
Designing Data Processing Systems with NumEquaRes

Stepan Orlov and Nikolay Shabrov

Computer Technologies in Endineering dept.
St. Petersburg State Polytechnical University

St. Petersburg, Russia
Email: majorsteve@mail.ru, shabrov@rwwws.ru

Abstract—A new Web application for numerical simulations,
NumEquaRes, is presented. Its design and architecture are
motivated and discussed. Key features of NumEquaRes are the
ability to describe data flows in simulations, ease of use, good data
processing performance, and extensibility. Simulation building
blocks and several examples of application are explained in detail.
Technical challenges specific to Web applications for simulations,
related to performance and security, are discussed. In conclusion,
current results are summarized and future work is outlined.

Keywords–Simulation; Web application; Ordinary differential
equations.

I. INTRODUCTION

This work is an extended version of paper [1]. We present
a new Web application, NumEquaRes [2] (the name means
“Numerical Equation Research”). It is a general tool for numer-
ical simulations available online. Currently, we are targeting
small systems of ordinary differential equations (ODE) or finite
difference equations arising in the education process, but that
might change in the near future — see Section XI.

The reasons for developing yet another simulation software
have emerged as follows. Students were given tasks to deduce
the equations of motions of mechanical systems — for exam-
ple, a disk rolling on the horizontal plane without slip [3],
or a classical double pendulum [4], — and to try further
investigating these equations. While in some cases such an
investigation can more or less easily be done with MATLAB,
SciLab, or other existing software, in other cases the situation
is like there is no (freely available) software that would allow
one to formulate the task for numerical investigation in a
straightforward and natural way.

For example, the double pendulum system exhibits quasi-
periodic or chaotic behavior [4], depending on the initial state.
To determine which kind of motion corresponds to certain
initial state, one needs the Poincaré map [5] — the intersection
of phase trajectory with a hyperplane. Of course, there are
ODE solvers in MATLAB that produce phase trajectories. We
can obtain these trajectories as piecewise-linear functions and
then compute intersections with the hyperplane. But what if
we want 104–105 points in the Poincaré map? How many
points do we need in the phase trajectory? Maybe 107 or more?
Obviously, the simplest approach described above would be a
waste of resources. A better approach would look at trajectory
points one by one, test for intersections with hyperplane,
and forget points that are no longer needed. But there is no
straightforward way to have a simulation process like this in
MATLAB.

Of course, there is software (even free software) that can
compute Poincaré maps. For example, the XPP (X-Window
PhasePlane) tool [6] can do that. But what we have learned
from our examples is that we need certain set of features that
we could not find in any existing software. These features are
as follows:
• ability to explicitly specify how data flows in a simu-

lation should be organized;
• reasonable computational performance;
• ease of use by everyone, at least for certain use cases;
• extensibility by everyone who needs a new feature.

The first of these features is very important, but it is missing
in all existing tools we tried (see Section IX). It seems that
developers of these tools and authors of this paper have
different understanding of what a computer simulation can
be. Common understanding is that the goal of any simulation
is to reproduce the behavior of system being investigated.
Therefore, numerical simulations most often perform time
integration of equations given by a mathematical model of
the system. In this paper, we give the term simulation a more
general meaning: it is data processing. Given that meaning,
we do not think the term is misused, because time integration
of model equations often remains the central part of the entire
process. Importantly, a researcher might need to organize the
execution of that part differently, e.g., run initial value prob-
lem many times for different initial states or parameters, do
intermediate processing on consecutive system states produced
by time integrator, and so on.

Given the above general concept of numerical simulation,
our goal is to provide a framework that supports the creation
of data processing algorithms in a simple and straightforward
manner, avoiding any coding except to specify model equa-
tions.

Next sections describe design decisions and technologies
chosen for the NumEquaRes system (Section II); simula-
tion specification (Section III) and workflow semantics (Sec-
tion IV); software architecture overview (Section V); perfor-
mance, extensibility, and ease of use (Section VI); simula-
tion building blocks (SectionVII); examples of simulations
(Section VIII); comparison with existing tools (Section IX);
technical challenges conditioned by system design (Section X).
Section XI summarizes current results and presents a roadmap
for future work.

II. DESIGN DECISIONS AND CHOICE OF TECHNOLOGIES

Keeping in mind the primary goals formulated above, we
started our work. Traditionally, simulation software have been

288

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

designed as desktop applications or high performance com-
puting (HPC) applications with desktop front-ends. Nowadays,
there are strong reasons to consider Web applications instead
of desktop ones, because on the one hand, main limitations
for doing so in the past are now vanishing, and, on the other
hand, there are many well-known advantages of Web apps. For
example, our “ease of use” goal benefits if we have a Web app,
because this means “no need for user to install any additional
software”.

Thus, we have decided that our software has to be a Web
application, available directly in user’s Web browser.

Now, the “extensibility by everyone” goal means that our
project must be free software, so the GNU Affero GPL v3
license has been chosen. That should enforce the usefulness
of software for anyone who could potentially extend it.

The “Reasonable performance” goal has determined the
choice of programming language for software core compo-
nents. Our preliminary measurements have shown that for
a typical simulation, native code compiled from C++ runs
approx. 100 times faster than similar code in MATLAB,
SciLab, or JavaScript (as of JavaScript, we tested QtScript
from Qt4; with other implementations, results might be dif-
ferent). Therefore, we decided that the simulation core has
to be written in C++. The core is a console application that
runs on the server and interacts with the outer world through
its command line parameters and standard input and output
streams. It can also generate files (e.g., text or images).

JavaScript has been chosen as the language for simulation
description and controlling the core application. However, this
does not mean that any part of running simulation is executing
JavaScript code.

The decision to use the Qt library has been made, because
it provides a rich set of platform-independent abstractions for
working with operating system resources, and also because it
supports JavaScript (QtScript) out of the box.

Other parts of the applications are the Web server, the
database engine, and components running on the client side.
For the server, we preferred Node.js over other technologies
because we believe its design is really suitable for Web
applications — first of all, due to the asynchronous request
processing. For example, it is easy to use HTML5 Server
Sent Events [7] with Node.js, which is not the case with
LAMP/WAMP [8].

The MongoDB database engine has been picked among
others, because, on the one hand, its concept of storing JSON-
like documents in collections is suitable for us, and, on the
other hand, we do not really need SQL, and, finally, it is a
popular choice for Node.js applications.

As of the client code running in the browser, the com-
ponents used so far are jQuery and jQueryUI (which is
no surprise), the d3 library [9] for interactive visualization
of simulation schemes, the marked [10] and MathJax [11]
libraries to format markdown pages with TEX formulas. In the
future, we are planning to add 3D visualization using WebGL.

III. SIMULATION SPECIFICATION

The very primary requirement for NumEquaRes is to pro-
vide user with the ability to explicitly specify how data flows
are organized in a simulation. This determines how simulations

are described. This is done similarly to, e.g., the description of
a scheme in the Visualization Toolkit (VTK) [12], employing
the “pipes and filters” design pattern. The basic idea is that
simulation is a data processing system defined by a scheme
consisting of boxes (filters) with input ports and output ports
that can be connected by links (pipes). Output ports may have
many connections; input ports are allowed to have at most
one connection. Simulation data travels from output ports to
input ports along the links, and from input ports to output
ports inside boxes. Inside each box, the data undergoes certain
transformation determined by the box type.

Typically boxes have input and output ports, so they are
data transformers. Boxes without input ports are data sources,
and boxes without output ports are data storage.

Simulation data is considered to be a sequence of frames.
Each frame can consist of a scalar real value or one-
dimensional or multi-dimensional array of scalar real values.
The list of sizes of that array in all its dimensions is called
frame format. For example, format {1} describes frames of
scalar values, and format {500,400} describes frames of two-
dimensional arrays, each having size 500×400. The format of
each port is assumed to be fixed during simulation. Figure 1
shows an example of sequences of data frames of different
formats.

Figure 1. Examples of data frame sequences.

In addition, NumEquaRes supports element labels for
scalar and one-dimensional data frames. The idea is to give
a name to each element of a data frame. Due to labels, user
can easily identify parameters specified for Param boxes (see
Section VII-A), and have better understanding of the data.
Notice that labels are not part of frame format, so format
compatibility check does not rely on labels.

Links between box ports are logical data channels, they
cannot modify data frames in any way. This means that data
format has to be the same at ports connected by a link. Some
ports define data format, while some do not; instead, such a
port takes the format of the port connected to it by a link. Thus,
data format propagates along links (together with element
labels, if any). Furthermore, data format can also propagate
through boxes. This allows to provide a quite flexible design
to fit the demands of various simulations.

Figure 2 shows an example of connections between box
ports. Each box has a type (e.g., Param, displayed in bold
face) and a name (e.g., odeParam), and some input and/or
output ports. The figure shows data flow direction along links
with solid arrows, and frame format propagation direction with
dashed arrows. For ports defining data format, dashed arrows
start with a diamond. Notice, e.g., how the odeInitState
box in this example knows that user should specify values
q, q̇, t for pendulum initial state: odeInitState receives the
format {3} and element labels q, q̇, t from the initState

289

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Boxes, ports, links, and frame format propagation.

port of box solver. The format of that port is induced by
the format of port rhsState of the same box (due to format
propagation through boxes of type Rk4, see Section VII-E4).
The rhsState port of box solver receives the frame
format and element labels from port state of box ode. The
ode box is the origin of format and labels.

IV. SIMULATION WORKFLOW

This section explains how simulation runs, i.e., how the
core application processes data frames generated by boxes.

Further, the main routine that controls the data processing
is called runner.

A. Activation notifications
When a box generates a data frame and sends it to an

output port, it actually does two things:

• makes the new data frame available in its output port;
• activates all links connected to the output port. This

step can also be called output port activation (Fig-
ure 3).

Figure 3. Output port activation (box b activates its output port).

Each link connects an output port to an input port, and its
activation means sending notification to input port owner box.
The notification just says that a new data frame is available at
that input port.

