by an

inaccurate computation of the wavefunctions. However, further

analysis in [27] shows that the oscillations in the DMF are

due to the very sharp peaks in the transmission spectrum that

occur when the well resonates. While the amplitude of the

oscillations is expected to drop eventually as y increases, it

does so very slowly: indeed, the y-grid range would have to be

extended by orders of magnitude in order for the oscillations

to fall below the level of numerical noise, which is not feasible

due to computational resource constraints.

Aside from the contact length, there is another parameter

that has a significant effect on the accuracy of a simulation,

namely, the range of the wave vector grid that is applied to

the WTE solver. Indeed, because the charge is computed by

integrating the WF over the wave vector space, a too-narrow

range can cause it to be underestimated. Here, we evaluate the

minimum ranges that have to be used in order to compute the

charge within error margins of 1, 5 and 10%. The reference

charge used in the error computation is evaluated by applying

the very large range kMax = 20 nm−1. Fig. 8 shows how the

wave vector range varies across a silicon-based structure for

each error threshold. Note that, even if the double-barrier WF

is affected by lobes as shown in Fig. 7, these cause an error in

the integrated charge by less than 1% and are thus not expected

to significantly affect the minimum range plots, at least for the

5 and 10% error thresholds.

For a single barrier, the minimum range plots show distinct

spikes at the barrier end points. In fact, Fig. 9 shows that

the WF at the foot of the barrier has a much gentler slope

than in the contact region, thus requiring a wider wave vector

range to accurately evaluate the charge. Also note that the WF

in the middle of the barrier is much more oscillatory, which

means that a finer mesh has to be applied. A similar behavior

is observed in the double-barrier structure, as the plots reach

their maximum values at the two ends of each barrier.

Finally, Fig. 10 shows a similar behavior in a III-V based
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Fig. 9. Absolute-value WF computed at the emitter contact, as well as at the foot and in the middle point of the barrier in silicon- (a) and III-V-based (b)
single-barrier structures. The lengths of the contact regions are 30 and 60 nm respectively.
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Fig. 11. Schematic view of the potential profiles with a bias applied for a
structure with no barrier (a) and one with a single (b) and a double (c) barrier.

double-barrier device, but with lower peaks. This is consistent

with (3) and (4), where the lower effective mass in III-V

devices results in narrower FDD and WF values at the contacts,

as seen in Fig. 8.
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tributed over a range of 1 eV. The error is relative to reference wavefunctions
calculated with a numerical precision of 200 significant digits: the reference
wavefunction values and those at a lower precision are both converted to
standard double precision, then the maximum relative error between their
absolute values is evaluated.

VII. COMPUTATION OF THE WF WITH A SCHRÖDINGER

SOLVER IN BIASED STRUCTURES

In this section, we look at the WF at the emitter and

collector boundaries of structures where a bias is applied. Our

goal is to observe whether lobes appear, and to make a rough

estimate of their height. Three configurations are studied: the

devices either have no barrier, or one, or two, as shown in

Fig. 11. Each structure is composed of 30 nm long contacts

that enclose a middle region which has a thickness of 7 nm

in the no-barrier and single-barrier configurations and of 5 nm

in the double-barrier one. In the single-barrier device, the

middle region contains the barrier; in the double-barrier one,

it contains both the barriers, which are 1 nm thick, and the

well, which is 3 nm thick. The applied material parameters

are representative of a silicon-based structure.

The potential profile is constant at the contacts and falls

linearly in the middle region. This simplification makes it

possible to solve the SE symbolically using Airy functions.
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Fig. 13. WF at the emitter (a) and collector (b) of a single-barrier silicon structure, at different bias points.

−20 −15 −10 −5 0 5 10 15 20
10

0

10
5

10
10

10
15

k (nm
−1

)

|f
W

 E
m

it
te

r| 
(S

I)

bias = 2 V

bias = 1.5 V
bias = 0.5 V

(a)

−20 −15 −10 −5 0 5 10 15 20
10

8

10
10

10
12

10
14

10
16

 k (nm
−1

)

|f
W

 C
o

ll
e

c
to

r| 
(S

I)

−20 −15 −10 −5 0 5 10 15 20
10

8

10
10

10
12

10
14

10
16

 k (nm
−1

)
|f

W
 C

o
ll

e
c

to
r| 

(S
I)

bias = 0.5 V

bias = 2 V

(b)

Fig. 14. WF at the emitter (a) and collector (b) of a double-barrier silicon structure, at different bias points.

The symbolic wavefunctions formulae are very complex and

are not optimized to reduce the numerical error. When eval-

uating them, it is therefore usually necessary to use a higher

computing precision than the IEEE 754 standard machine

double one. The MPMATH arbitrary-precision Python library

is used [29]. Fig. 12 displays the level of numerical precision

needed to calculate wavefunctions in single-barrier structures.

It plots the numerical error in the wavefunction module at

different working precisions, relative to a reference of 200

significant digits. The wavefunctions are computed across the

structures at different bias points, by casting 250 incident

wave vectors within a 1 eV energy range. The modules of

the wavefunctions are then computed, and they are finally

converted to double machine precision. The plots in the figure

trace the maximum relative difference compared to the 200-

digit reference. The plots all end as the relative difference

reaches a value of about 10−15: this is due to the conversion

to double precision, which does not allow to measure relative

errors smaller than about 15 decades. The end point of each

plot indicates the minimum working precision that is needed

to compute the wavefunctions to double data type accuracy.

