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Abstract—This article reports on a framework for the devel-
opment and testing of complex systems. The framework provides
a meta-model for the description of systems at different levels
of abstraction, which is used as a basis for the combination
of model-based testing (MBT) techniques for automated test
case generation with executable requirement monitors that con-
tinuously observe the status of the System under Test (SuT)
during test execution. The overall goal is to reduce the total
development and testing effort for complex systems. This is
accomplished by enabling a high degree of automation and
reuse of engineering artefacts throughout the systems engineering
lifecycle. The framework is illustrated using an example from the
aircraft systems domain: the door locking system.

Keywords—Model-based Systems Engineering, Model-based
Testing, Monitor-based Testing, SysML.

I. INTRODUCTION

This article is a revised and extended version of the
article [1], which was originally presented at the The Fifth
International Conference on Advances in System Testing and
Validation Lifecycle (VALID 2013).

The ever-increasing complexity of products has a strong
impact on time to market, cost and quality. Products are
becoming increasingly complex due to rapid technological
innovations, especially with the increase in electronics and
software even inside traditionally mechanical products. This
is especially true for complex, high value-added systems in
the aerospace and automotive domain - the methodology
was developed and is therefore embedded in an aeronautic
context but generally is independent of a specific domain
- that are characterized by a heterogeneous combination of
mechanical and electronic components. System development
and integration with sufficient maturity at entry into service
is a competitive challenge in the aerospace sector. Major
achievements can be realized through efficient system testing
methods.

”Testing aims at showing that the intended and actual
behaviours of a system differ, or at gaining confidence that
they do not. The goal of testing is failure detection: observable
differences between the behaviours of implementation and
what is expected on the basis of the specification”[2].

The typical testing process is a human-intensive activity
and as such it is usually unproductive and often inadequately
done. It requires human test engineers to manually write test
cases. A test case contains a series of test inputs and expected
results. Nowadays, the test execution especially on lower levels
of testing is largely automated. Nevertheless, this process
is cumbersome and costly. Therefore, testing is one of the

weakest points of current development practices. According
to the study in [3] 50% of embedded systems development
projects are months behind schedule and only 44% of designs
meet 20% of functionality and performance expectations. This
happens despite the fact that approximately 50% of total
development effort is spent on testing [3], [4]. This shows the
importance and desirability of reducing test effort by advances
in the testing methodologies.

Testing needs to be applied as early as possible in the
lifecycle to keep the relative cost of repair for fixing a
discovered problem to a minimum. This means that testing
should be integrated into the lifecycle model so that each phase
in the development contributes to the verification of the product
as Figure 1 shows. Laycock claims that ”the effort needed to
produce test cases during each phase will be less than the
effort needed to produce one huge set of test cases of equal
effectiveness on a separate lifecycle phase just for testing”[5].

Fig. 1: Envisaged process change

This paper reports on a framework to further automate
the system testing process. It is a continuation of the work
earlier reported in [6]. The framework provides a meta-model
for the description of systems on different layers of abstrac-
tion and combines model-based testing (MBT) techniques for
automated test case generation based on a whitebox SysML
model of the system with executable requirement monitors
that continuously observe the status of the System under Test
(SuT) during test execution. The overall goal is to achieve a
high degree of automation and reuse of engineering artefacts
throughout the systems engineering lifecycle.

Paper structure: First, we present background information
on SysML, MBT and monitor-based testing (Section II) before
we will explain the methodology in detail (Section III). Next,
the methodology will be illustrated using an example from
the aeronautic domain (Section IV). Finally, we propose a
number of ideas for future research (Section V) and close with
a summary of the current status (Section VI).

II. BACKGROUND

This section provides background information on SysML,
Model-based testing, Monitor-based testing and related work.
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A. SysML

The Unified Modeling Language (UML) [7] is a stan-
dardized general-purpose modelling language in the field of
software engineering and the Systems Modeling Language
(SysML) [8] is an adaptation of the UML aimed at systems
engineering applications. Both are open standards, managed
and created by the Object Management Group (OMG), a
consortium focused on modelling and model-based standards.

SysML is not a methodology, i.e., it does not define
what steps need to be performed in what order and which
diagrams should be used for which step. Estefan [9] provides
an overview of existing methodologies used in industry, some
of which use UML-based languages. SysML is a graphical
modelling language, i.e., diagrams are used to create and
view model data. However, the graphical representation is
decoupled from the actual model data. The model data and its
graphical representation are typically stored in different files
in UML/SysML tools.