When a box receives such a notification, it is free to do
whatever it wants to. In some cases, these notifications are
ignored; in other cases, they cause box to start processing data
and generate output data frames, which leads to link activation
again, and the data processing goes one level deeper. For ex-
ample, the Pendulum box has two input ports, parameters
and state. When a data frame comes to parameters, the

activation notification is ignored (but next time the box will
be able to read parameters from that port). When a data frame
comes to state, the activation is not ignored. Instead, the
box computes ODE right hand side and sends it to the output
port oderhs.

B. Data source box activation
Each simulation must have at least one data source box

— a box having output ports but no input ports. There can be
more than one data source in a simulation.

Data sources can be passive sources or generators. A
generator is a box that can be notified just as a link can be. A
passive data source cannot be notified.

A passive data source produces one data frame (per output
port) during the entire simulation. The data frame is available
on its output port from the very beginning of the simulation.

C. Cancellation of data processing
Link activation notification is actually a function call, and

the box being notified returns a value indicating success or
failure. If link activation fails, the data processing is canceled.
This can happen when some box cannot obtain all data it needs
from input ports. For example, the Pendulum box can process
the activation of link connected to port state only if there
are some parameters available in port parameters. If it is
so, the activation succeeds. Otherwise, the activation fails, and
the processing is canceled.

If a box sends a data frame to its output port, and the
activation of that output port fails, the box always cancels the
data processing. Notice that this is always done by returning
a value indicating activation failure, because the box can only
do something within an activation notification.

1 2 3 4 5 6 7 8 9 10

Figure 4. Data processing cancellation.

Figure 4 illustrates the cancellation of data processing: box
a is the only data source, and its output port is connected to
the input port of box b. Therefore, the runner activates the
input port of b (1). Then b activates c (2, 3), and c activates
d (4, 5). For some reason (e.g., no data on another input port),
d returns activation failure (6). Callers are obliged to return
activation failure as well, therefore the runner finally gets the
activation failure (7–10).

D. Initialization of the queue of notifications
When the runner starts data processing, it first considers

all data sources and builds the initial state of the queue of
notifications. For each generator, its notification is enqueued.
For each passive data source, the notification of each of its
links is enqueued.

290

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Processing of the queue of notifications

Then the queue is processed by sending the activation
notifications (i. e., calling notification functions) one by one,
from the beginning to the end. If a notification call succeeds,
the notification is removed from the queue. Otherwise, if the
notification call fails (i.e., the data processing gets canceled),
the notification is moved to the end of the queue, and the
process continues.

The runner processes its queue of notifications until it
becomes empty, or maximum number of activation notification
failures (currently 100) is exceeded. In the latter case, the entire
simulation fails.

1 2 3

4 5 6

7 8 9

Figure 5. Data processing example.

To illustrate the data processing in a simulation, consider
the following example. A box of type CxxOde (see Sec-
tion VII-D10) has two input ports, state and parameters,
and one output port, rhs. It ignores activation calls for port
parameters. On the other hand, the activation of port
state causes the box to compute ODE right hand side and
write it to the output port rhs. But the right hand side can only
be computed when the parameters are known, i.e., a data frame
is available at port parameters. Otherwise, the activation of
port state fails.

Now imagine a simulation with box ode of type CxxOde
and two passive data sources, state and param, connected
to the state and parameters ports of ode, respectively.
Besides, the output port of ode is connected to the input port
of a data storage box.

The runner does not know that ode wants parameters
before state, so suppose it initializes the initial queue of
notifications such that the port ode:state is first, and port

ode:parameters is second. The data processing in this
situation is shown in Figure 5 and is as follows.

1) Runner is about to activate port ode:state.
2) Runner activates port ode:state, and the data

processing is canceled by ode because there is no
data at port ode:parameters.

3) Notification for port ode:state is moved to the
end of the queue. Runner is about to activate port
port ode:parameters.

4) Runner activates port ode:parameters; the ac-
tivation notification is ignored by ode, and control
returns back to the runner.

5) Since the activation of ode:parameters succeeds,
the runner proceeds to next element of the queue,
which is ode:state.

6) Runner activates port ode:state.
7) ode computes ODE right hand side and sends it

to the output port ode:rhs, which leads to the
activation of the input port of box dump.

8) The dump box writes the incoming data frame to a
text file and returns control back to ode.

9) The box ode has nothing more to do in response to
the activation of the state port, so it returns control
back to the runner. There are no more items in the
notification queue, and simulation finishes.

F. Post-processing
When the queue of notifications becomes empty, the runner

can enqueue post-processors before it stops the data process-
ing. The only example of a post-processor is the Pause box.
Post-processors, like generators, are boxes that can receive
activation notifications.

G. User input events
The above process normally takes place during the sim-

ulation. In addition, there could be events that break the
processing of the queue of notifications. These events are
caused by interactive user input. Once a user input event
occurs, an exception is thrown, which leads to the unwinding
of any nested link activation calls and the change of the
queue of notifications. Besides, each box gets notified about
simulation restart.

The queue of notifications is changed as follows when user
input occurs. First, the queue is cleared. Then one of two things
happens.

• If the box that threw the exception specifies which
box should be activated after restart, the notifications
for that box are enqueued (if the box is a generator,
its activation notification is enqueued; otherwise, the
activation notifications of all links connected to its
output ports are enqueued). An input box can only
specify itself as the next box to activate, or specify
nothing.

• If the box that threw the exception specifies no box
to be activated after restart, the standard initialization
of the notification queue is done.

After that, the processing of notification queue continues.
There is an important issue that must be taken care of.

Simulation can potentially be defined in such a way that its

291

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Example of invalid simulation (recursive activation of box merge).

execution leads to an infinite loop of recursive invocation of
activation notifications. This normally causes program to crash
due to stack overflow. In our system, however, some boxes (not
all, but only those activating outputs in response to more than
one input notification) are required to implement counters for
recursive call depth. When such a counter reaches 2, simulation
is considered to be invalid and is terminated. This allows to do
some kind of runtime validation against recursion at the cost of
managing recursive call counters. Figure 6 shows an example
of invalid simulation that will detect recursive activation of box
merge: First, its port in_1 is activated by runner, which starts
numerical integration in solver; once the solver outputs next
state, it comes to port in_2 of box merge. At this point,
merge detects recursive activation, because the activation of
port in_1 is still in progress. As a result, the simulation fails.

V. SOFTWARE ARCHITECTURE OVERVIEW

This section presents an overview of the architecture of
software that implements NumEquaRes.

Essentially, the software consists of the computational core
and the web server, and can be deployed by everyone on
any server machine running a Linux operating system. Both
components are open source, hosted at GitHub (a link to the
project is available on the web site [2]).

The computational core is a console application written in
C++. Its responsibility is to load simulation specification, run
the simulation, and communicate with the controlling process.
The communications are necessary for supplying user input
and synchronizing with the controlling process.

The web server is written in Node.js and is using several
third party packages, most noticeably the express frame-
work [13]. The web server has numerous responsibilities,
including the following:

• generating and serving web pages;
• serving files;
• managing user accounts and data;
• managing user sessions;
• handling Ajax [14] requests done by the code running

in browser on client machines;
• controlling the computational core.

Notice that web pages sent by the web server to a client
contain JavaScript code to be executed by the web browser
on the client machine, and that code communicates with the
server using the Ajax technology. Therefore, we actually have
an application distributed among server and client machines,
which is nowadays typical for any web application.

The management of any user data requires a mechanism
for persistent data storage. For this purpose, the MongoDB
database engine has been chosen.

The interaction between software components is outlined
in Figure 7. Large containers represent the server machine, the
client machine, and the Internet between them. Rectangular-
shaped elements in the containers represent software com-
ponents that are parts of NumEquaRes or are used by it.
Elliptical-shaped elements represent file system folders. Ar-
rows between elements indicate data flow directions; arrow
captions explain activities causing the corresponding data
transfers.

The detailed discussion of software component architecture
is beyond the scope of this paper. However, let us focus on
the most important question, namely the interaction between
the user, the web server, and the computational core.

User prepares a simulation in the editor HTML page. The
page is sent by the web server to the client when requested,
e.g., through the main menu available in all pages. It contains
JavaScript code allowing to design the simulation from scratch
or to load an example and further modify it if necessary. When
the user prepares a simulation, little interaction with the web
server can take place. This is only the case when the user
modifies the C++ source code in a box like CxxOde (see
Section VII-D10) and wants to know if the compilation is
successful. Most of the time, no interaction with the server
is necessary to prepare a simulation, so this is done locally on
the client machine.

Once the user finishes preparing the simulation, the simula-
tion can be saved in the database or run on the server machine.
To manage that, the client sends the simulation to the web
server as a JSON object within an HTTP request. Handling
these requests, the web server either interacts with the database
or runs the computational core, depending on the request. In
the latter case, the JSON object describing the simulation is
passed to the computational core through its standard input
stream.

The computational core is a console application that im-
plements a simple text protocol allowing the web server to
interact with it. Writing specific lines of text to the standard
input causes some commands to be executed, like start or stop
the simulation, provide interactive input data, etc. On the other
hand, the server reads the standard output of the computational
core. Importantly, when the simulation starts, the core writes
annotations for output files and input controls there — the
web server sends these annotations to the client, so the client
knows which files need to be requested as simulation results,
and which elements need to be created for obtaining user input.
Other important things written by the computational core to
its standard output are the synchronization markers. Once the
core writes an output file, it also writes such a marker to the
standard output and waits for the corresponding marker on its
standard input. At this point, the server reads the marker from
the core, informs the client about the update of the output file,
and then writes the synchronization marker to the standard
input of the computational core. The core reads the marker
and resumes the execution of the simulation. Notice that the
marker based synchronization is not frequent (e.g., once per
second, or other user-specified time period), therefore it does
not impact the overall performance.

Notice also that when a simulation is running, the web
server sends data from the computational core to the client
using HTML5 Server Sent Events [7].

292

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Interaction among software components of NumEquaRes and users.

When the user provides interactive input data for the
running simulation, the browser sends requests to the web
server; handling them, the server writes corresponding com-
mands to the standard input of the computational core, so the
core knows what the user input is. The computational core
reads the standard input stream in a separate thread, which is
synchronized with the main worker thread not too frequently
in order not to impact the performance (see next section).

