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Abstract—Random Key Predistribution Scheme
(RKPS) guarantees any pair of neighboring nodes in
a Wireless Sensor Network (WSN) can build a secure
connection either directly if a common key found, or
indirectly through a Path Key Establishment Mechanism
(PKEM). When a sensor node resorts to PKEM to
establish a secure connection with a neighboring node,
it needs to broadcast a keyrequest to all securely
connected nodes. However, unbounded broadcasting in
PKEM can potentially cause unnecessary or duplicated
broadcast message forwarding, which can intrusively
incur disruptive power consumption on all involved
sensor nodes in a highly resource constrained WSN.
Such negative impact can be much worse if exploited
by a malicious adversary to launch power exhaustion
Denial of Service (DoS) attacks to sabotage a secured
WSN. Thus, it is essential to convert unbounded
broadcasting in PKEM to a nonintrusive broadcasting
with optimally minimal message forwarding boundary
in a WSN. Previous research empirically identified
bounds on PKEM for small networks, which may not be
suitable for densely deployed WSNs with much higher
sensor node populations. In this paper, we tackle this
problem by applying theoretical results to identifying the
upper bound of diameter on a WSN when represented
as a Erdős-Rényi random graph. We then verify the
performance of a broadcast bounded PKEM through
simulations. The performance evaluation shows the
effectiveness of the optimally bounded PKEM.

Keywords- sensor networks; random key predistribution;
graph diameter; random graph; theoretical bound.

I. INTRODUCTION

A Wireless Sensor Network (WSN) comprises of a
large population of inexpensive sensor nodes that form
an ad-hoc wireless network to transmit information.
The sensor nodes can be deployed in a large geo-

graphical area to detect or measure physical quantities
such as temperatures, magnetic anomalies, chemicals
or motion in their immediate environment. Several
important WSN applications require to operate in a
hostile environment, where adversaries may attempt
to sabotage the WSN via different means, such as
unhindered physical access, eavesdropping, message
deception triggered exhaustive power consumption.

Securing WSNs is a highly demanded but also
highly challenging task, especially when implemented
in highly resource constrained sensor nodes. Con-
ventional security mechanism based on public-key
cryptography requires extensive computations that are
infeasible on current sensor node platforms. Conse-
quently, Symmetric key cryptography has been ex-
plored for securing WSNs due to its low computational
requirement.

Random Key Predistribution Scheme (RKPS) [2] has
been proposed and effectively used to secure WSNs.
RKPS relies on predistributing a random subset of
keys (keyring) from a large set of keys (keypool) on
each sensor node before a WSN is deployed. RKPS
uses a small keyring to achieve secure communica-
tion between a sensor node and all its neighboring
nodes within its transmission range. However, the small
keyring size can only be controlled to guarantee that
a sensor node is able to authenticate and thus trust
a small fraction of its neighboring nodes after its
deployment. If the sensor node is unable to find a
common key with a neighboring node, it will broadcast
an authentication request (keyrequest) to all its trusted
nodes who could either authenticate the incoming
keyrequest or forward the request to their trusted sensor
nodes for authentication. The process will continue
until the keyrequest is authenticated.
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Figure 1: PKEM in progress over a RKPS secured WSN.

The keyrequest forwarding in RKPS is analogical to
a flooding broadcast mechanism. Optimally bounding
keyrequest broadcasting in Path Key Establishment
Mechanism (PKEM) [2] is the focus of this paper.
We discuss this mechanism further in Section III while
detailing a general model of basic RKPS.

Figure 1 shows a RKPS enabled WSN, where (1)
thick links (as shown on the upper right corner) rep-
resent indirect secure connections created by PKEM,
(2) the solid lines represent direct secure connection
between two neighboring sensor nodes with at least
one common key, and (3) the dashed lines represent
unsecured connections between two sensor nodes with-
out a common key. Sensor nodes connected by dashed
lines can resort to PKEM to authenticate each other and
construct secure connections indirectly. The diagram
plots the Cartesian coordinates of sensor node locations
that uniformly distributed on a unit square to represent
a sensor field.

