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Abstract—Cloud Computing is a new distributed computing
model based on the Internet infrastructure. The computational
power, infrastructure, applications, and even collaborative con-
tent distribution is provided to users through the Cloud as a
service, anywhere, anytime. The adoption of Cloud Computing
systems in recent years is remarkable, and it is gradually
gaining more visibility. The resource elasticity with the cost
reduction has been increasing the adoption of cloud computing
among organizations. Thus, critical analysis inherent to cloud’s
physical characteristics must be performed to ensure consistent
system deployment. Some applications demand more computer
resources, other requests more storage or network resource.
Therefore, it is necessary to propose an approach to performance
measurement of Cloud Computing platforms considering the
effective resource performance, such as processing rate, memory
buffer refresh rate, disk I/O transfer rate, and the network
latency. It is difficult to discover the amount of resources are
important to a particular application. This work proposes a
performance evaluation methodology considering the importance
of each resource in a specific application. The evaluation is calcu-
lated using two benchmark suites: High-Performance Computing
Challenge (HPCC) and Phoronix Test Suite (PTS). To define
the weight for each resource, the Data Envelopment Analysis
(DEA) methodology is used. The methodology is tested in a simple
application evaluation, and the results are analyzed.

Keywords–Cloud Computing; Performance evaluation; Bench-
mark; Methodology.

I. INTRODUCTION

The cloud computing infrastructure meets several workload
requirements simultaneously, which of these are originated
from Virtual Machine (VM). The evaluation addressed in this
work is focused on criticality and performance on the cloud
platform virtualized resources. Such evaluation is required
because the performance of virtualized resources is not trans-
parent to the network management, even when using a software
monitor. Thus, it is demanded a methodology that allows to
quantify the performance according to the platform partic-
ularity, using it to performance periodic measurements and
to assure the promised available and reducing malfunctioning
risks.

In this work, we propose a generic methodology to assess
the performance of a cloud computing infrastructure; standard-
izing the method and covering a wide range of systems. Such
methodology will serve any cloud computing structure, since
it is oriented to the resources’ performance. The assessment
must consider the influence of each resource on the overall
system performance. Then it is determined which of these re-
sources has greater relevance to the system, aiding in deciding
which infrastructure model will provide the best consumption
efficiency to users, developers and managers.

This paper is an extended version of the paper presented
in The Fourteenth International Conference on Networks (ICN
2015) [1]. Comparing to the original paper, this one shows
more results to validate the proposal.

We consider the average performance of the hardware and
network critical points, such as processing, memory buffer
refresh rate, storage Input/Output (I/O) and network latency.
We used two benchmarking suites to evaluate these important
points: High Performance Computing Challenge (HPCC) and
Phoronix Test Suite (PTS).

HPCC uses real computing kernels, allowing variable in-
puts and runtimes according to system capacity [2]. It consists
of seven benchmarks responsible for each critical component
individual analysis according to its specificity.

The PTS [3] is the basic tool of the Cloud Harmony [4]
website, which analyzes public cloud systems all over the
world. It consists of over 130 system analysis tests, which
were selected by its effective handling and compatibility of
results, with higher stability and likelihood when compared to
benchmarks with the same goal.

From the results obtained in both benchmark suites, we
analyze it using Data Envelopment Analysis (DEA), which
will assign weights according to each resource’s relevance in
the infrastructure; then transcribe a formulation considering
each resource’s average performance in each deployed VM
instance. The formulation considers the overhead attached to
each evaluated resource, culminating in its real performance
representation. The proposal was validated in a experiment
done in a Datacenter running a typical Web application.

The rest of the paper is structured as follows. In Section
II, we present some related work, and Section III introduces
the proposed performance evaluation methodology. Section IV
shows the results and Section V concludes the paper and
suggests future work.

II. RELATED WORK

Ostermann [5] and Iosup [6] created a virtual platform
using the Amazon Elastic Compute Cloud (EC2) [7] instances.
In this scenario, the infrastructure is shared by many indepen-
dent tasks, and the benchmarks will run over the Multi-Job
Multi-Instance (MJMI) sample workloads. It was noticeable
two main performance characteristics: the workload makespan
stability, and the resource’s aquisition/liberation overhead.