VI. PERFORMANCE, EXTENSIBILITY, AND EASE OF USE

As stated in Section I, computational performance and
functional extensibility are considered important design fea-
tures of the NumEquaRes system. This section provides tech-
nical details on what has been done to achieve performance and
support extensibility. Last subsection highlights design features
that make system easier to use.

A. Performance
To achieve reasonable performance, it is not enough to

just use C++. Some additional design decisions should be
made. Most important of them are already described above.
The ability to organize simulation workflow arbitrarily allows
to achieve efficient memory usage, which is illustrated by
an example in Section I. A number of specific decisions
made in the design of NumEquaRes core are targeted to high
throughput. They are driven by the following rules.

• Perform simulation in a single thread. While this is a
serious performance limitation for a single simulation,
we have made this decision because the simulation
runs on the Web server, and parallelization inside a
single simulation is likely to impact the performance
of server, as it might run multiple simulations simulta-
neously. And, on the other hand, single thread means
no synchronization overhead.

• No frequent operations involving interaction with op-
erating system. Each box is responsible for that. For
example, data storage boxes should not write output
data to files or check for user input frequently. The
performance might drop even if the time is measured
using QTime::elapsed() too frequently.

• No memory management for data frames within ac-
tivation calls. In fact, almost 100% of simulation
time is spent in just one activation call made by
runner (during that call, in turn, other activation calls
are made). Therefore, memory management outside
activation calls (e.g., the allocation of an element of
the queue of notifications) is not a problem. Still some
memory allocation happens when a box writes its
output data, but this is not a problem as well, since
such operations are not frequent.

• No movement of data frames in memory. If a box
produces an output frame and makes it available in
its output port, all connected boxes read the data
directly from memory it was originally written to. This
item and the previous one both imply that there are
nothing like queues of data frames, and each frame is
processed immediately after it is produced.

• No virtual function calls within activation calls. In-
stead, calls by function pointer are preferred.

A simple architecture of classes has been developed to comply
with the rules listed above and, in the same time, to encapsulate
the concepts of box, port, link, and others. These classes
are split into ones for use at the initialization stage, when
simulation is loaded, and others for use at simulation run
time. First set of classes may rely on Qt object management
system to support their lifetime and the exposure of parameters
as JavaScript object properties. Classes of the second set are
more lightweight; their implementations are inlined whenever
possible and appropriate, in order to reduce function call
overhead.

Although NumEquaRes core performance has been opti-
mized in many aspects, it seems impossible to combine speed
and flexibility. Our experience with some examples indicates
that hand-coded algorithms run several times faster than those
prepared in our system.

B. Extensibility
The functionality of NumEquaRes mostly resides in boxes.

To add a new feature, one thus can write code for a new
box. Boxes are completely independent. Therefore, adding a

293

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

new one to the core simply boils down to adding one header
file and one source file and recompiling. The core will be
aware of the presence of the new box through its box factory
mechanism. Next steps are to support the new box on server
by adding some meta-information related to it (including user
documentation page) and some client code reproducing the
semantics of port format propagation through the box. The
checklist can be found in the online documentation.

Some extensions, however, cannot be done by adding
boxes. For example, to add 3D visualization, one needs to
change the client-side JavaScript code. We are planning to sim-
plify extensions of this kind; however, this requires refactoring
of current client code.

C. Ease of use
First of all, NumEquaRes is an online system, so user does

not have to download and install any software, provided user
already has a Web browser. All user interaction with the system
is done through the browser.

To formulate a simulation as a data processing algorithm,
user composes a scheme consisting of boxes and links, and
there is no need to code.

Online help system contains a detailed documentation
page for each box; it also explains simulation workflow, user
interface, and other things; there is one step-by-step tutorial.

To prepare a simulation, user can find a similar one in
the database, then clone it and modify. User can decide to
make his/her simulation public or private; public simulations
can be viewed, run, and cloned by everyone. To share a
simulation with a colleague, one shares a hyperlink to it;
besides, simulations can be downloaded and uploaded.

Currently, user might have to specify part of simulation,
such as ODE right hand side evaluation, in the form of C++
code. We understand this might be difficult for people not
familiar with C++. To mitigate this problem, there are two
features. Firstly, each box that needs C++ code input provides
a simple working example that can be copied and modified.
Secondly, NumEquaRes supports the concept of code snippets.
Each piece of C++ input can be given a documentation page
and added to the list of code snippets. These snippets can be
created and reused by everyone.

VII. SIMULATION BUILDING BLOCKS

This section explains the semantics of different boxes from
which NumEquaRes simulations are built. There are currently
40 types of boxes; this section categorizes them and describes
most important boxes. Knowing how the boxes work gives
understanding of NumEquaRes simulations design.

In this section, we introduce the notation Box:port,
where Box is the type of a box, and port is a name of one of
its ports. For example, Param:output means the output
port of a box of type Param; the part Box: is omitted when
the box type is obvious from context.

A. Source boxes
There are three types of boxes that can be used as data

sources: Const, Param, and ParamArray. The Const and
Param boxes behave identically once their parameters are
specified. A box of type Const or Param generates just one
data frame (see Section III) per simulation run. The format

of the frame is a one-dimensional array. The contents of the
array is determined by fixed parameters of the box. So what
user enters as parameters is turned by the box into a data frame.

The difference between Param and Const is how they
manage their frame format. The Param box expects its format
to be specified in a port connected to its output port.
Therefore, before parameters can be specified for a Param
box, it has to be connected to something providing a data
format. For example, if there is a link Param:output ->
Pendulum:parameters, the format of data frame gener-
ated by Param will be {2} — an array of two elements
which are the parameters of a pendulum: the length, l, and
the acceleration of gravity, g. The parameters of the Param
box will be l and g — see Figure 16 (a).

In contrast to Param, a box of type Const allows user
to enter an arbitrary one-dimensional array of parameters. The
data format of the box is determined by the user-specified array
of parameters.

The Param type should typically be preferred to Const
because its use guarantees format compatibility along the link
between Param:output and another port. Const should
only be used when connected port does not provide a frame
format. Notice also that if Param is connected to more than
one port, and these ports provide different sets of element
labels, the box cannot be used because it cannot resolve
parameter names.

The ParamArray box type is similar to Param, but it
allows user to specify an array of sets of parameters. When user
specifies an array of length n, the box generates n output data
frames per simulation run. Combining ParamArray with
an Interpolator box (see Section VII-E1 and Figure 18
(b)) allows to generate many data frames in which parameters
gradually change between values specified in ParamArray.
In addition, ParamArray box has port flush. The box
writes an empty data frame to that port after it writes all data
frames to output.

B. Data storage boxes
There are two types of boxes that store incoming data

frames: Dump and Bitmap.
Each data storage box in a simulation corresponds to a file

generated in user’s directory on server. When the simulation
runs, user sees these files in browser. Text files appear as tables
and can be downloaded as text; image files are seen as images
— see Figure 8.

A box of type Dump stores data frames of any format
coming to its input port in a text file. The incoming frames
are output to the file as lines of formatted decimal numbers.
There is a limitation of 106 on total number of scalar values
written to the file in order to avoid occasional generation of a
large file on server.

A box of type Bitmap stores incoming data frames in
an image file in the PNG or JPEG format. Each data frame
coming to port Bitmap:input is transformed into a colored
image as follows. The format of input data frame should be
{w, h}, where w is the width, and h is the height of the
image, in pixels. Each scalar element of incoming 2D data
frame is transformed into a 32-bit RGB color value using the
color map. The color map is a mapping from scalar value
to color value; it is specified as a parameter of the Bitmap

294

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Simulation output files generated by storage boxes.

box. There is a limitation of 2000 pixels on w and h in order
to avoid occasional generation of large files on server. Notice
that Bitmap boxes usually receive data frames from Canvas
boxes — see below.

C. The Canvas box
The Canvas box provides intermediate 2D array to store

scalar values, e.g., for further image generation. It is initially
filled with zero values. The box has several input ports, one
output port, and a set of parameters.

The geometry of canvas is determined by its range and
resolution in each of its two dimensions. The range is a pair of
numbers {xmin, xmax} for the x dimension and {ymin, ymax}
for the y dimension; the resolution is the number of array
elements, Nx or Ny — see Figure 9 (a). Ranges and resolutions
are canvas parameters; ranges can also be supplied through port
range, such that each frame is [xmin, xmax, ymin, ymax].

(a) (b)

Figure 9. (a) Canvas geometry; (b) Canvas box ports and parameters.

The box receives input data at port input. The format
must be {2} or {3} — a one-dimensional array of size 2

or 3. First two elements of an incoming data frame are the
coordinates x, y of a point. The third element, if present, is a
scalar value v; it defaults to 1 if absent. For each input data
frame, the box computes canvas coordinates xc, yc using the
formula

xc =

⌊
Nx

x− xmin

xmax − xmin

⌋
, yc =

⌊
Ny

y − ymin

ymax − ymin

⌋
,

and writes v into the array using xc and yc as indices, if they
are valid (0 ≤ xc < Nx, 0 ≤ yc < Ny).

The output of canvas data occurs either when user-specified
timeout is exceeded, or when a data frame comes to port
flush. Output data frame contains all values currently stored
in the 2D array and has format {Nx, Ny}.

There is also port clear; when it receives a data frame,
all elements of the internal array assign zero values. All box
ports are shown in Figure 9 (b).

D. Boxes for simple transformations and filters
Many boxes have quite simple logics, producing one output

data frame in response to incoming data frames. They have a
primary input port, an output port, and optional input ports;
they can also have parameters controlling their behavior. Below
we briefly describe some of such simple boxes.

1) CountedFilter: The box passes to port output each
n-th data frame coming to port input; n is the parameter of
the box received through input port count.

2) Counter: The box counts data frames received in port
input. Each time the counter value increases, it is sent to
port count. The counter value can be set to zero by sending
a data frame to port reset.

3) CrossSection: Data frames received at port input are
one-dimensional arrays of length n. The elements of i-th data
frame are interpreted as coordinates [xi0, x

i
1, . . . x

i
n−1] of point

xi; the points xi are considered to be consecutive points
on a piecewise-linear curve in n-dimensional space. The box
outputs points of intersection of the curve and the hyperplane
xk = c, where k and c are box parameters (Figure 10). Another
box parameter allows to count only intersections with xk
increasing along the curve or decreasing along the curve. The
CrossSection box is crucial for simulations that visualize
Poincaré maps.