RKPS can be used to secure a WSN using a limited
keyring size with the cost of network communica-
tion overhead, which grows significantly in large-scale
WSNs. Thus, it is desirable to control the communica-
tion overhead in PKEM, especially if the sensor nodes
are allowed to forward a keyrequest unconditionally.
For handling a keyrequest, a sensor node needs to
consume its limited battery power for receiving, pro-
cessing (e.g., searching common keys) and forwarding
or acknowledging the request. In PKEM, a keyrequest
can be initiated by any sensor node, which might be
exploited by an adversary to inject bogus keyrequests.
In response, a large number of sensor nodes in the
attacked WSN will potentially consume a large amount
of power to authenticate the bogus keyrequests being
injected. Such an exploited weakness in PKEM can
easily result to a Denial-of-Service (DoS) attack, which

can easily exhaust the battery power on many involved
sensor nodes.

The communication overhead in PKEM can be ef-
fectively controlled through the use of a Time-To-Live
(TTL) parameter on each packet. However, the TTL
value needs to satisfy multiple conflicting constraints.
Firstly, the TTL needs to be sufficiently large to ensure
that (1) PKEM can perform its intended function, and
(2) every keyrequest can be forwarded to a sensor node
that can authenticate it. On the other hand, this TTL
should be as small as possible to limit the communica-
tion overhead in PKEMS. Furthermore, a mechanism
should exist to enforce that the TTL value does not
exceed a value decided before the deployment of a
WSN. This is to ensure that an adversary should not be
able to inject keyrequest into the WSN with arbitrarily
(large) TTLs to launch the DoS attack. Finally, the TTL
value should be adaptive for the varying size of a WSN
due to newly added nodes or gradual death of existing
nodes.

In this paper, we show how to model a secured WSN
as a connected Erdős-Rényi random graph such that a
keyrequest in RKPS originated from any sensor node
can be guaranteed to reach every other sensor node
within the WSN. The keyring and keypool sizes are
chosen to ensure that a sensor node connects securely
to its neighbor nodes with a predictable probability,
which can further ensure the resulting graph is con-
nected.

In our previous work [1], we introduced the problem
of identifying the maximum TTL (MAXTTL) and
applied the related results from Erdős-Rényi random
graph theory to identify MAXTTL for a WSN with
full-visibility. More specifically, the diameter of the
Erdős-Rényi random graphs can be used to calculate
the maximum value of the TTL. If one calculates the
shortest paths between every pair of nodes within a
random graph, the diameter would be the longest of
these shortest paths. The full visibility case, discussed
further in the next section describes a deployment
of the sensor network where every sensor node can
connect to any other sensor node within the network.
In this paper we expand upon our conference paper
to give more details about the problem, our simulation
approach and results.

The rest of the paper is organized as the follow-
ing. Section II discusses the related work. Section III
provides the background of PKEM and derives the the-
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oretical bound of flooding radius in PKEM. Section IV
presents our simulation design and results. Finally,
Section V and Section VI present some discussion and
conclude the paper.

II. RELATED WORK

In this section, we will review the work that has
been proposed to obtain a suitable TTL

Basic RKPS was first introduced in [2] and its
security characteristics have been extensively studied.
A variety of schemes have built upon the basic RKPS
by combining it with other key predistribution schemes
for improving its resilience to node compromise. Ref-
erence [4] reviews the basic RKPS and its derivative
schemes and also surveys the state-of-art in sensor
network security. PKEM overhead applies to the basic
RKPS and all its derivative schemes that trade network
overhead for reduced keyring size. Since our work
is fundamental to RKPS itself and also remains a
component of its derivatives, we will work with a
model of the Basic RKPS that includes all the ele-
ments of the scheme that have remained invariant in
its derivative schemes also. Instead of reviewing the
specifics of each scheme based on RKPS we dedicate
this space to reviewing research that has investigated
the characteristics of PKEM or has provided some
guidance on its possible values.

The original work in [2] reported empirical observa-
tions that the keypath length did not exceed a constant
number for the range of node populations between
1000 and 10000, in their simulations. However it did
not provide analytical guidance on how PKEM will
behave for larger node populations and different node
neighborhoods. The first reference to use a TTL limited
PKEM appears in [5], where it was recommended to
set the keypaths based on the average path lengths
in the trust graph. This conclusion was based on
empirical observations on an experiment setup similar
to the original work in [2]. It was also noted that a
majority of the keypath lengths were much smaller
than the observed average and the maximum. How-
ever, it did not analytically characterize the asymptotic
behavior of the PKEM path-lengths and how it evolves
with node population, deployment density or average
node connectivity. Another contribution of [5] was
the explicit statement of the assumptions related to
the minimum degree of the underlying connectivity
graph. The node connectivity in the original work and

many of the derivative schemes has been assumed
to be much higher than that supportable by state-
of-art MAC layer protocols such as IEEE 802.15.4
Zigbee [11] standard, popular on several sensor node
platform implementations.