Neither UML nor SysML define complete model execution
semantics in their core specification. This is different from
modelling and simulation languages, such as Modelica [10],
which specify the syntax (textual notation) as well as the
execution semantics. However, work is underway to resolve
that [11], [12], [13]. In the mean time, SysML tool suppliers
often provide their own execution semantics [14], so it is
possible to include action code into models, generate code
from the models and then execute them.

B. Model-based testing

The term MBT is widely used today with slightly differ-
ent meanings. Surveys on different MBT approaches can be
found in [2], [15], [16]. One of them is that ”Model-based
testing (MBT) relates to a process of test generation from
an SuT model by application of a number of sophisticated
methods”[17].

Model-based testing is a variant of testing that relies on
explicit behaviour models that encode the intended behaviour
and expected failure states of a system and possibly the
behaviour of its environment. The use of explicit models is
motivated by the observation that traditionally, the process of
deriving tests tends to be unstructured, barely motivated in the
details, not reproducible, not documented, and bound to the
creativity and expertise of single engineers. The idea is that
the existence of an artefact that explicitly encodes the intended
behaviour can help mitigate the implications of these problems
[2].

Intensive research on MBT and analysis has been con-
ducted in recent years, and the feasibility of the approach has
been successfully demonstrated, e.g., in [18], [17]. Yet, Boberg
[19] shows that most studies apply model-based testing at the
component level, or to a limited part of the system while only
few studies focus on the application of the technique at the
system or even aircraft level. The main difference being that
the goal of modelling at system level aims at generating a
specification whereas modelling at component level aims at
generating code that runs on target. Giese [20] explains that
this slow adoption is not only due to scalability reasons but
he also claims that ”to benefit from formal verification and

early simulation, a model must be precise and detailed with
respect to all aspects that are the subject of verifiation. This
can usually be carried out in the detailed design phase at the
earliest”[20].

A major distinction between the different available MBT
approaches can be made by looking at the source of the gener-
ated test cases [20]. Some approaches rely on separate explicit
test models that are disjunct from the system or specification
model, as depicted by Figure 2 while other approaches do not
make that distinction and generate test cases from the defined
system behaviour as shown by Figure 3.

The usage of explicit test models reflects the different
objective (validation vs. solution) and point of view (tester
vs. implementer) in creating a test model rather than a spec-
ification model [21]. A test model is a model representing
all possible stimulations of input of the system interacting in
various usage contexts and normally also includes verification
points stating what is a correct response from the system to
an input and what not. It thereby follows a tester’s view who
also has to think of how to combine the possible input stimuli
of a system to achieve a high confidence in its correctness.

The main benefit of this approach is the degree of inde-
pendence it naturally entails between the generated test cases
and the system. The generated test cases can thus be used
directly to test any form of the SuT, either a model or the
implementation. Additionally, as the test model is not a part
of the design it can be optimised for validation and verification
purposes thereby increasing the chance to uncover defects that
are outside the focus of the design artefacts [20]. A drawback
of the approach is that there are two models that have to be kept
consistent with the requirements at all time, which requires
further effort.

Fig. 2: Model-based testing using explicit test models

One example for an approach that does not rely on explicit
models is the work from Lettrari [22] that is the basis for
the commercially available IBM Rational Rhapsody Automatic
Test Generator (ATG) tool. Test cases are generated from
a behaviour model of the SuT using model coverage as
test selection criteria. Automated test case generation uses
constraint based symbolic execution of the model and search
algorithms.

The main benefit is that the approach does not require the
creation and maintenance of a separate test model. On the
other hand, since the test case generation is not guided by a
test engineer it cannot distinguish between ”good” and ”bad”
test cases. The only goal for the generator is to achieve a high
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degree of model and/or code coverage by generating stimuli
that force the executable system model to visit all states and
transitions and call all functions of the system’s components.
Furthermore, there is no independence between the generated
test cases and the system model. This means that the test cases
cannot be used to test the model they were generated from if
the test success criteria is that the observed behaviour and the
test case behaviour are the same.

Fig. 3: Model-based testing using design/specification models

C. Monitor-based testing

The idea for formalizing a natural language requirement
statement into a requirement monitor is similar to the monitor
concept used in runtime verification [23], [24]. A more formal
definition states, that ”Runtime verification is the discipline of
computer science that deals with the study, development, and
application of those verification techniques that allow checking
whether a run of a system under scrutiny satisfies or violates
a given correctness property”[23].