Figure 10. CrossSection box input and output.

4) IntervalFilter: The box is similar to CrossSection,
but instead of one hyperplane xk = c it considers many
hyperplanes, specified by equation xk = c+ Tm, where m is
an arbitrary integer number, and T is a box parameter. The box
considers that xk increases monotonously in incoming points,
since it is usually the time. The box can be used to visualize
Poincaré maps in systems with periodic excitation.

5) Differentiate: The box computes differences between
consecutive points xi, xi+1 coming to port input:

di = xi+1 − xi

The differences di are written to port output.

295

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

6) Scalarize: For each data frame x = [x0, x1, . . . xn−1]
received at port input, the box generates a scalar value v and
writes it to port output. The method used to compute the
scalar is the box parameter; user can choose it among several
common norms, minimum, and maximum.

7) Projection: The box accepts input data frames of arbi-
trary format at its input port. Each data frame is interpreted
as an array of values, xin0 , . . . x

in
n−1, where n is the total

number of elements in the incoming data frame. Once an input
data frame is received, an output data frame is generated and
written to port output. The output data frame contains m
elements xout0 , . . . xoutm−1 and has format {m}. The elements
of the output data frame are picked from input as follows:

xoutk = xinik , k = 0, . . .m− 1.

In the above formula, the indices ik are box parameters. The
box is often used, for example, to pick two variables from a
vector for plotting on Canvas (see Section VII-C and Figure
18 (a)).

8) Eigenvalues: The box expects a square matrix at its
input port matrix, so the port format is {n,n}. As soon as a
matrix is obtained, its eigenvalues are computed. The real parts
of the eigenvalues are then written to output port eig_real,
and imaginary parts are written to port eig_imag.

The implementation of this box uses the ACML li-
brary [15].

9) ThresholdDetector: The box receives a scalar-valued
data frames, x, at port input. For each incoming value, the
value v is computed as follows: the logical expression x ∗ T
is evaluated; if the result is true, v is set to one; otherwise,
v is set to zero. In the above expression, the binary operator
∗ can be one of <,≤,≥, >,=, 6= and is determined by box
parameter; the threshold value T can be either specified as a
box parameter or passed in through port threshold.

Once v is computed, it is normally written to port output.
For more flexibility, the box allows to suppress the output of
zero values of v by specifying another box parameter, quiet.
Values v = 1 are always written to output.

10) Other transformations: There are a number of other
boxes that perform transformations. They all write a data frame
y(x) to the output port as soon as they obtain a data frame x
at the input port. There could be an additional input port for
parameters. Here these box types are listed.

• CxxFde — a user-defined transformation. The box
receives x at port state and writes y to port
nextState. Both x and y are vectors of length
n. The transformation is defined by user in the form
of C++ source code. The code can also describe
parameters to be obtained at input port parameters.
The box is designed primarily for use with the
FdeIterator box (see Section VII-E3) as the
source of a system of finite difference equations.

• CxxOde — another user-defined transformation. The
box receives x at port state and writes y to port
rhs. The vector x contains n state variables and the
time: x = [x1, . . . xn, t]. The vector y contains n
time derivatives of state variables: y = [ẋ1, . . . , ẋn].
The transformation and additional parameters to be
obtained at input port parameters are defined by

user in the form of C++ source code. The box is
designed primarily for use with the Rk4 box (see
Section VII-E4) or other future solvers as the source
of a system of ordinary differential equations.

• CxxTransform — yet another user-defined trans-
formation. It gives user freedom to select arbitrary
formats of data frames for x and y. The transfor-
mation and optional parameters are also specified in
the form of C++ code. The box can be used, e.g.,
to formulate a linear system of ordinary differential
equations to further investigate the dependency of its
stability on parameters with the Eigenvalues box
(see Section VII-D8).

• Pendulum, DoublePendulum, Mathieu,
VibratingPendulum — these are examples of
hard-coded systems of ordinary differential equations;
the logics and sets of ports in each of these boxes are
the same as in the CxxOde box, therefore, they are
interchangeable with CxxOde.

Notice that since simulations run on server side, C++
source code specified by user for boxes CxxFde, CxxOde,
CxxTransform, is compiled and run on server. This creates
potential security problem — running malicious code on
server. The problem is addressed in Section X-B.

E. Iterators and solvers
Boxes described in this section are essentially iterators. The

implementation of such a box contains a loop in its activation
handler function, and output data frames are generated inside
the body of the loop. Due to this, the activation of an input
port can cause the generation of many output data frames.

1) Interpolator: Data frames received at port input are
one-dimensional arrays of length n. The elements of i-th
data frame are interpreted as coordinates [xi0, x

i
1, . . . x

i
n−1] of

point xi in n-dimensional space. For each pair of consecutive
points xi, xi+1, the box generates N − 1 intermediate points
xi,1, . . . ,xi,N−1 using the formula

xi,k = (1− tk)xi + tkx
i+1, tk ≡

k

N
, k = 1, . . . N − 1.

All points, including original xi and interpolated xi,k are
passed to port output. N above is the number of interpola-
tion intervals; it is a parameter of the box. Interpolator input
and output are shown in Figure 11.

Figure 11. Interpolator box input and output.

2) GridGenerator: This box produces a d-dimensional grid
of values for each data frame coming to its input port. Input
data frames must be one-dimensional arrays.

For each input data frame, the grid generator produces, N
output frames, N = N0N1 . . . Nd−1, where Nk is the grid size
in k-th dimension, 0 ≤ k < d.

The grid consists of points xI . Each point of the grid is
identified by multi-index I = i1, i2, . . . , id (indices ik run
from 0 to Nk − 1) and has coordinates x1I , x

2
I , . . . , x

d
I . The

296

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

coordinates xkI are computed by linear interpolation between
parameters xk,min, xk,max:

xkI =
(
1− tkI

)
xk,min + tkIx

k,max, tkI ≡
ik

Nk − 1
.

Notice that xk,min, xk,max define ranges, just like for
Canvas (see Section VII-C); they can either be specified
directly as box parameters or supplied through input port
range.

For each grid point, a data frame is generated and written
to port output (Figure 12). The format of ports input
and output is the same. The elements in the output data
frame repeat those from the input data frame, except that
d elements are replaced by coordinates xkI . The indices of
replaced elements are box parameters.

Figure 12. GridGenerator box input and output.

In addition, the box generates empty data frame and sends
it to port flush as soon as all output data frames for one
input data frame are generated.

The GridGenerator box is very useful when it is
necessary to repeat the same operation for parameters varying
in certain ranges. One of its applications is the generation of
stability diagrams (see Figure 24).

3) FdeIterator: As follows from the box name, it performs
iterations of finite difference equations (FDE). The equations
are formulated outside the box and should be connected to
ports fdeIn, fdeOut.

Suppose that the state of a discrete-time system at k-th
time step is described by vector xk. The explicit form of FDE
gives the formula to compute the state of the system at next
time step:

xk+1 = f(xk).

To evaluate this formula, the FdeIterator writes xk to
port fdeOut and afterward expects that xk+1 has come to
port fdeIn. The iterations proceed by reading data frames
from fdeIn and writing them to fdeOut. In addition, data
frames are written to output port nextState — this way
we normally make use of the resulting points xk. For more
flexibility, parameters no and ns can be specified for the box,
that control which points are written to port nextState: ns
is the number of initial points to skip, and no is the number
of time steps between consecutive outputs. For example, if
ns = 10, no = 2, the points written to nextState are
x10,x12,x14, . . . Notice also that setting the value of no
to zero causes only the last system state to be written to
nextState.

The iterative process is initiated by sending the initial state
of the system, x0, to port initState. The process is con-
trolled by parameters, supplied through port parameters,
which are ns and no described above, and the total number of
iterations, n. If n is zero, the iterations never end. However,

sending any data frame to port stop causes the iteration loop
to terminate.

When iterations finish, an empty data frame is sent to port
finish.

Ports of the FdeIterator box are shown in Figure
13 (a).

(a) (b)

Figure 13. (a) FdeIterator box ports; (b) Rk4 box ports.

4) Rk4: This box has logics very similar to that of
FdeIterator, but the box is designed to obtain numerical
solution of a system of ordinary differential equations (ODE).
The ODE system in the normal form is specified by formula

ẋ = f(x, t),

where x is the state vector, t is the time, and (. . .)̇ is the time
derivative.

The box implements the well known Runge — Kutta
explicit 4-th order numerical integration scheme [16], hence
its name. It has ports similar to ports of FdeIterator,
but the ports for interaction with the ODE system are named
rhsState and rhs, and they are slightly different from
FdeIterator:fdeOut, FdeIterator:fdeIn. To eval-
uate ODE right hand side, the Rk4 box writes a data frame
containing system state vector x and the time t to port
rhsState; it then expects the vector f(x, t) in port rhs.

Parameters of the Rk4 box supplied through port
parameters are the time integration step, the number of
steps to perform, and no (see Section VII-E3).

All ports of the Rk4 box are shown in Figure 13 (b).
5) LinOdeStabChecker: The box is designed to analyze the

stability of linear ODE systems with periodic coefficients and
zero right hand side:

ẏ = A(t)y, A(t+ T) = A(t),

where y = [y1, . . . , yn]
T is the vector of n state variables, t is

the time, and A is an n× n matrix of coefficients, which are
considered to be periodic functions of time, with period T .

The stability analysis is done as follows [5]. Take n initial
states at t = 0, y1(0), . . .yn(0) such that

yk(0) =
[
yk1 (0), . . . y

k
n(0)

]T
, ysk(0) = δsk ≡

[
1, if s = k
0, if s 6= k

In other words, vectors yk(0) make up the n × n identity
matrix: Y(0) ≡

[
y1(0), . . .yn(0)

]
= I , Iks = δks. For

each initial state yk(0), the initial value problem is solved
and yk(T) are obtained. Then the stability is determined
by characteristic multipliers ρk — the eigenvalues of the
monodromy matrix (system fundamental matrix computed at
period T):

Mzk = ρkzk, M = Y(T) ≡
[
y1(T), . . .yn(T)

]

297

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The solution is stable if the absolute value of each multiplier
does not exceed 1, and is unstable if there is at least one k
such that |ρk| > 1.