Apart from empirical observations related to TTL,
interesting progress has been made in the investigation
of the validity of Erdős-Rényi Random Graphs [7] that
discussed the application of graph theory to RKPS in
the context of sensor networks and produced validating
results for specific ranges of its parameters.

The work in [12] applies random graph theory to
RKPS to propose a graph theoretic framework for
parametric decision making for RKPS, optimal keyring
size, and network transmission energy consumed in
PKEM etc. It provides some analytical formulations
on the basis of the diameter of de Bruijn’s graphs [27]
but did not provide any analytical guidance on how
to find the diameter of a RKPS trust graph. Our work
may be considered supplementary to this research since
reliable estimation of the diameter of RKPS trust graph
may allow exact derivation of some of the quantities
mentioned in this work. Our work instead focuses on
proposing supporting theory on the asymptotic bounds
of the diameter of the sensor network configuration,
which relates it to RKPS parameters such as node
population, probability and node neighborhood.

We also note the recent theoretical investigation
in Uniform Random Intersection Graphs that model
Random Key Predistribution Scheme under the full-
visibility assumption. Related work in [23]–[25] in-
vestigate several interesting properties of Uniform
Random Intersection Graphs and formally prove its
connectivity properties and node degree. Finally, we
note that [22] and [26] study the diameter of Uniform
Random Intersection Graph and solves a problem very
similar to ours from a theoretical point of view. We
could have chosen to base our analytical model on
the basis of [22], however, the focus of this paper
is inclined towards the investigation and extension of
Erdős-Rényi random graph theory as applied to RKPS
implementation on sensor networks.

For the construction of our simulator we used the
guidance from [6] that discusses the construction of a
high performance simulation for Key Predistribution
Schemes for WSN in Java. Our experiment design
replicates the experiment set up in [2], and we simu-
lated node populations between 1000 to 10000 sensor
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Figure 2: Trust Graph Illustration: Lighter edges represent
wireless connectivity and darker edges represent secure
connectivity.
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Figure 3: Variation of Cc for desired probability of graph
connectivity in Eq. 3.

nodes. Finally, we used a number of open source
software libraries for high precision arithmetic, graph
theory algorithms and MATLAB for experiment de-
sign, statistical analysis and visualization. We discuss
these in further detail in Section IV.

III. THEORETICAL BOUND ANALYSIS

For a given WSN with node population n, RKPS
models it as a Erdős-Rényi random graph such that
appropriate keyring size k and keypool size K can be
selected to ensure the formed secure network remain
connected.

A. Trust Graph

A sensor network can be modeled as a pair of
overlaid graphs, where the underlying graph represents
the wireless connectivity among sensor nodes, and the
overlay graph shows the secured wireless connectivity
among sensor nodes. In the underlying wireless con-
nectivity graph, each sensor node is denoted as a vertex

and each wireless connection between two neighboring
nodes is represented as a link. In the overlay secured
wireless connectivity graph, also referred as Trust
Graph, only secured wireless connections remain and
are represented as secured links. Figure 2 shows a trust
graph overlaid on the top of the connectivity graph of
a WSN deployed on the surface of a unit sphere. A
trust graph is a sub-graph of the underlying wireless
connectivity graph, since its edges only exist if an
underlying connectivity graph edge exists. The figure
plots the Cartesian coordinates of sensor node locations
distributed on the surface of a model sphere, with unit
radius. We discuss this modeling approach further in
Section IV, Deployment Model.

B. Generalized RKPS Model

In this section, we describe the general model of
basic RKPS [2].

Before a WSN is deployed, RKPS allocates a small
random subset of keys (keyrings) on each sensor node
from a large universal set of random keys (keypool),
where each subset may overlap with other subsets with
a small probability p. Once deployed, each sensor initi-
ates a shared key discovery protocol with its neighbor-
ing nodes by sending a keyrequest containing unique
identifiers for each key in its keyring. The neighboring
node with common key will respond back by encrypt-
ing a random number with a common key (challenge),
which will be decrypted by the requesting node and
sent back (response) to complete the authentication
process. Subsequently, the identified common key can
be used to negotiate a shared session encryption key.