Runtime verification itself deals with the detection of
violations of correctness properties. Thus, whenever a violation
is observed, it typically does not influence or change the
programs execution, say for trying to repair the observed
violation. Checking whether an execution meets a correctness
property is typically performed using a monitor. In its simplest
form, a monitor decides whether the current execution satises
a given correctness property by outputting either yes/true or
no/false [23].

D. Related Work

In [25], Artho et. al. propose a method for combining test
case generation and runtime verification for software systems.
In their framework they combine automated test case genera-
tion, which is based on a systematic exploration of the input
domain of the tested software system using a model checker
that is extended with symbolic execution capabilities with
runtime verification techniques, that monitor execution traces
and verify them against properties expressed in a temporal
logic notation. They include further capabilities for the analysis
of concurrency errors, such as deadlocks and data races. The
paper also provides a description of the application of the
method using a NASA rover controller.

Our work differs from the work by Artho et. al. in some
major points. Firstly, the test oracles are written as temporal
logic formulas whereas we use SysML for both the modelling
of the system as well as the requirement monitors. Secondly,
the test scenarios are generated based on a definition of all

possible inputs using a model checker, whereas we generate
the test scenarios from a whitebox model of the system under
test.

Drusinsky calls the usage of statecharts for the automated
verification of models execution-based model checking and
compares it to classical model checking, i.e., static analysis,
as follows: ”[execution-based model checking] seldom yields
100% test coverage, whereas classical model checking consists
of a mathematical proof that does yield 100% coverage. The
truth, however, is that both classes of techniques require
compromises. Execution-based model checking compromises
in the achieved test coverage; classical compromises in the
size and type of programs that can be verified, and in the
kinds of assertions that can be verified to begin with”[26]. In
our work, we follow a concept that is similar to what Drusinky
calls execution-based model checking but embed the idea in an
overall framework for the development and testing of systems.

III. METHODOLOGY FOR DEVELOPMENT AND TESTING
OF COMPLEX AIRCRAFT SYSTEMS

This section provides a description of our methodology in
terms of the overall concept, the underlying metamodel and
the envisaged process.

A. Concept

Our methodology combines monitor- and model-based
testing to test the system model and the resulting system. Our
aim is to achieve a high degree of reuse of artefacts from
early development stages at later development stages and a
high degree of automation throughout the process. Since we
consider multiple levels of abstraction in our metamodel it
is necessary to provide means, which can verify a model at
any abstraction level or the final product without the need
for redeveloping the verification artefacts for each verification
stage. To this end, we use executable requirement monitors,
which can be built as soon as the first requirements are defined.
The formalized reuquirement monintors can be reused and
adapted easily for verifying the models or the product. Also,
these monitors can be reused for testing different variants
and/or design alternatives.

Figure 4 provides an overview of the main artefacts in-
volved and their relations.

A requirement monitor is an exectuable model representing
one requirement that, at any point in time, indicates the
requirement violation status. The status should be enumerated
with at least the following values [27]:

• Not evaluated (default value), to indicate that the
requirement has not been evaluated yet. Typically, this
means that a necessary precondition has not been met
yet or that the monitor is currently evaluating but could
not make a verdict yet.

• Not violated, to indicate that no violation has hap-
pened and implying that the requirement has been
evaluated.

• Violated, to indicate a violation of the requirement and
implying that the requirement has been evaluated.
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This enumeration is referred to as ”three-valued semantics”
in [23] with the literals ”inconclusive”, ”false” and ”true”
respectively.

The monitor status can be obtained from a monitor at
any point in time and can change between not evaluated,
not violated and violated in any possible way. Following this
approach, the status of the individual reuqirement monitors that
are instantiated during one test can be used in aggregation to
derive the test verdict. Removing the test verdict from the test
cases will enable the reuse of test cases, that we now call test
scenarios, for the verification against several requirements.