Practically, in many cases, for multipliers we have |ρk| = 1
(for all k) if the system is stable, and |ρk| > 1 (for one or
more k) if the system is unstable. For such systems, numerical
solution will most likely always give 1 < |ρk| < 1 + ε if the
system is stable, where ε� 1 is a small value. Therefore, the
stability detection is based on checking inequality |ρk| < 1+ε
rather than |ρk| ≤ 1, and ε = 10−5 is a hardcoded constant.

The box does not need to know the period T ; however, the
solver connected to the box should return the state y(T) when
given initial state y(0).

The box is connected to an ODE solver by output port
initState, to pass initial state y(0) to it, and by input
port solution, to obtain the system state y(T). Since solver
implementation typically involves the use of Rk4 box, data
frames at these ports actually include the time as well, so a
data frame contains values y1, . . . , yn, t.

The stability analysis is performed as soon as any data
frame comes to input port activator. After that, the result
is written to output port result. The output value is 1 if the
system is stable, and 0 if unstable.

F. Boxes that have specific logics

This section describes some boxes that implement specific
logics. Attempts to design certain simulations have led us to
the invention of these boxes. We are not sure that the presented
set of such logical boxes is complete in some sense, and that
there is no better way to design them. Still the logic boxes are
extremely useful in some simulations.

1) Join: The box has two input ports, in_1 and in_2
with formats {n1} and {n2}, respectively, and one output port,
out, with format {n1 + n2}. In short, the box glues together
each two data frames coming to the input ports and writes the
result to the output port.

Suppose that the input data frame at port in_1 has
elements xin,10 , . . . xin,1n1−1, and the input data frame at port
in_2 has elements xin,20 , . . . xin,2n2−1. Then the output data
frame consists of all elements of data frame at port in_1,
followed by all elements of data frame at port in_2:
xin,10 , . . . xin,1n1−1, x

in,2
0 , . . . xin,2n2−1.

The box has two internal boolean state variables, s1 and s2,
indicating that an unprocessed data frame is pending at input
ports in_1 and in_2, respectively. The value of true means
that an input data frame has been received but has not been
processed so far. The value of false means that there were no
data frames at all, or the last received input data frame has
already been processed.

When an input data frame comes to port in_1 or in_2,
the value of state variable s1 or s2, respectively must be false
(otherwise, simulation stops with the error message saying
“Join box overflow”). Then, the state variable is set to true.
After that, if the other state variable (s2 or s1, respectively)
is false, the processing finishes — the box will be waiting for
a data frame at the other input port. If both state variables s1
and s2 are true, the box resets them to false, generates one
output frame, and writes it to port out.

The logics of the box ensures that k-th output data frame
at port out is generated from k-th data frame at input port
in_1 and k-th data frame at input port in_2.

Notice that to satisfy the requirements of the Join box on
the order of input data frames and ensure no overflow error, it
is often used in combination with the Replicator box (see
Section VII-F3 below).

Figure 14 (a) illustrates data processing by a Join box.

(a) (b) (c)

Figure 14. Input and output in (a) Join, (b) Merge, and (c) Replicator
boxes. Numbers denote the order of input data frames and identify them;

letters denote the order of output data frames.

2) Merge: The box has several input ports, in_1, in_2,
etc. The number of input ports is a box parameter. There is one
output port, output. All ports have the same format, which
can be arbitrary. Once the box obtains a data frame at any of
its input ports, it writes it to the output port immediately; see
Figure 14 (b).

The Merge box is used to collect data frames from
different ports.

3) Replicator: It is not obvious that there is a need for this
box at all, but it is often really needed in simulations. The
box has two input ports, control_in and value_in, and
two output ports, control_out and value_out. It passes
control data frames from control_in to control_out
and value data frames from value_in to value_out.

When a value data frame comes to value_in, nothing
happens. In contrast to that, when a control data frame comes
to control_in, the box writes the incoming control data
frame to control_out, and then it writes the previously
received value data frame to port value_out, as shown in
Figure 14 (c). If no value data frame has been received before
control data frame, the processing is canceled.

As already mentioned, the Replicator box can be
combined with the Join box to synchronize data frames; but
it has many more different applications.

4) Split: The box has one input port, input, and several
output ports, out_1, out_2, etc. The number of output ports
is a box parameter. All ports have the same format, which can
be arbitrary. Once the box receives a data frame at port input,
it writes it to output ports out_1, out_2, etc. Importantly, the
order of output port activation is guaranteed — first out_1,
then out_2, and so on. Figure 15 (a) illustrates the data
processing by the Split box.

Simulations in NumEquaRes allow to connect an output
port of a box to any number of input ports of other boxes.
However, this introduces uncertainty into simulation, because

298

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when such an output port is activated, the order of activation
of connected input ports is undefined (it is actually the order
of link creation, but it cannot currently be seen or easily
modified). The Split box potentially allows to design sim-
ulations that have no multiple connections of output ports
at all: each multiple connection can be replaced by single
connection to Split:input and several single connections
to Split:out_1, Split:out_2, etc.

Practically, the order of activation of input ports connected
to the same output port is not always important. When it is,
the Split box should be used.

(a) (b)

Figure 15. Input and output in (a) Split and (b) Valve boxes.

5) Valve: The box contains two input ports, valve and
input, and one output port, output. The valve port
accepts scalar controlling values; other two ports should have
the same format, which can be arbitrary. In short, the box
passes a data frame coming to its input port to the output
port only if it has a nonzero value in the valve port;
otherwise, the input data frame is not passed — see Figure
15 (b).

The logics of this box is similar to that of Join (see
Section VII-F1) but slightly differs from it. Internally, the
box holds two boolean state variables, si and sv , indicating if
there are unprocessed data frames at ports input and valve,
respectively. Initially, they are both false.

When a controlling data frame comes to port valve, sv
is set to true (note: in contrast to the Join box, there is no
requirement that sv should be false at this moment). Current
controlling value v is set to true if the controlling data frame
element is nonzero, and to false otherwise. Then, if si is true,
further processing is done: last data frame received at port
input is written to port output if v is true and not written
if v is false. Then sv and si are both set to false.

When an input data frame comes to port input, si is set to
true (note: in contrast to the Join box, there is no requirement
that si should be false at this moment). Then, if sv is also true,
further processing is done exactly the same way as explained
above: last data frame received at port input is written to
port output if v is true and not written if v is false. Then
sv and si are both set to false.

G. Input boxes

NumEquaRes provides several box types dedicated to in-
teractive input of data.

1) General behavior of input boxes: All user input is non-
blocking, which means that input boxes never wait for user
input. On the other hand, an input box can only check if there
is an input event when one of its input ports is activated. Most
of input boxes have the activator port specifically for this.

Another way to activate an input box is to use the special
Pause box (see Section IV-F) — in that case, all input boxes
are activated when data processing finishes.

Once an input box receives user input data, it takes an
action that depends on box type. For example, it can write a
data frame to the port output, or it can restart simulation.

Among input box types, three of them (SimpleInput,
RangeInput, and PointInput — see below) allow user to
interactively input vector data. They all have the same logics,
and only differ in how user inputs the data.

All vector data input boxes remember the data user entered
within the last input event (or, at the beginning of simulation,
they know that no input events have taken place).

Vector data input boxes have input port input. The format
of this port is a one-dimensional array of arbitrary size. There
is also the output port with the same format. Besides, vector
input data boxes have the activator port.

When a data frame comes to port input, a data frame is
written to port output. The output data is the same as the
input data if no user input has taken place on this box yet.
If, however, there was user input, the box changes part of the
input data frame before writing it to output: it replaces some
elements of input data frame with values user entered last time.
Which elements are replaced depends on box parameters.

When a vector data input box is activated (either by sending
a data frame to port activator or due to the activity of the
Pause box), it first checks if any data is available at port
input. If no data has been received on that port, nothing
happens. User input data, if any, will be waiting for further
processing, till the box is activated next time.

If some data is available at port input, the box checks
for user input. If there is no unprocessed user input, nothing
happens. If user input has taken place, the box reads the user
input data and replaces part of last data frame obtained from
input with new user input data. The resulting data frame will
be available at port data, but the exact behavior of the box
now depends on two boolean parameters, restartOnInput
and activateBeforeRestart.

• If restartOnInput is false, the simulation data
processing loop is exited and entered again, starting
from the input box. The input box then writes the
prepared output data frame to port output, and
simulation continues.

• If restartOnInput is true, then
◦ if activateBeforeRestart is true, the

prepared output data frame is sent to port
output; otherwise, it is not sent.

◦ Then simulation data processing loop is exited
and entered again, starting from data sources,
as it happens when simulation is started (see
Section IV).

Notice that the combination restartOnInput=true and
activateBeforeRestart=true implies that there will be

299

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

no extensive data processing when the data frame is sent to port
output before restarting (otherwise, there probably will be
no restart at all). This combination can be used, for example,
to specify ODE solver parameters: when solver receives them,
it does nothing. More often both restartOnInput and
activateBeforeRestart are false.

2) SimpleInput: Boxes of this type allow user to enter
numeric values. Box parameters specify the display names for
these values and the indices in the output data frame where
these values are written to.

When a simulation having boxes of this type is running,
user sees a set of named input fields. Entering a value into
such a field causes user input event, which is processed as
described above.

3) RangeInput: The box is similar to SimpleInput, but
instead of entering numeric values user moves sliders. For
each input value, it is necessary to specify value range and
resolution in addition to the display name and index.

4) PointInput: The box allows user to enter coordinates x,
y of points in plane by clicking on an image that corresponds
to the Bitmap box (see Section VII-B) associated with
PointInput. The coordinates ximg , yimg of pixel clicked
on the image (notice that the point ximg = yimg = 0 is at the
top-left corner of the image) are mapped to x, y using linear
interpolation:

x = xmin+
ximg

Nx
(xmax − xmin) ,

y = ymin+
Ny−yimg

Ny
(ymax − ymin) ,

where Nx and Ny are image pixel width and height, respec-
tively.

Parameters xmin, xmax, ymin, ymax determine the rectangle
that the entire image maps onto. They can be specified as box
parameters or supplied through additional input port range.