The small keyrings only allow a fraction of neigh-
boring nodes to directly authenticate the received
keyrequest. A sensor node that unable to authenticate
a targeted neighboring node would resort to a path key
establishment mechanism (PKEM), where it forwards
the keyrequest to its authenticated and thus trusted
neighboring nodes. These neighboring nodes would
either authenticate the targeted node or forward it
to their trusted neighboring nodes until a transitively
trusted node authenticates the targeted neighboring
node.

The deployment model of a WSN is generally as-
sumed to be uniformly random, and thus the neigh-
boring nodes of any given sensor node cannot be
predicted. An Erdős-Rényi random graph is denoted
as G(n,p), where n is the number of vertices and p



237

International Journal on Advances in Systems and Measurements, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 4: Sensor Network Model with full-visibility assump-
tion.

represents the probability that a vertex is connected to
any other vertex within the graph.

For a random graph G(n,p), we have

i f p =
ln(n)

n
+

Cc

n
(1)

then lim
n→∞

P(G(n,p) is connected) = ee−Cc (2)

where Cc is a constant and should be chosen such that
P(G(n,p) is connected) is close to 1.

Prior research [2] on RKPS has recommended
choosing the value of C between 8 and 16, as shown
in Figure 3 which can yield the desired value of p, and
further derive the keyring size (k) for a given keypool
size (K).

It is essential to note that the Erdős-Rényi graph
theory assumes that within the graph any node can
be connected to another one, i.e., every node can see
any others within the network (full-visibility model).
However, in sensor networks a sensor node is only
connected to a small subset na : na� n of the randomly
deployed nodes that are within its transmission range
(limited-visibility model). Figure 4 visually illustrates
a WSN modeled under the full-visibility assumption
in Erdős-Rényi random graph theory. Figure 5 shows
a sensor network modeled under the limited-visibility,
encountered in practical sensor network deployments.
In both, Figure 4 and Figure 5, the nodes represented
by the plotted points are only joined by edges if
there is connectivity between them. The dimensions
represent distance and the plot models the Cartesian
coordinates of each sensor’s deployment location on a
two dimensional square sensor field. Note that in case
of full-visibility Figure 4, each node is connected to
every other node and its location is immaterial. In con-
trast, the location and neighborhood of a sensor in the
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Figure 5: Sensor Network Model with limited-visibility
assumption.

limited-visibility Figure 5 case governs its connectivity
with other sensors in the network.

In order to overcome the lack of connectivity of
the limited-visibility case, the work in [2] proposed
adjusting p to the effective probability (pa), with which
a node can connect to any of its neighboring nodes,
such that the average degree d of the nodes in the
graph remains constant as shown by Eq. 3.

d = (na−1)pa = np (3)

With this calculated value of pa, the work in [2]
derived k according to the following equation:

pa = 1− (K− k)!2

K!(K−2k)!
(4)

Research results identifying the upper bound on
the random graph diameter with the parameter CC

controlled with the proposed range have been proposed
in Theorem 4 in [8], where we have p≥ c ln(n)/n.

C. Diameter of a Sparse Random Graph

Several studies have analytically investigated the
upper bound of Erdős-Rényi random graphs for various
ranges of n and p. For example, the work presented
in [8] reviews the analytical results on various ranges
of p, in terms of n. Moreover, it derives the asymptotic
bounds on the diameter of Erdős-Rényi random graphs
at its critical threshold where both n and p satisfy
the relationship mentioned in Eq. 1. Theorem 3 in [8]
states that given the relationship in Eq. 5, the diameter
of the graph is concentrated on at most three values
around value indicated in Eq. 6.

np
lnn

= c≥ 2 (5)

diam(G(n,p))≤ d
lnn

lnnp
e+1 (6)



238

International Journal on Advances in Systems and Measurements, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Furthermore, for ranges of c ≤ 2, Theorem 4 [8]
predicts the upper bound on the diameter indicated by
Eq. 7 as follows.

(7)

⌈
ln( cn

11)

ln(np)

⌉
≤ diam(G(n,p))

≤

⌈
ln( 33c2

400 )n ln(n)
ln(np)

⌉
+ 2
⌊

1
c

⌋
+ 2

The above formula gives the upper-bound on the
diameter of sparse random graph, where p≥ c ln(n)/n.
It worths noting that c in Eq. 7 can be greater than 2
since it depends upon the value of Cc as shown in
Eq. 1. Figure 7 shows how c varies with the value of
Cc. A sufficiently high value of Cc can be chosen to get
c ≥ 2. Our experiment design takes this precondition
into account to interpret the observed results.