The performance of several cloud computing platforms,
e.g., Amazon EC2, Mosso, ElasticHost and GoGrid, were
suitable to using the HPCC benchmark suite. It was noticeable
that cloud computing is a viable alternative to short deadline
applications, because it presents low and stable response time.
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It brings a much smaller delay for any cloud model when
compared to scientific environment, meeting effectively to the
stability, scalability, low overhead and response time criteria.
The contribution of these works stands for the methodology
and the metrics evaluation, besides the pioneering idea of
analyzing the performance of cloud computing systems [6].

Benchmark’s references for performance verification and
infrastructure limitations were made in [8]. The benchmarks
were classified in three categories according to the moment
of the infrastructure (deployment, individual or cluster). All of
them brings a sense of loss carried by virtualization. In this
work, it was executed simulations to assess the Central Pro-
cessing Unit (CPU)/Random Access Memory (RAM), storage
I/O and network usage metrics.

It was verified that CPU usage tests have a little overhead
introduced by virtualization. The I/O tests show performance
gain caused by virtualization. Such fact possibly occurs be-
cause virtualization creates a new cache level, improving the
I/O performance. On the other hand, there are components,
which execute I/O functions that are affected by large cache,
reducing performance and becoming the cache useless. It is
difficult to predict the performance behavior in a specific I/O
task.

The increasing complexity and dynamics in deployment of
virtualized servers are highlighted in Huber [9]. The increasing
of complexity is given by gradual introduction of virtual
resources, and by the gap left by logical and physical resource
allocation. The dynamics increasing is given by lack of direct
control over hardware and by the complex iterations between
workloads and applications. Results of experimentations using
benchmarks presented that performance overhead rates to
CPU virtualization is around 5%. Likewise, the performance
overhead to memory (RAM), networks and storage I/O virtu-
alizations reach 40%, 30% and 25%, respectively.

Different from cited works, this paper presents a proposal
to evaluate a cloud computing system considering the ap-
plication demand. Although it is possible to use HPCC or
PTS metrics and calculate an index weighted by parameters
based in operator experience, the results are not precise. Our
proposal uses DEA methodology to define the relevance of
each parameter and calculate a unique value to compare against
other cloud providers.

III. A METHODOLOGY TO EVALUATE THE
PERFORMANCE OF A CLOUD COMPUTING SYSTEM

Amazon Elastic Compute Cloud (Amazon EC2) is a service
provided by Amazon cloud computing platform. The users
can access the platform by the Amazon Web Services (AWS)
interface. Amazon’s offer the Amazon Machine Image in order
to create a Virtual Machine (VM), which is called an instance,
containing user’s software. A user can create, deploy, and stop
server instances as needed. They pay the service by the amount
of hours of active server instance it used.

In each Amazon’s VM, or VM instance, works as a virtual
private server. To facilitate for user to choose the amount of
resources they would buy, Amazon defines a set of instance
size based on Elastic Compute Units. Each instance type offers
different quantity of memory, CPU cores, storage and network
bandwidth. The Amazon’s pre-defined VM types used in this
work are shown in Table I.

TABLE I. AMAZON EC2 VIRTUAL MACHINE MODEL [7].

VMs CPUs(Cores) RAM[GB]) Arch[bit] Disk[GB]
m1.small 1 (1) 1,7 32 160

c1.medium 5 (2) 1,7 32 350
m1.large 4 (2) 15 64 850
m1.xlarge 8 (4) 15 64 1690
c1.xlarge 20 (8) 7 64 1690

First, we deploy VMs based on the model provided by
Amazon EC2 [7]. The overall performance of the resources
is not used, since virtualization generates communication
overhead in the resource management. After the allocation of
resources in need, we installed the benchmark suites to run the
tests.