Other parameters of the box are the name of image file and
the indices of elements in output data frames where x and y
are written to.

5) RectInput: The box allows user to enter two data ranges
that determine translation and scaling of a plane. These ranges
are specified by parameters xmin, xmax, ymin, ymax. When user
input occurs, the box computes new ranges and writes them
to port output as one data frame. Several boxes described
above (GridGenerator, Canvas, PointInput) have
port range compatible with RectInput:output and can
be connected to it.

Similarly to PointInput, a RectInput box must be
associated with a Bitmap box by providing the name of image
file. The input comes to RectInput when user rotates the
mouse wheel on the corresponding image (this causes scaling)
and drags across that image (this causes panning).

The RectInput box is used when basic pan/zoom func-
tionality is desired for a generated image, e.g., to explore
fractals (see Figure 26).

6) SignalInput: This is the simplest input box. A button
is displayed for each box of this type at simulation run time.
Pressing the button causes an empty data frame to be written
to port output.

The box can be used to trigger some actions, for ex-
ample, to clear Canvas (see Section VII-C) by connecting
SignalInput:output to Canvas:clear.

H. Common box connections
In this section we provide a number of examples showing

typical connections between boxes. These examples aim to
ease the understanding of examples presented in Section VIII.

Figure 16 (a) shows an example of connecting the output
port of the Param box to an input port of another box. This
can always be done when the input port format is known and
is {N}, i.e., one-dimensional array or scalar. The Param box
extracts port format from its connection and exhibits corre-
sponding values as its own parameters. User enters parameter
values, and at simulation startup they are sent to receiver(s) in
just one data frame. These parameters remain constant during
the simulation. Using Param to specify constant parameters
is very common in simulations.

(a) (b)

Figure 16.
(a) Using Param box to specify parameters.

(b) Attaching Canvas to Bitmap.

Figure 16 (b) shows the connection of Canvas box to
Bitmap box. It is typical that the data for visualization
is first accumulated in the canvas, and is written to image
rarely (either when a data frame comes to Canvas:flush
or automatically with user-specified time interval).

Figure 17 (a) explains how to make it possible to interac-
tively modify a parameter during simulation. To do so, it is nec-
essary to cut an existing link and place a RangeInput box
(or other vector input box — see Section VII-G) in between, so
that instead connection a->b we have two connections, a->
RangeInput:input and RangeInput:output->b. Pa-
rameters of the input box determine which elements of data
frames must be user-editable during simulation. In this ex-
ample, the RangeInput box causes the slider bar shown in
Figure 17 (b) to appear in running simulation, and the value
of parameter a can be changed from 0 to 10 with step 0.01.
Notice also that it is necessary to perform explicit activation
through port RangeInput:activator frequently enough,
because otherwise the box will not have any chance to process
user input before the data processing finishes (see Section IV).

Figure 17 (c) shows the typical connection between the
Rk4 solver box (see Section VII-E4) and the CxxOde box
(see Section VII-D10) providing the formulation of a system
of ordinary differential equations. The Rk4 box writes ODE

300

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

(b)

(c)

(d)

Figure 17.
(a) Using RangeInput to interactively modify parameters.
(b) Slider element for interactive input in running simulation.

(c) Coupling the Rk4 solver and an ODE system.
(d) Using Replicator to feed Join.

system state to port Rk4:rhsState and reads ODE right
hand side from port Rk4:rhs. The CxxOde box computes
the right hand side, as soon as it receives state at port
CxxOde:state, and writes it to port CxxOde:oderhs.

Figure 17 (d) illustrates one of many possible applications
of the Replicator box (see Section VII-F3). It
is used here to make sure that the Join box (see
Section VII-F1) receives equal number of data frames
in ports in_1 and in_2. When a data frame comes
to Replicator:value_in, nothing happens. When
a data frame comes to Replicator:control_in,
it is written to Replicator:control_out and
hence to Join:in_1. After that, the last data frame
received at Replicator:value_in is written to
Replicator:value_out and hence to Join:in_2. As
a result, overflow never happens in the Join box.

Figure 18 (a) shows how a point can be projected onto
2D canvas. This is done using the Projection box. In this
example, the box generates output data frames with elements
t, q from input frames with elements q, q̇, t: first element is
t because it is the element with index 2 in the input frame;
second element is q because it has index 0 in the input frame.
Indices 2 and 0 are parameters of the Projection box.

Figure 18 (b) shows a combination of ParamArray (see
Section VII-A) and Interpolator (see Section VII-E1)
boxes. The interpolator in this example splits each span be-
tween two consecutive input data frames into 4 pieces and
writes interpolated data to port output. Annotations near
output ports of the boxes contain scalar data that is generated
in this example.

Figure 19 shows a typical way to organize panning and
zooming of image generated in a simulation. The image
corresponds to a Bitmap box and is identified by image file

(a) (b)

Figure 18.
(a) Obtaining 2D projection of points for plotting to Canvas.

(b) Example of usage for Interpolator box.

Figure 19. Implementation of panning, zooming, and point input.

name. Interactive user input for panning and zooming actions
is provided by the RectInput box (see Section VII-G5). The
box needs to be associated with image by specifying image file
name as box parameter. The image is considered to cover the
rectangle xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax in plane x, y.
Initial rectangle is specified by RectInput box parameters.
Whenever user scrolls mouse wheel or drags across image,
the box modifies rectangle parameters xmin, xmax, ymin, ymax,
and writes them to port output. This port is connected to the
range port of the Canvas box (see Section VII-C) supplying
image data. It can also be connected to the range port of
some other boxes, in accordance with simulation logics. For
example, if each pixel on an image corresponds to a point of
a grid, it is connected to port GridGenerator:range of
box that generates the grid. If there is a PointInput box
for the same image, its range port should also be connected
to RectInput:output. Notice that all input boxes must be
activated frequently enough through port activator in order
to be able to process user input when simulation is running.
This is currently the responsibility of simulation designer.

301

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. EXAMPLES OF SIMULATIONS

This section lists several examples of simulations. We will
often use the notation box:port, where box is a name (not
a type) of a box, and port is the name of its port.

A. Single phase trajectory of a simple pendulum
Figure 20 shows one of the simplest simulations — it plots

a single phase trajectory for a simple pendulum. The ODE
system is provided by the ode box (type Pendulum, see
Section VII-D10). The box computes the right hand side [ϕ̇, ϕ̈]
according to the pendulum equation

lϕ̈+ g sinϕ = 0,

where l is the pendulum length and g is the acceleration of
gravity. The ODE right hand side depends on the state variables
[ϕ, ϕ̇] and the vector of parameters [l, g]. They are supplied
through input ports. Parameters are specified in the odeParam
box. State variables come from the solver box (type Rk4,
see Section VII-E4). The solver performs numerical integration
of the initial value problem, starting from the user-specified
initial state (the initState box). The solver is configured
to perform a fixed number of time steps (the corresponding
parameters come to the solver from the solverParam port).
Each time the solver obtains a new system state vector, it
sends the vector to its nextState port. Once the solver
finishes, it activates the finish port to let others know about
it. In this simulation, consecutive system states are projected
to the phase plane (the proj box of type Projection, see
Section VII-D7) and then rasterized by the canvas box (type
Canvas, see Section VII-C). Finally, the data comes to the
bitmap box (type Bitmap, see Section VII-B) that generates
the output image file. Notice that this simulation has three data
sources, odeParam, solverParam, and initState, of
type Param — see Section VII-A.

Figure 20. Single phase trajectory

From this simplest example one can see how to construct
simulation scheme from boxes and links that computes what
user needs. Other examples are more complex, but they ba-
sically contain boxes of the same types, plus probably some
more.

B. Interactive phase portrait
An important aspect of a simulation is its ability to interact

with the user. This can be achieved using input boxes (see
Section VII-G). Figure 21 shows an example of interactive sim-
ulation: it generates phase trajectories passing through points
clicked by the user on the phase plane. The box isInput has
type PointInput and is responsible for that kind of input.
Another available kind of user input is panning and zooming
of the phase plane; it is handled by the pan-zoom box of
type RectInput. Notice that there is no need to activate

Figure 21. Interactive phase portrait

input boxes during data processing. It finishes very fast, and
the input processing occurs after all data processing finishes,
due to the presence of box pause of type Pause.

Each generated phase curve has two parts: blue in the
time-positive direction (with resp. to the clicked point) and
red in the time-negative direction. Many of the remaining
boxes serve to achieve this behavior. The solverParam
box has type ParamArray. It specifies two sets of solver
parameters, one with positive value of time integration step
h, and the other one with negative time step −h. Each data
frame coming from solverParam causes an initial value
problem to be solved, with a specific value of the time step.
The data flow initiating the initial value problem solution is
as follows. First, initial state travels the route initState
-> isInput -> isSplit -> replicator:value_in.
Then replicator returns control to isSplit, which
then activates solverParam. That causes two sets of
solver parameters to be generated in two data frames.
When each of them reaches replicator:control_in,
the replicator box first writes solver parameters to
solver:parameters. At this point, the solver box
(type Rk4) already knows which parameters to use, but it
doesn’t start the integration (it only does so when it re-
ceives an initial state). Therefore, the control is returned
back to replicator. It then writes the initial state to
solver:initState, which finally starts numerical integra-
tion.

When the solver produces a point of phase curve,
[x, ẋ, t], it is transformed into [x, ẋ,±h] by boxes proj
([x, ẋ, t]→ [x, ẋ]), proj_h (solver parameters→±h) of type
Projection, repl_h (type Replicator), and join_h
(type Join). Last two boxes glue data frames [x, ẋ] and ±h
together. Data frames [x, ẋ,±h] come to the canvas box, so
that points of time-positive part of phase curve are assigned
value h, and time-negative parts are assigned value −h. The
bitmap box has a color map that maps 0 to white, h to blue,
and −h to red, which finally gives us the desired look of the
output image.

The remaining two boxes (flushFilter of type
CountedFilter and flushFilterParam of type
Param) are here in order to pass each second data frame
from solver:finish to canvas:flush. As a result, the

302

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

image user sees in the browser is updated only when both
branches of phase curve are computed.