IV. SIMULATION DESIGN AND RESULTS

To investigate the effective diameter of a trust graph
for the RKPS configurations discussed in Section III,
we created a sensor network simulator along the di-
rections discussed in [11]. Our simulator derives the
keying size based on [2] as discussed in Eq. 4, and
allows for reasonable variations in the sensor network
deployment densities.

A. Simulation Model

The simulation has been constructed in MATLAB
and Java. The implementation of the WSN model in
Java allows us to take advantage of efficient thread-safe
data structures to model a WSN, sensor keyrings and
sensor nodes. We have implemented several different
experiments using MATLAB to collect the data from
Java simulation and interpret it to construct the result
visualizations. With the support of several MATLAB
toolboxes, we were able to implement efficient graph
algorithms for the calculation of all-pair shortest paths
and the size of a WSN.

As shown in Figure 6, our simulation model com-
prises of a MATLAB driver script that calls multiple
MATLAB functions to prepare simulation arguments
and pass them to the Java simulation model. At the
completion of the simulations, the state of the Java
simulation is imported into Matlab in the form of an
adjacency matrix representation of the trust graph and
the connectivity graph.

Matlab 

Experiment 

Scripts

Java 

Sensor 
Network 

Model 

Simulation

Of RKPS

Matlab BGL 

Graph 

Analysis

Matlab 

Statistical 

Analysis

Matlab 

Visualization

Figure 6: Simulation Model.

Adjacency Matrix is a widely used standard repre-
sentation of a graph in many graph theory algorithms.
Informally, the adjacency matrix is a square symmetric
matrix with n rows and n columns, where n represents
the number of nodes within the graph. Each row
corresponds to a node within the graph and contains
a value of 1 for each edge that connects that node to
another node in the graph. The adjacency matrix can
be used as input for the all-pair shortest path graph
algorithms available in MATLAB-BGL [20].

MATLAB-BGL provides a MATLAB wrapper for
the standard Boost Graphics Library (BGL) [9]. BGL
is a comprehensive C++ library implementing almost
all known efficient graph algorithms. BGL is well-
established and well-reviewed by the development
community, and becomes the standard library used for
graph theory calculations.

The diameter of a trust graph is the longest path
among all shortest paths between any pair of vertices
in the graph. Various so-called all-pair shortest path
algorithms allow us to measure the shortest number
of hops between every pair of sensor nodes in the
network. The choice of a suitable algorithm to identify
all-pairs shortest paths depends upon the sparseness of
the graph and the space complexity of an algorithm
with a given graph size.

Assuming V to be the number of vertices and E
to be the number of edges in a graph respectively,
the complexity of Johnsons [18] all-pair shortest path
algorithm is O(V 2 lnV +V E). Floyd-Warshall [17] pro-
vides another approach with the complexity of O(V 3),
which is independent of the number of edges. Floyd-
Warshall algorithm is generally well-suited for dense
graphs with a large number of edges. However, it
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requires matrix multiplication that is relatively difficult
to implement for large-scale networks utilizing built-
in data types of common programming languages like
C++ and Java. Johnsons algorithm on the other hand
has lower space complexity and is therefore well-suited
for calculation of the all-pair shortest paths for large-
scale networks, even when the number of calculations
required for dense graphs may be higher than for
Floyd-Warshall. We utilized BGL implementation of
Johnsons all-pair shortest paths to calculate the diame-
ter of networks in the range of 1000 to 10,000 nodes.

We designed experiments with various ranges of n
and Cc to validate whether the obtained trust graph
from simulations follows the theoretical results. We
generated random topologies for creating WSNs by
varying the number of nodes from 1000 to 10000. The
required probability to obtain full connectivity were
calculated based on Eq. 1 and Eq. 3.

B. Verification of Theoretical Results

We utilized the Boost Graph Library [9] and Matlab-
BGL [20] toolkit for MATLAB to verify the theoretical
results on several instances of random graphs for vari-
ous values of n when 1≤ c≤ 2. Our simulation results
as presented below confirm the theoretical results as
shown in Section III based on full visibility RKPS
models with a keypool size of 100000.