It can be seen that the required minimum precision is much

greater than for unbiased structures, where standard double

precision suffices. For double-barrier structures, the numerical

precision required in the computation is similar to that for

a single barriers; on the contrary, for no-barrier structures,

double precision is once again sufficient. It should be stressed

that optimizing the symbolic wavefunction formulae to reduce

numerical error propagation might be beneficial in lowering

the minimum required working precision; nevertheless, stan-

dard machine precision may still not be enough.

Fig. 13 shows the WF computed at the emitter and collector

boundaries on a biased silicon single-barrier structure. The

plots are virtually indistinguishable from those obtained on a

device with no barrier. The emitter WF looks very similar to

the symmetric FDD profile obtained on an unbiased device. In

fact, the left side (k < 0) of the curve bulges a little less than

the right one; this effect is however difficult to spot visually

and can only be seen by looking at the numerical values of

the WF. An asymmetric WF curve is expected, as it indicates

a current flow between the emitter and the collector. In this

structure, however, the high and thick barrier insulates well

the two contacts. This occurs even at high bias points, as the

different curves overlap almost perfectly. On the other hand,

on a no-barrier structure, wavefunctions that are incident at

the emitter can propagate freely towards the collector, once

again independently of the bias point. On the collector side,

the asymmetry is more evident, yet it still occurs many orders
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Fig. 15. Minimum wave vector grid half-range required to compute the
charge within a threshold error of 1% in silicon-based no- (a), single- (b) and
double-barrier (c) structure.

of magnitude below the peak.

Fig. 14 plots the WF at the emitter and collector boundaries

of a double-barrier structure. On the emitter side, one notices

that the asymmetry between the left and right lobes is more

evident, especially at the 1.5 V bias point. On the collector

side, the asymmetry of the WF plot is again very evident, and

lobes again appear about 5 decades below the peak. The plots

in III-V-based devices are similar.

Fig. 15 plots the minimum wave vector grid range required

to compute the charge within an error margin of 1% at bias

voltages of 0, 0.5 and 1 V in the three structure types. As a

bias is applied, the plots loose their symmetry. Similarly to the

unbiased structures, they peak at the two ends of the middle
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Fig. 16. WF in a double-barrier silicon structure with a 1 V bias at the x-
node where the minimum wave vector range required to compute the charge
within a threshold error of 1% is highest and close to 60 nm−1.

region; the left peak (high-bias contact) is however higher in

general than the right one (low-bias contact). The difference

in height is especially marked in the case of the double-barrier

structure, although it is no greater than 30%. In both single-

and double-barrier structures, the difference in the heights of

the peaks with and without an applied bias is also quite small.

The biggest difference compared to the no-bias plots occurs

next to the middle point of the structure, where a very high

peak appears. This peak varies considerably with the applied

bias and is especially high on the double-barrier structure,

where it goes up to 60 nm−1 at a bias of 1 V. In fact, in the case

of the double-barrier device, two distinct peaks appear near

the middle of the structure, with the right one being higher.

Fig. 16 shows the WF at the point where the peak is highest:

while the plot is markedly asymmetric, it oscillates about the

origin, with the negative and positive areas being very similar

in size and canceling each other out when the charge integral

is evaluated. Similar trends are observed when applying III-V

material parameters.

As the WF is computed from the wavefunctions, scattering

effects are not accounted for. Normally, interactions have the

effect dissipating the charge carriers’ energy, thus screening

the electric field [30]. It is thus possible that the high-energy

peaks observed in Fig. 15 may be considerably lower if

interactions are simulated, as the distribution profiles would

be pushed back toward the origin of the wave vector space.

VIII. CONCLUSION

In this work, we have studied the Wigner Function (WF)

by computing it directly from the Schrödinger Equation (SE),

rather than by solving the Wigner Transport Equation (WTE).

We have shown that, in order to accurately compute the WF

over a large wave vector range, an extremely high machine

precision is required, often higher than the IEEE 754 double

data type. In fact, the numerical solver which we implemented,

despite being able to computing charge densities well within

1% accuracy, generated lobes on the WF curves that could not

be eliminated by applying denser grids.

This difficulty in computing the WF accurately comes from

the density matrix integration step, followed by the application

of the Fourier transform. Because these two operations are
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an inherent part of the WTE, the problems encountered in

their implementation might explain those met in solving the

WTE itself, namely the negative charge densities and the low

charge drop-offs in presence of large barriers. These points

have to be investigated further, and the SE solver may be of

help, as it allows to compute accurate boundary conditions in

the quantum region, at least for a single rectangular barrier

structure. These boundary conditions can then be applied to

the WTE solver, thus eliminating the memory overhead of

meshing large contact regions.

This approach has also helped investigate some basic ge-

ometry parameters and numerical implementation conditions

that must be applied to the WTE solver in order to accurately

simulate 1D single- and double-barrier structures. As for

the device geometry, the minimum contact length has been

investigated. In single-barrier structures, it has been found that

the WF at the boundaries follows a Fermi-Dirac Distribution

(FDD) if the contact length is greater than 30 nm in silicon-

based devices and about 60 nm in III-V-based ones; in double-

barrier ones, the WF separates from the FDD reference profile

a few decades below the peak and forms oscillating lobes

that are not significantly affected by either the contact length

or the numerical computing precision. As for the simulation

numerical parameters, this work investigates the range of the

WF in the wave vector space required to accurately compute

the charge. In silicon-based structures, this range is estimated

between 10 and 15 nm−1 for an error smaller than 1%, and

five to ten times lower in III-V equivalent structures.

This work also presents WF plots in silicon biased struc-

tures. The potential profiles used are simplified in order to

allow for a symbolic solution of the SE, and carrier interactions

are not taken into account. Nevertheless, it is still possible

to observe some trends at different bias points, namely the

increasing asymmetry in the lobes for positive and negative

wave vectors in the WF plots at the collector of the different

structures.
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