The task of converting the natural language statement into
a formal language will require a correct interpretation of the
requirement statement and the ability to translate the meaning
into a model that expresses exactly the same. The general
systematic way for deriving a monitor from natural language
requirement is as follows:

1) Read the requirement statement
2) Identify properties that can be quantified either by

explicit numbers or by logical conditions
3) Identify pre-conditions (if any), which must be satis-

fied before the requirement can be evaluated
4) Express when the requirement is violated and when

not

Neither a particular design of the system nor scenarios are
needed for formalizing a requirement. The resulting monitor
can be used for the verification of any design alternative of the
system using any scenario. Generally, the task of formalizing a
requirement into a requirement monitors can be accomplished
in many different ways using different formalisms. We decided
to use SysML for the task because using the same notation for
design and testing artefacts enables integrated development and
testing without the need for additional tools or data converters.

We drive the tests using scenarios that we generate from
the system models using MBT technology. Since we derive
the test verdict from the requirement monitors independently
from the system model we can use the scenarios derived from
the system model to actually verify the system model as well
as the final product.

Fig. 4: Model-based testing using monitors

B. Meta-model

For our purpose, we extended the already established meta
model for functional and systems architecture modeling [28]

to allow a distinction between the functional, logical and the
technical architecture of the system as depicted by Figure 5.

Fig. 5: Levels of abstraction

The main rationale for the distinction between these differ-
ent layers is reusability. Between different aircraft programmes
the functional architecture of a system is quite stable whereas
the implementation can differ drastically. For a given aircraft
programme the logical architecture is fixed quite early but
different technical implementations might be considered and
compared in trade studies. Ideally, we can now reuse the same
functional architecture that is mature and proven and derive
different logical and even more possible technical implemen-
tations that satisfy these functional needs.

The functional architecture, consisting of functions and
data exchanges via functional dependencies is mapped to a
logical system architecture, consisting of logical components
that are instances of logical component classes and logical
links between these components. This logical architecture can
then in turn be mapped to the technical architecture of the
system, which contains technical components, i.e., devices, and
technical connectors, i.e., cables that connect the components.
As can be seen from Figure 6, the relations between the ele-
ments in the different modelling layers allow a full traceability.
This is crucial especially for maintaining the consistency of the
models after changes.

While the modelling of the functional architecture in our
approach is purely descriptive, the logical and the technical
system architecture models are fully executable. Typically, the
complexity of the models increases from the functional over
the logical to the technical model. This is mainly due to two
reasons: Firstly, when following this top down approach for
systems modelling the level of abstraction decreases, which
in turn increases the level of detail and complexity. Secondly,
most aircraft systems require a certain degree of redundancy
to abide by the safety constraints. A fact, which is normally
not considered during the functional analysis, only partly in
the logical design but has the most impact on the technical
architecture.

C. Process

The overall process underlying our methodology is straight
forward and consists of the following steps:

1) Formalize requirements: create a violation monitor
for each requirement
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Fig. 6: Meta-model for current approach

2) Build system models
3) Generate test scenarios from system models using

MBT
4) Prepare the test environment: instantiate the monitors

of the requirements that can be tested using the
available scenarios and connect them to the SuT
(models or real hardware) appropriately

5) Execute tests: run all defined scenarios
6) Evaluate tests: aggregate the individual statuses of the

requirement monitors that were active during a test
to derive a test verdict

7) Analyze violations: Find root cause for violation in
order to fix it

IV. EXAMPLE - DOOR LOCKING SYSTEM

We will illustrate steps 1 to 4 of our approach using a
simple yet representative example from a passenger aircraft:
the Door Locking System (DLS). The DLS controls the locks
that fix the aircraft doors in a latched position and prevents
unauthorised and unwanted door openings in flight and on
ground in case of an existing pressure difference, so-called
residual pressure, between the outside of the aircraft and
the aircraft cabin. While the rationale for keeping the doors
locked in flight at high altitude can be justified by common
sense, incidents show that even on ground left-over residual
pressure may cause harm [29]. Subsequently, the DLS is a
safety-critical part of the aircraft and has to adhere to the
according regulations, e.g., the DO-178 and DO-256[30]. The
tool Rhapsody by IBM Rational is used for all modelling
activities.

A. Initial requirements

The initial requirements of the DLS are provided in Table I.
Please note, that this set of requirements serves as an example
and is therefore not necessarily complete.

Without any information regarding the implementation of
the DLS, a requirement analyst can start to formalize the
requirements into requirement monitors. The subsequent sec-
tions provide the implementation of the requirement monitors

TABLE I: Description of initial requirements

Req. Text
REQ-01 If the aircraft doors are unlocked, the DLS

shall lock the aircraft doors when receiving
the lock door command within 3 seconds.