Please note that the diameter values remain relatively
stable for large increments of n, which should allow
the future extension of a WSN, even with the current
controlled diameter. We also observe that the observed
value is well-below the value predicted by the theory,
which would make it robust against transmission fail-
ures in the shortest path.

As discussed earlier, most empirical studies of RKPS
have assumed a value of Cc in the range of 8 to 16.
Figure 7 and Figure 8 plot the value of c as in Eq. 5
and Eq. 6 showing that c can be assumed to be higher
than 2 for lower ranges of n and higher ranges of Cc

as in Eq. 1. These values are coincident with the range
assumed in prior research on RKPS schemes.

The value of Cc in Eq. 1 has significant impact upon
weather c in Eq. 5 is in a range where the diameter of
the random graph remains O(ln(n)/ln(np)). Figure 7
implies that lower values of Cc in Eq. 1 will not allow
the diameter of the graph to remain small.
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C. Keyring Size Calculation

The keyring size was calculated for a keypool of
100000 on the basis of [2] as described by Eq. 5.
To work with factorials of large numbers as required
by Eq. 5, we utilized the JScience scientific library
to support numbers of arbitrary precision. Further, to
improve the precision and the performance of our
simulations, we created a symbolic fraction that allows
canceling of factors in numerator and denominator of
a fraction before calculation of its final value. This
reduces the loss of precision due to floating point
arithmetic operations and enabled us to reproduce the
exact calculations for keyring sizes as published in [2].
Since the presence of factorials in Eq. 5 does not
permit further simplification for obtaining keyring size
through a formula, we utilize a hit and trial approach
for calculation of the keyring size for a given keypool
size.

To speed up the simulations, we observe that the
increase in keyring size would result in higher prob-
ability of connectivity. We exploit this monotonicity
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Figure 9: Calculation steps for a keypool size of 105 with
desired probability of 0.63.

of Eq. 5 to devise a simple binary search to converge
on the keyring size with the least number of trials.
Figure 9 shows the calculation steps required for
typical values of probability and keypool size. Firstly,
we rapidly increase keyring sizes in steps of 256 to
obtain a probability higher than the required; then we
gradually alternate between increasing and decreasing
the keyring size to converge upon the size of the
keyring, which would give the exact desired probability
of connectivity for a given keypool size.

D. Deployment Model

Basic RKPS simulation model uses a unit square
as the deployment area. Node density was assumed to
be uniform and simulated by varying the transmission
range of the sensor node model. More recent work
in [11] showed the boundary effect in the context
of simulating key predistribution schemes for WSNs.
Boundary effect occurs at the borders of the sensor
network, where the sensor nodes do not have the av-
erage neighborhood connectivity as available to nodes
closer to the center. Boundary Effect can significantly
influence the degree distribution of the trust graph in
simulations but its impact in practical deployments
is considerably less as the network grows larger. A
recommended elimination [11] of this effect is to
modify the WSN deployment model on a spherical
surface, which results in a uniformly distributed node
population in a WSN. Eliminating the boundary effect
also allows us to produce a sensor network model with
homogeneous node connectivity, which can be further
mitigated if the boundary nodes resort to dynamic
range extension as suggested by [5].

To simulate a spherical deployment field, we fol-
lowed the directions from the work in [7], and modeled

our node deployment using Ziggurat method due to
Marsaglia [13]. This method allowed us to generate a
uniform distribution of three dimentional points on the
surface of a sphere. We calculated the node distances
using the great circle arc length, with assumption that
the node range is a disk shaped area on the surface of
the sphere. This is equivalent to the transmission range
of a sensor node on a planner surface.

V. RESULTS AND DISCUSSION

Figure 10 shows a plot of our simulations on MAT-
LAB, where the diameter of the generated random
graph closely follows the the theoretical expectation
as described in Section II. The theoretical predictions
of the figure is a composite generated on the basis
of Eq. 6 and Eq. 7. For the points that satisfy the
precondition in Eq. 5 we have used Eq. 6 and Eq. 7
for the points for the others. As shown in Figure 10
the practical diameter of the trust graph is co-incident
to the theoretical expectations with an error of ±1.