Importantly, there is no need to modify this scheme to
replace the ODE system: it is sufficient to provide the system
formulation as a parameter of box ode (type CxxOde) and
specify fixed system parameters in box odeParam (type
Param).

C. Poincare map for double pendulum
The classical double pendulum system is a model of two

pendulums moving in plane, with motionless support of the
first pendulum and the second pendulum attached at the end
of the first one, as shown in Figure 22. The parameters of
the system are two masses, two lengths, and the acceleration
of gravity. The configuration is determined by two angles, ϕ
(rotation of the upper part) and ϑ (rotation of the lower part).

Figure 22. Double pendulum system

The equations of motion in the Lagrange form are as
follows.

(m1 +m2)l
2
1ϕ̈+m2l1l2

[
cos(ϑ− ϕ)ϑ̈− sin(ϑ− ϕ)ϑ̇2

]
+

g(m1 +m2) sinϕ = 0,

m2l
2
2ϑ̈+m2l1l2

[
cos(ϑ− ϕ)ϕ̈− sin(ϑ− ϕ)ϕ̇2

]
+

gm2 sinϑ = 0.

This ODE system is non-integrable, and its phase trajecto-
ries can be quasi-periodic or chaotic, depending on the initial
state. An easy way to reveal the type of behavior of a given
trajectory is to look at its Poincaré map. This is done in the
following simulation, shown in Figure 23.

Figure 23. Double pendulum, Poincaré map (50000 points, 28.5 s)

Essentially, the scheme is very close to the one shown in
Figure 20. But rather than to pass each next point of the
phase curve from solver:nextState directly to proj
and then to the canvas, we check for intersection with a
hyperplane first. The psec box has type CrossSection
(see Section VII-D3), hence proj receives points on the

hyperplane; the rest of processing is same as for the simplest
example in Section VIII-A.

Two boxes, counter of type Counter and t of type
ThresholdDetector, are introduced in order to stop the
integration as soon as 50000 points of the Poincaré map are
obtained.

Importantly, there is no need to store phase trajectory or
individual points of intersection of the trajectory with the
plane during simulation. The entire processing cycle (test for
intersection; projection; rasterization) is done as soon as a new
point of the trajectory is obtained. After that, we need to store
just one last point from the trajectory. Simulations like this are
what we could not do easily in MATLAB or SciLab, and they
have inspired us to develop NumEquaRes.

D. Ince–Strutt diagram
Figure 24 shows a simple simulation that allows one to

obtain a stability diagram for a linear ODE system with
periodic coefficients on the plane of parameters. Here the
picture on the right is the Ince–Strutt diagram for the Mathieu
equation [17]:

q̈ + [λ− 2γ cos(2q)] q = 0,

where λ and γ are parameters.

Figure 24. Ince-Strutt stability diagram (500× 500 points, 6.3 s)

People who have experience with it know how difficult
it is to build such kind of diagrams analytically, even to
find the boundaries of stability region near the horizontal
axis. What we suggest here is the brute force approach —
it is fast enough, general enough, and it is done easily. The
idea is to split the rectangle of parameters λ1 ≤ λ ≤ λ2,
γ1 ≤ γ ≤ γ2 into pixels and analyze the stability in the
bottom-left corner of each pixel (by computing eigenvalues of
the monodromy matrix [5]), then assign pixel color to black
or white depending on the result. In this simulation, important
new boxes are odeParamGrid (type GridGenerator,
see Section VII-E2) and stabilityChecker (type
LinOdeStabChecker, see Section VII-E5). The former one
provides a way to generate points [λ, γ] on a multi-dimensional
grid, and the latter one analyzes the stability of a linear ODE
system with periodic coefficients.

The simulation works as follows. When a new point [λ, γ]
is generated by odeParamGrid, it is sent to the split box;

303

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

then split sends it to ode:parameters, valve:input,
and finally to stabilityChecker:activator. The
stabilityChecker box analyzes the stability of ODE
system with given values of λ, γ, and sends the result to
valve:valve. At this point, the valve box has received
data frames at both of its input ports, so it decides whether
to pass data frame from its port input to port output.
The decision is determined by the result of stability anal-
ysis, since it comes to port valve. If the ODE system
is stable, the data frame is passed, otherwise it is blocked.
Therefore, the canvas box receives points [λ, γ] for which
the ODE system is stable, and the corresponding pixel in the
bitmap box is drawn in black color. The canvas flushes
its data to bitmap at the end of simulation due to the
link odeParamGrid:flush -> canvas:flush, and also
each second when simulation is running.

The box solverParam has type Rk4ParamAdjust not
described in this paper; it is used here to compute the necessary
number of numerical integration steps when period and time
integration steps are known.

E. Strange attractor in forced Duffing equation
Figure 25 shows another application of Poincaré map, now

in the visualization of the strange attractor arising in the forced
Duffing equation [18]:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt)

with parameters α, β, γ, δ, ω. User can change parameters
interactively and see how the picture changes. This simulation
is simpler than the one shown in Figure 23, because to obtain
a new point on canvas, one just needs to apply time integration
over known time period T = 2π/ω of system excitation. The
solver is configured such that data frames [x, ẋ, t] generated
at port solver:nextState are in plane t = kT , with an
integer k. Then the projection box throws t away, and
canvas receives points [x, ẋ].

Figure 25. Strange attractor for forced Duffing equation (interactive
simulation)

Boxes paramInput and clearCanvas have types
RangeInput and SignalInput, respectively. The box
paramInput allows user to modify parameters α, β, γ, δ
by moving sliders. The box clearCanvas allows user to
clear canvas by clicking a button. Notice that the user input is
processed together with the data processing. Therefore, both
input boxes have to be activated from time to time. This is done
through box iFilter of type CountedFilter: as soon
as a new point is generated at port solver:nextState,
it comes to iFilter:input, and each 10-th point

reaches iFilter:output and paramInput:activate,
clearCanvas:activate connected to it. The counted
filter box is used in order to activate the input boxes not too
often, otherwise simulation performance could suffer due to
the input processing.

F. The Mandelbrot set
Figure 26 shows an interactive simulation of the Mandel-

brot set [19], which is defined as the set of complex numbers
c for which the sequence z0, z1, z2, . . . : z0 = 0, zk+1 = z2k+c
is bounded.

Figure 26. Colored Mandelbrot set (interactive simulation)

Since the Mandelbrot set is a fractal, it is important
for the user to be able to pan and zoom the picture using
the mouse. This is achieved by using the range box of
type RectInput (see Section VII-G5) that feeds the ranges
for real and imaginary parts of c to canvas:range and
paramGrid:range through the splitInput box of type
Split.

The paramGrid box (type GridGenerator) generates
c on a grid covering the specified rectangle on complex plane.
For each c from that grid, a part of the sequence zk is
evaluated, and its boundness is checked. Iterations stop as
soon as sequence convergence or divergence is detected. The
number of iterations, n, done for each c is stored in box n of
type Counter; it determines the color of pixel corresponding
to c in the final image.

The simulation works as follows. The initial state z0 = 0
comes from initState to solverTrigger:value_in
(the box solverTrigger is of type Replicator).
Then paramGrid comes into play, activated by dummy
value c = 0 from sdeParam. Each value of c

304

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generated by paramGrid comes through box s (type
Splitter) to n:reset (to reset iteration counter n),
and then to solverTrigger:control_in, which causes
the latter to write c to fde:parameters and z0 to
solver:initState.

The boxes fde and solver are of types CxxFde
and FdeIterator, respectively. When z0 comes to
solver:initState, the solver box starts generating
elements of sequence zk. It generates at most 500 ele-
ments, but is stopped if sequence convergence or diver-
gence is detected. The divergence analysis is performed
by boxes boxes norm (type Scalarizer, computes |zk|)
and tdiv (type ThresholdDetector, evaluates |zk| >
3). The convergence analysis is performed by boxes d
(type Differentiate, computes zk − zk−1), dn (type
Scalarizer, computes |zk − zk−1|), and tdn (type
ThresholdDetector, evaluates |zk − zk−1| < 10−5).
When the expression in either tdiv or tdn evaluates to true,
the solver is stopped (the box mstop is of type Merge, its
port output is connected to solver:stop).

When the iterations of zk stop, the control returns to the
box s, and it writes c to r:control_in by activating its
third output port. At this point, r (box of type Replicator)
forwards c to its port r:control_out and the number
of iterations done, n (obtained earlier from box n) to port
r:value_out. Then the box j of type Join glues the coor-
dinates of c together with n, and the data frame [Re c, Im c, n]
comes to canvas.

Importantly, we did not have to develop any new box types
in order to describe the logics of convergence analysis for
sequences of complex numbers generated by the system, but
used standard general-purpose boxes instead.

IX. COMPARISON WITH OTHER TOOLS

Direct comparison between NumEquaRes and other exist-
ing tools is problematic because all of them (at least, those
that we have found) do not provide an easy way for user to
describe the data processing algorithm. In some systems, the
algorithm can be available as a predefined analysis type; in
others, user would have to code the algorithm; also, there are
systems that need to be complemented with external analysis
algorithms.

Let us consider example simulations shown in Figures 23,
24, 25, and try to solve them using different free tools; for
commercial software, try to find out how to do it from the
documentation. Further in this section, figure number refers to
the example problem.

TABLE I. COMPARISON OF NUMEQUARES WITH OTHER TOOLS

Name Free Web Can solve Fast
Mathematica no yes 23, 24, 25; needs coding n/a
Maple no no 23, 24, 25; needs coding n/a
MATLAB no no 23, 24, 25; needs even more coding no
SciLab yes no no
OpenModelica yes no none could be
XPP yes no 23, 25 yes
InsightMaker yes yes none n/a

In Table I, commercial proprietary software is limited to
most popular tools — Mathematica, Maple, and MATLAB. In
many cases, purchasing a tool might be not what a user (e.g.,
a student) is likely to do.

All of the three example simulations are solvable with
commercial tools Mathematica, Maple, and MATLAB.

In Mathematica, it is possible to solve problems like
23, 25 using standard time-stepping algorithms since version 9
(released 24 years later than version 1) due to the WhenEvent
functionality. Problem 24 can also be solved. All algorithms
have to be coded. Notice that Wolfram Alpha [20] (freely
available Web interface to Mathematica) cannot be used for
these problems.