REQ-02 The DLS shall calculate the residual pressure
as the absolute difference between the cabin
pressure and the outside pressure.

REQ-03 Once a door is locked, the DLS shall keep
the door locked at all times, if the residual
pressure exceeds 2.5 mbar.

REQ-04 If the aircraft doors are locked, the DLS shall
unlock the aircraft doors when receiving the
unlock door command within 3 seconds if
the residual pressure is at or below 2.5 mbar.

for REQ-03 and REQ-04. The other requirements can be
formalized in a similar fashion.

1) REQ-03: Following the steps described in Section III-A,
reading the requirement yields the following properties that
can be quantified either by explicit numbers or by logical
conditions:

• isDoorLocked (bool, input): locked status of the door

• residualPressure (real, input): amount of residual pres-
sure relevant for this door’s control decision

• residualPressureThreshold (real, constant 2.5 mbar):
threshold for the residual pressure above which the
doors need to be kept locked

Using these identified properties, Figure 7 shows the state-
chart of the requirement monitor that is used for checking if
the system adheres to REQ-03.

2) REQ-04: As before, reading the requirement leads to
the identification of the following properties of the requirement
that are needed to determine if the requirement is violated:

• isDoorLocked (bool, input): locked status of the door
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Fig. 7: Requirement monitor statechart for REQ-03

• evUnlockDoorCmd (event, input): unlock command
has been send to the DLS

• maxWaitTime (int, constant 3000 ms): time available
to open the door after a user sends an unlock command

• residualPressure (real, input): amount of residual pres-
sure relevant for this door’s control decision

• residualPressureThreshold (real, constant 2.5 mbar):
threshold for the residual pressure above which a door
needs to be kept locked

Figure 8 shows the statechart of the requirement monitor
that is used for checking if the system adheres to REQ-04.
Multiple unlock commands might be send to the DLS one after
another and the requirement monitor needs to consider all of
them. So, the monitor has an internal queue in which receptions
of the evUnlockDoorCmd event are stored with a timestamp.
The state evaluating now continuously (self-transition with
timeout pollTimeOut) polls the queue and checks whether
within 3 seconds (maxWaitTime) after the reception of a
command by the monitor the door is unlocked or not.

Fig. 8: Requirement monitor statechart for REQ-04

Figure 9 shows the algorithm, modelled as a flowchart, that
is used to determine if requirement REQ-04 has been violated.

B. Functional model

Starting with the initial requirements the system engineer
can create a functional model. The goal is to identify all
functions that need to be performed by the system and the
functional dependencies, i.e., data flows, between them. Table
II provides a description of all the identified functions and
Figure 10 shows the complete functional model. Note, that the
functional model is not formal and not executable.

Fig. 9: Flowchart for status evaluation of REQ-04

TABLE II: Description of functions

Function Description
Issue door commands The issue door commands function

is an interface function that allows
the users of the system, i.e. the
crew members, to issue commands
to open or lock the aircraft doors.

Sense outside pressure The sense outside pressure function
measures the atmospheric pressure
outside the aircraft.

Sense cabin pressure The sense cabin pressure function
measures the athmospheric pressure
inside the aircraft cabin.

Control door locks The control door locks function is-
sues controls to the actuate door
lock functions according to the user
requests taking into account the ath-
mospheric pressure outside and in-
side the aircraft.

Actuate door locks The actuate door lock function
moves the aircraft door locks be-
tween the locked and unlocked po-
sition and provides the status of the
door locks to the control door locks
function.

C. Logical model

The logical model is a much more sophisticated refinement
of the functional model geared towards providing an actual
specification while still keeping an appropriate level of ab-
straction.

D. Additional logical requirements

The additional complexity of the logical model compared
to the purely descriptive functional model requires further de-
sign decisions and allows taking further external requirements
into account. The additional requirements of the logical model
that have not been taken into account in the functional model
are provided by Table III. They are mostly motivated by the
actual design of the aircraft that the system will be used in,
while the segregation of the left and right side of the aircraft
as postulated by REQ-05 is typically motivated by safety
considerations and enforced by the airworthiness authorities.
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Fig. 10: Functional model

Note, that the functional model and the requirements from
that level of abstraction remain valid for the logical model
while the additional requirements from the logical level are
not considered in the functional model.