Figure 11 and Figure 12 show the long range pre-
dictions of the analytical tools that we have discussed
in this paper. The predict shows that the diameter of
a WSN will increase very slowly with the increase of
network size, and will remain constant for large ranges
of node populations. This further shows that setting
a maximum limit to the TTL employed by PKEM
will not interfere with the extensibility of the sensor
network. More sensor nodes can be deployed later
with the same TTL setting to continue operation of
the network. Moreover, the stability of TTL for largely
varying network sizes also show that the network will
be robust against failures or compromise of a large
percentage of sensor nodes, and PKEM operation will
not be impacted by a limited TTL. On the other
hand, this also indicates that controlling TTL would
only provide limited control over the number of nodes
visited by a keyrequest and the consequent power
consumption of PKEM. The number of nodes that
may receive a PKEM request rises rapidly with the
increment of TTL in a large-scale WSN.

Figure 12 shows the node degrees may rise as
high as 140, which is prohibitively high for current
sensor node platforms. We notice that several methods
have been proposed to mitigate this problem, including
range extension [5]. Further investigation of the diam-
eters of practical sensor network deployments should
be undertaken using simulations and analytical models,
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network sizes n as predicted by [10].

which specifically address the limited-visibility sensor
network deployment model, such as Random Geomet-
ric Graphs(RGG) [16].

VI. CONCLUSION AND FURTHER WORK

To conclude, this paper formally studies the com-
munication overhead of PKEM and its possible im-

provement through Erdős-Rényi random graph theory.
PKEM employs a variant of flooding broadcasting
and specifically an instance of probabilistic broad-
casting [19]. We have shown that the theory on the
diameter of the Erdős-Rényi random graph can be used
to limit the overhead of the PKEM without impacting
its function in RKPS. While we have focused on
PKEM specifically, the key revocation protocol for
RKPS also relies on broadcasting. Thus, our results
can be directly applied to limit the overhead of the
key revocation protocol also.

We have presented and tested an analytical model
that provides a simplified guidance on the TTL set-
ting in PKEM for sensor network deployments under
full visibility setting. We have shown that certain
assumptions regarding the modeling of the trust graph
are necessary to preserve its properties as applicable
in an Erdős-Rényi random graph. Lastly, we have
studied the predictions of our analytical model for large
scale deployment and identified their impact on the
feasibility of large scale sensor networks.

In this paper we have studied the solution of the
MAXTTL problem for the full-visibility case where
a sensor can potentially communicate (see) with any
other sensor within the network. A majority of practical
sensor network deployment confirm to the limited
visibility case where a sensor can only communicate
(see) other sensor nodes within its transmission range.
We intend to extend this work for further for practical
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sensor network deployments under the limited visi-
bility assumption. Recent work in modeling practical
sensor networks deployments have utilized Random
Geometric Graph theory. We intend to explore the
theoretical results on Random Geometric Graphs to
find guidance on the diameter of a RKPS trust graph
under the limited visibility assumption.

We chose this problem to trigger a discussion of the
energy consumption of RKPS when PKEM transmis-
sions are also taken into account. Optimally controlling
the transmission overhead in RKPS is critical to its
eventual success as a security scheme for WSNs. Com-
peting public-key cryptography schemes generally re-
quire much smaller number of transmissions, and may
eventually become viable on somewhat more powerful
sensor node platforms. Finally, bounded keyrequest
broadcasting and methods to securely limit its overhead
in RKPS are essential to mitigate adversarial DoS
attacks. These DoS attacks are not defendable because
RKPS cannot identify weather a keyrequest originates
from an authentic sensor node or an adversary. For
achieving this function, it would require an authen-
tication scheme that is at least as secure as RKPS,
preferably with lesser overhead.

Randomized broadcasting (or gossiping) has been
considered as another method to lower the transmission
complexity of RKPS, and may be more suitable for
implementation on some sensor network configurations
and node populations. However, PKEM based on ran-
domized broadcasting trades latency and reliability for
lower transmission complexity. Finally, we expect to
provide a skeleton of theoretical assumptions, which
may facilitate the application of results in Erdős-Rényi
random graph theory to the problem of broadcasting
at large, and the application adopting its upper bound
on diameter in bounding the TTL values for flood
broadcasting at large.

Our work also shows that the secure connectivity and
diameter of the trust graph is intimately related to the
deployment density of a WSN, and the average node
connectivity. A poorly connected graph would result
in a sparser trust graph, and may result in unreliable
operation of PKEM with a limited TTL. Sparser trust
graphs may require PKEM to broadcast packets with
higher TTL values that exposes it to undesired potential
DoS attacks. A predefined upper bound and sensor
network configuration with a smaller diameter would
effectively prevent an adversary from exploiting this

mechanism.
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