Maple has the DEtools[Poincare] subpackage that
makes it possible to solve problem 23 and others with Hamil-
tonian equations; problems 24, 25 can be solved by coding
their algorithms.

With MATLAB or SciLab, one can code algorithms for
problems 24, 25 using standard time-stepping algorithms. For
problem 23, one needs either to implement time-stepping
algorithm separately or to obtain Poincaré map points by
finding intersections of long parts of phase trajectory with the
hyperplane. Both approaches are more difficult than those in
Mathematica and Maple. And, even if implemented, simula-
tions are much slower than with NumEquaRes.

OpenModelica [21] is a tool that helps user formulate the
equations for a system to be simulated; however, it is currently
limited to only one type of analysis — the solution of initial
value problem. Therefore, to solve problems like 23, 24, 25,
one has to code their algorithms (e.g., in C or C++, because
the code for evaluating equations can be exported as C code).

XPP [6] provides all functionality necessary to solve prob-
lems 23, 25. It contains many algorithms for solving equations
(while NumEquaRes does not) and is a powerful research tool.
Yet it does not allow user to define a simulation algorithm, and
we have no idea how to use it for solving problem 24.

Among other simulation tools we would like to mention
InsightMaker [22]. It is a free Web application for simulations.
It has many common points with NumEquaRes, although its
set of algorithms is fixed and limited. Therefore, problems 23,
24, 25 cannot be solved with InsightMaker.

X. TECHNICAL CHALLENGES

The design of NumEquaRes governs technical challenges
specific to Web applications for simulations. They are related
to performance and security, and are discussed in this section.

A. Server CPU resources
Currently, all simulations run on the server side. Some of

them can be computationally intensive and consume consider-
able amount of CPU time. For example, there are simulations
that consume 100% of single CPU core time for as long as
user wishes. This is a problem if the number of users grows.
Of course, we do not expect millions of users simultaneously
running their simulations, but still there is a scalability prob-
lem.

The problem can be addressed in a number of ways. Firstly,
the server can be an SMP computer, so it will be able to run
as many simulations as the number of CPU cores, without
any loss of performance. Secondly, it is technically possible
to have a cluster of such computers and map its nodes to
user sessions. Obviously, this approach requires the growth
of server hardware to provide sufficient server performance.

305

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A different approach is to move running simulations to
the client side. In this case, the server loading problem will
disappear. But how is it possible to offer user’s browser to
run something? Actually, today the only choice seems to be
JavaScript. We will have to compile simulations into it, or to
the asm.js subset of JavaScript. This approach is quite possible
for some simulations, but is problematic for other ones that can
make use of some large libraries like LAPACK.

B. User code security
NumEquaRes web server accepts C++ code as part of

simulation description provided by user. This is the direct
consequence of our wish to provide good computational perfor-
mance of simulations. Such pieces of code typically describe
how to compute the right hand side of an ODE system, or
how to compute another transformation of input data frames
into the output data frames. The server compiles that code into
dynamic library to be loaded and executed by core application
that performs the simulation. Potentially, we have serious risk
of direct execution of malicious code.

Currently, this problem is solved as follows. Once user
code is compiled into a library (shared object on UNIX or
dynamically linked library on Windows), it is checked for the
absence of any external or weak symbols that are not found
in a predefined white list (the list contains symbol names for
mathematical functions and a few more). Due to this, user code
is not able to make any system calls. For example, it cannot
open file /etc/passwd and send it to the user because it
cannot open files at all. If the security check on the compiled
library fails, no attempt to load it is done, and the user gets
notified about the reason of check failure.

On the other hand, malicious code could potentially exploit
such things as buffer overrun and inline assembly. It is an open
problem now how to ensure nothing harmful will happen to the
server due to that. However, the ban on any non-white-listed
calls seems to be strong enough. Probably, one more level of
protection could be achieved with a utility like chroot.

A better approach to provide security is to disallow any
C++ code provided by user. But this would imply giving the
user a good alternative to C++ allowing to describe his/her
algorithms equally efficiently. For example, there could be
a compiler of formulas into C++ code. Nothing like this is
implemented at the moment, but can be done in the future. In
this case, the user code security problem will vanish.

XI. CONCLUSION AND FUTURE WORK

A new tool for numerical simulations, NumEquaRes, has
been developed and implemented as a Web application. The
core of the system is implemented in C++ in order to de-
liver good computational performance. It is free software
and thus everyone can contribute into its development. The
tool already provides functionality suitable for solving many
numerical problems, including the visualization of Poincaré
maps, stability diagrams, fractals, and more. Simulations run
on server; besides, they may contain C++ code provided by
user. This creates two challenges — potential problems of
server performance and security. The security problem has
been addressed in our work; the performance problem is not
currently taken into account.

The algorithm of simulation runner implies that the order
of activation calls it makes is not important, i.e., does not affect

simulation results. While this is true for typical simulations,
counter-examples can be invented. Further work is to make it
possible to distinguish such simulations from regular ones and
render them invalid. Another option is to eliminate internal
uncertainty in simulation specification: only allow one con-
nection per output port and require the initial order of source
box activation to be explicitly specified by the user.

NumEquaRes is a new project, and the current state of its
source code corresponds more to the proof-of-concept stage
than the production-ready stage, because human resources
assigned to the project are very limited. To improve the source
code, it is necessary to add developer documentation, add unit
tests, and deeply refactor both client and server parts of the
Web interface.

Further plans of NumEquaRes development include new
features that would significantly extend its field of application.
Currently, the most serious bottleneck for user is having to
supply equations in the form of C++ code. This problem
can be addressed by implementing interoperability between
NumEquaRes and other tools. For example, many simulation
tools are able to formulate problem equation using the Func-
tional Mock-up Interface (FMI) standard format [23]. It is well
possible to develop a new box type with interface similar to
CxxOde but taking its input from an FMI model exported
from another tool. It is important to notice, however, that more
advanced numerical time-stepping solvers (e.g., CVODE from
the Sundials library [24]) have to be used to simulate these
models.

Another set of planned features aims to enhance the level of
presentation of simulation results (currently, it is quite modest).
Among them is 3D visualization and animation.

Last but not least, an important usability improvement can
be achieved with a feature that visualizes simulation data flows;
its role is similar to debugger’s.

REFERENCES

[1] S. Orlov and N. Shabrov, “Numequares — web application for numer-
ical analysis of equations,” in SOFTENG 2015: The First International
Conference on Advances and Trends in Software Engineering, S. F.
Felipe and H. Jameleddine, Eds. IARIA XPS Press, 2015, pp. 41–47.

[2] “Numequares — an online system for numerical analysis of equations,”
URL: http://equares.ctmech.ru/ [accessed: 2015-11-25].

[3] E. J. Routh, The Advanced Part of a Treatise on the Dynamics of a
System of Rigid Bodies, 6th ed. Macmillan, London, 1905, reprinted
by Dover Publications, New York, 1955.

[4] L. Meirovitch, Elements of vibration analysis. New York: McGraw-
Hill, 1986.

[5] G. Teschl, Ordinary Differential Equations and Dynamical Systems,
ser. Graduate studies in mathematics. American Mathematical Soc.,
URL: http://books.google.ru/books?id=FSObYfuWceMC [accessed:
2015-11-25].

[6] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Sys-
tems: A Guide to XPPAUT for Researchers and Students, ser. Software,
Environments and Tools. Society for Industrial and Applied Math-
ematics, 2002, URL: http://books.google.ru/books?id=Qg8ubxrA060C
[accessed: 2015-11-25].

[7] “Using server-sent events,” URL: https://developer.mozilla.org/en-
US/docs/Server-sent events [accessed: 2015-11-25].

[8] “Lamp (software bundle),” URL:
http://en.wikipedia.org/wiki/LAMP (software bundle)
[accessed: 2015-11-25].

[9] “D3.js — data-driven documents,” URL: http://d3js.org/
[accessed: 2015-11-25].

306

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] “A full-featured markdown parser and compiler, written in javascript,”
URL: https://github.com/chjj/marked [accessed: 2015-11-25].

[11] “Mathjax — beautiful math in all browsers,” URL:
http://www.mathjax.org/ [accessed: 2015-11-25].

[12] VTK user’s guide. Kitware, Inc., 2010, 11th ed.
[13] E. Brown, Web Development with Node and Express. Sebastopol, CA:

O’Reilly Media, 2014.
[14] “Ajax (programming),”

URL: https://en.wikipedia.org/wiki/Ajax (programming)
[accessed: 2015-11-25].

[15] “Acml — amd core math library,” URL: http://developer.amd.com/tools-
and-sdks/archive/amd-core-math-library-acml/ [accessed: 2015-11-25].

[16] J. C. Butcher, Numerical Methods for Ordinary Differential Equations.
New York: John Wiley & Sons, 2008.

[17] M. Abramowitz and I. Stegun, Mathieu Functions, 10th ed. Dover
Publications, 1972, chapter 20, pp. 721–750, in Abramowitz,
M. and Stegun, I., Handbook of Mathematical Functions, URL:
http://www.nr.com/aands [accessed: 2015-11-25].

[18] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers I: Asymptotic Methods and Perturbation
Theory. Springer, 1999, pp. 545–551.

[19] J. W. Milnor, Dynamics in One Complex Variable, 3rd ed., ser. Annals
of Mathematics Studies. Princeton University Press, 2006, vol. 160.

[20] “Wolframalpha — computational knowledge engine,” URL:
http://www.wolframalpha.com/ [accessed: 2015-11-25].

[21] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Computer Society Pr, 2003.

[22] S. Fortmann-Roe, “Insight maker: A general-purpose tool for
web-based modeling & simulation,” Simulation Modelling
Practice and Theory, vol. 47, no. 0, 2014, pp. 28 – 45, URL:
http://www.sciencedirect.com/science/article/pii/S1569190X14000513
[accessed: 2015-11-25].

[23] “Functional mock-up interface,” URL: https://www.fmi-standard.org/
[accessed: 2015-11-25].

[24] “Sundials — suite of nonlinear and dif-
ferential/algebraic equation solvers,” URL:
https://computation.llnl.gov/casc/sundials/main.html[accessed: 2015-
11-25].

307

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