TABLE III: Description of additional logical requirements

Req. Text
REQ-04 The DLS shall control 2 doors on each side

of the aircraft, one in the front and one in
the back.

REQ-05 Doors on either side of the aircraft shall be
controlled separately.

REQ-06 The cabin pressure shall be measured in the
front of the cabin and at the back of the
cabin.

REQ-07 For determining the residual pressure rele-
vant for the operation of the front doors,
the cabin pressure measured in the front of
the aircraft shall be used primarily. If the
pressure data from the front of the cabin is
not available, then the data from the back of
the cabin shall be used as backup.

REQ-08 For determining the residual pressure rele-
vant for the operation of the back doors,
the cabin pressure measured in the back of
the aircraft shall be used primarily. If the
pressure data from the back of the cabin is
not available, then the data from the front of
the cabin shall be used as backup.

Figure 11 shows the internal structure of the logical DLS.
As can be seen the additional requirements from Table III have
been taken into account, e.g., REQ-06 lead to the multiple in-
stantiation of the Sense cabin pressure Function for measuring
the pressure in the front as well as in the back of the cabin.

Figure 12 defines the mapping between the functions from
the functional model to the logical components of the logical

model. Note, that this mapping is at class level. The function
Actuate door locks, which was responsible for moving all door
locks in the aircraft from the functional model is mapped to
the logical component class Actuate door lock Function, which
moves a single door lock in the aircraft and therefore has to
be instantiated multiple times in the logical DLS model, once
for each door.

Fig. 12: Mapping between functional and logical model

Likewise, there exists a mapping of the functional depen-
dencies from the functional model to the logical links of the
logical model. This mapping can be one to one or one to
many. For example, the functional dependency between the
function Sense outside pressure and the function Control door
locks that transports the outside pressure data is mapped to two
logical links in the logical model: the link between itsSense
outside pressure Function and itsControl door locks Function
Left and the link between itsSense outside pressure Function
and itsControl door locks Function Right as Figure 13 shows.
Formally, this mapping is represented by the fact that the
interfaces of the ports of the involved logical blocks contain
the data that was previously associated with the functional link;
in the example case the outside pressure data.

Fig. 13: Mapping between links in the functional and the logical model
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Fig. 11: Logical model

E. Technical model

The technical model is again a refinement of the logical
model taking into account physical aspects of the system.
Also, further design decisions have been made, i.e., it would
be possible to create different versions of the technical model
that satisfy the given requirements to represent different design
alternatives.

F. Additional technical requirements

The additional requirements of the technical model that
have not been taken into account in the functional or logical
model are provided by Table IV. Most of them directly
influence the choice of technical components, e.g., REQ-12
excludes all actuators that fail the given test. Not all of these
requirements can be represented adequately in a SysML model,
in our example this is probably true for the requirements
12 to 16. Others require extensions of the modelling profile
and external tools for their evaluation, e.g., [28] provides an
extension to SysML, the metamodel from Figure 6 and a tool
for the evaluation of safety requirements like REQ-09.

Table V provides a description of all components of the
technical model and Figure 14 shows the internal structure of
the technical DLS. As can be seen, the technical model also
includes technical components that are not motivated by the
logical model and/or any external requirements: the remote
data concentrators (RDC) and the switches. They have been
added due to a design decision that the system will make use
of the existing aircraft data network, which is based on the
Ethernet standard and requires data concentrators to convert
data between the network and discrete sensors and actuators.

Figure 15 defines the mapping between the logical com-
ponents from the logical model to the technical components
of the technical model. Keep in mind, that this mapping is
again at class level. The mapping is not necessarily a one to
one mapping. One logical component might require several

technical components to implement the required behaviour. In
the example, the logical component class Actuate door lock
Function from the logical model is mapped to two components
of the technical model: the Door Lock Actuator, responsible for
moving the door lock, and the Door Lock Sensor, responsible
for monitoring the status of the door lock. This is again due to
a design decision. It would be perfectly possible to select an
actuator that provides its status as an output without the need
for an additional sensor.

Fig. 15: Mapping between logical and technical model

Likewise, there exists a mapping of the logical links from
the logical model to the physical connectors of the technical
model. Picking up the example from earlier on, where the
mapping of the functional link between the functions Sense
outside pressure and Control door locks to the logical model
has been shown, the logical link between itsSense outside
pressure Function and itsControl door locks Function Left can
now be mapped to a number of connectors in the technical
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Fig. 14: Technical model

model as depicted by Figure 16.

The UML provides no natural construct to represent this
mapping formally. So the information is stored by extending
the logical links in the logical model with tags that contain the
precise mapping of the logical link to all technical models in
which it is implemented as XML data.

G. Testing the models

The logical and the technical model are executable, i.e., all
blocks have a statechart that defines their behaviour and, using
the execution framework that is provided by the modelling
tool, it is possible to generate executable code, which when
compiled simulates the model. This allows us to test both
models using our defined requirement monitors.

There are two prerequisites for doing so: Firstly, the in-
stantiation of the model under test (MuT) and the requirement
monitors in a verification model. Note, that the requirement
monitors may have to be instantiated several times, depending
on the structure of the model that is to be tested. In the
DLS case, the requirements and subsequently their requirement
monitors are applicable for each door of the aircraft, hence they
have to be instantiated four times in the verification model.
Secondly, the connection of the instantiated requirement moni-
tors and the model. The requirement monitors and the MuTs do
not necessarily have matching interfaces so an additional entity
is required, a so-called mediator [27]. This mediator pulls all

the relevant data from the MuT, converts the data to the format
that is expected from the requirement monitors and sends it
to the requirement monitor instances. Given that the logical
and the technical model, or even different implementations,
i.e., design alternatives, of one of the models can have quite
a different structure, the mediator allows reusing the same
requirement monitors for testing all the models.

For the verification of the technical model, we connect a
graphical user interface (shown by Figure 17) to the executable
verification model. This interface allows stimulating the model
and visualises various parameters of the models at runtime,
i.e., it enables playing with the model. Since the requirement
monitors are active all the time, this kind of testing may lead
to uncovering errors that would not have been found with fixed
test scenarios.

A more structured verification of a model can be achieved
by defining fixed test scenarios. The UML Testing Profile
(UTP) [31] is an extension to the UML that provides additional
type definitions, such as test case, which can be used to
manually define test scenarios and the implementation of the
UTP in modelling tools allows the automatic execution of these
scenarios to verify a model.

And of course, as described in Sections II-B and III-C, it is
possible to derive the test scenarios directly from the logical or
technical model using a white-box test case generator, such as
the ATG for Rhapsody. This tool will systematically stimulate
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TABLE IV: Description of additional technical requirements

Req. Type Text
REQ-09 Safety The failure rate for wrong

residual pressure determina-
tion in a controller shall be no
greater than 1E-6/flight.

REQ-10 Weight The weight of the DLS shall
not exceed x kg.

REQ-11 Cost The costs for purchase and in-
stallation of a DLS shall not
exceed 0.5 Million Euro per
aircraft in serial production.

REQ-12 Environmental The door lock actuator shall
be able to withstand the salt
spray test as defined by the
applicable standard DO-160E,
Section 14, CAT. S

REQ-13 Maintenance It shall be possible to replace
the door lock sensors with-
out removal door lock actuator
from the aircraft and without
recalibration.

REQ-14 Operational The DLS shall be designed for
a 10000 cycles life in normal
operations.

REQ-15 Reliability The guaranteed meantime be-
tween failure (MTBF) of all
DLS components shall be at
least 30000 flight hours.

REQ-16 Installation The DLS shall be designed
such that persons with a height
of between 155 cm and 200
cm are able to install any com-
ponent without the use of non-
standard tools.

the MuT and find test scenarios that cover all states and
transitions in the model.

V. FUTURE WORK

This section provides a couple of topics for current or
future work for extending the approach described in this paper.
Apart from extensions to the framework, we are also working
on the application of the methodology for a concrete industrial-
based use case to validate the framework.

A. Combination of model-based testing and model-based anal-
ysis

Dijkstra’s famous aphorism holds that tests can only show
the presence of errors not their absence [32]. Analysis tech-
niques, e.g., model checking can be used to proof required
characteristics of a system. Model-based analysis (MBA) and
testing are complementary quality assurance techniques since
static and dynamic analysis provide altogether different types
of information: typically, static analysis provides general in-
formation about a model of the system while dynamic testing
provides specific information about the system under test itself.
Substantial quality and cost improvement can be obtained
when they are systematically applied in combination.

TABLE V: Description of technical components

Technical Component Description
Cabin Pressure Sensor Measures the athmospheric pres-

sure inside the aircraft cabin.
Cockpit Control System External system that has a user in-

terface that allows the users, i.e., the
crew members, to issue commands
to open or lock the aircraft doors.

Control Computer Hosts the door lock control func-
tion.

Door Lock Actuator Moves the door lock between
locked and unlocked position.

Door Lock Sensor Monitors the position of the door
lock.

Outside Pressure Sensor Measures the athmospheric pres-
sure outside the aircraft.

RDC Remote Data Concentrator converts
between discrete and network data.

Switch Ethernet switch for routing data in
the aircraft data network.

Fig. 16: Mapping between links in the logical and the technical model

One example for such a combination of MBT and MBA
is the application of MBA in form of a model checker to
improve the completeness of a test suite generated from a
whitebox model using MBT as Figure 18 shows. The problem
that is addressed by this method is that the automatic test
scenario generator does not always achieve to generate a
test suite with 100% coverage (coverage for this scenario
means model/code coverage). At the moment, manual effort
is required to complete a test suite to achieve 100% coverage.
This manual effort can be replaced by the application of a
model checker. If a test case generator manages to cover 95
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Fig. 17: User interface for simulation control

out of 100 states of a model using test scenarios then we can
write properties that check the reachability of the remaining
five states. If the model checker manages to reach a state then
the proof trace provided by the model checker can be directly
added to the test suite as a new test scenario. If the model
checker cannot find a solution for reaching a state then the
model needs to be adapted.

Fig. 18: Combination of model-based testing and model-based analysis

B. Combination of test scenarios obtained from different
sources

Evluation of different MBT approaches and tools in the
recent past, e.g., [33], [34] showed, that each tool has specific
strengths and weaknesses and almost none of them can replace
additional manual test scenario creation completely. If we use
more than one test scenario generation approach and if we
allow test scenario generation at different levels of abstraction
as Figure 19 shows, then there is a high probability that the
resulting test suite contains a high amount of redundant test
scenarios. In order to test efficiently, especially when we are
in the phase of hardware testing where a test run is much
more expensive than a test run on a model, the redundancy
in the test suite must be reduced to find an optimal test suite.
Adaptation of previous work, e.g., [35], on that topic to our
overall development and testing approach is currently being
investigated.

C. Automated model-composition and results evaluation

The creation of verification models, i.e., models that inte-
grate requirement monitors, a SuT system model and scenarios,
i.e., the finding of suitable combinations of system model, sce-
narios and requirements, can be automated. Such a combined

Fig. 19: Optimal test suite from different sources

verification model consists of one system model, which can
be logical or technical, one scenario that can stimulate the
design alternative, a set of requirements, which can be tested
using the selected scenario and a mediator that ensures the
compatibility between the involved models. To automate the
process further information is needed to evaluate the suitability
of a combination of a test scenario and a design model, a
test scenario and a requirement or a requirement and a system
model. An approach for encoding this information and thereby
enabling the automated composition of such verification mod-
els is presented in [36]. Combining this approach with the
one presented here is ongoing work. Additionally, running
the tests, post-processing of the test results, and presenting
the verification results appropriately can also be done in an
automated fashion.

VI. CONCLUSION

We presented a framework for an integrated development
and testing approach of complex systems and showed its
application using an example from the aircraft system domain,
the Door Locking System. The main driver behind this de-
velopment was the need for more efficient testing. This was
succesfully achieved by increasing the degree of reusability of
engineering artefacts and automation of the testing process in
the following way:

• Reusability
◦ Explicit modelling of different architecture lev-

els enables reuse of architectures.
◦ Requirement monitors can be reused for testing

different architecture levels as well as the real
hardware product.

◦ Removing verdicts from test cases allows using
the same test scenario for testing multiple
requirements. Additionally, testing a require-
ment in different test scenarios increases the
confidence in the conclusions drawn from the
test results.

• Automation
◦ Executable requirement monitors allow auto-

mated test verdict derivation.
◦ Generation of scenarios using MBT.
◦ Automated test execution of formal test sce-

narios.
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The approach requires, as most model-based approaches,
a frontloading of effort, a personnel shift and a different
education of the involved people compared to the current state
of practice. While evidence suggests that, through the high
degree of reuse and automation, the effort for model-based
testing is only slighly higher than the one for traditional testing
[37] the adoption of the presented approach in an industrial
environment nevertheless requires a rethinking of traditional
roles and process steps.
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