According to Jain [10], the confidence interval only ap-
plies to large samples, which must be considered from 30
(thirty) iterations. Therefore, we ran the experiments for each
resource of each VM instance at least thirty times, ensuring the
achievement of a satisfactory confidence interval (95%). Then,
we can state that each benchmark will follow this mandatory
recommendation to achieve an effective confidence interval.
After the tests, we calculate the mean and the confidence
interval of the obtained results, presenting a high reliability
level.

In order to ponder the performed experiments, we opted for
the DEA methodology; using the BCC model output-oriented
(BCC-O), which involves an alternative principle to extract
information from a population of results. Then, we determine
the weights inherent to the VMs and the resources analyzed.
We used the results of each benchmark iteration in each VM as
an input, achieving the weights for each benchmark. Finally,
we apply this procedure in the formulation which will be
detailed later.

In short, we analyze a cloud performance simulating the
behavior of applications by running benchmarks. We did an
efficiency analysis from the achieved results, assigning weights
to each one of them. Then, we proposed a formulation which
showed the consumption ratio of each platform resource,
considering the associated overhead. The execution order of
activities for cloud computing performance evaluation method-
ology is shown in Figure 1.

A. Benchmarks
In this work, we use two benchmark suites, the HPCC [2]

and PTS [3]), which will measure the performance of critical
points in a cloud computing system. These benchmarks require
the Message Passing Interface (MPI) [11] and Basic Linear
Algebra Subprogram (BLAS) [12] library’s availability to run
the tests.

The benchmarks from HPCC suite ran both in local and
online environments and has shown favorable results to its
utilization. Then, the benchmark results showed independence
and adaptability within the cloud nodes.

The HPCC benchmark suite comprises seven different tests
that will stress the system hardware critical points such as is
presented as follows:

• High-Performance Linpack (HPL) [13] uses 64-bit
double precision arithmetics in distributed memory
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Figure 1. Cloud Computing performance evaluation methodology flowchart.

computers to measure the floating point rate of execu-
tion for solving matrices through random dense linear
equations systems.

• Double-precision General Matrix Multiply (DGEMM)
[14] simulates multiple floating point executions,
stressing the process through double-preciosion matrix
multiplication.

• PTRANS [15] has several kernels where pairs of pro-
cessors communicate with each other simultaneously,
testing the network total communication capability. It
transposes parallel matrices and multiplies dense ones,
apllying interleaving techniques.

• Fast Fourier Transform (FFT) [16] measures the
floating point rate through unidimensional double-
precision discrete Fourier transforms (DFT) in arrays
of complex numbers.

• STREAM [17] measures the memory bandwidth that
supports the processor communication (in GB/s). It
also measures the performance of four long-vector
operations. The array is defined to be larger than
the cache of the machine, which is running the tests,
privileging the memory buffer updates through inter-
dependence between memory and processor.

• Random Access [18] measures the performance of
random memory (main) and access memory (cache)
buffer updates in multiprocessor systems. The results
are given in Giga Updates Per Second (GUPS), calcu-
lated by updated memory location identification in one
second. This update consists in a Read-Modification-
Write (RMW) operation controlled by memory buffer
and the processor.

• Effective Bandwidth Benchmark (beff ) [19] measures
the bandwidth efficiency (effective) through estimated
latency time for processing, transmission and recep-
tion of a standard message. The message size will
depend on the quotient between memory-processor
ratio and 128.

Beyond the HPCC, we also used another benchmark suite
to run the remaining tests and enable a bigger coverage of
evaluated resources.

The PTS suite comprises more than 130 system analysis
tests. We have selected the benchmarks to be part of this exper-
iment according to its importance within the benchmarking set,
minimizing inconsistencies and improving our sample space.
Finally, we achieve the three most adaptive benchmarks that
will be presented as follows:

• Loopback Transmission Control Protocol (TCP) Net-
work Performance [20] is a simple Peer-to-Peer (P2P)
connectivity simulation, which measures the network
adapter performance in a loopback test through the
TCP performance. This test is improved on this bench-
mark to transmit 10GB via loopback.

• RAM Speed SMP [21] measures the performance of
the interaction between cache and main memories in
a multiprocessor system. It allocates some memory
space and starts a write-read process using 1Kb data
blocks until the array limit, checking the memory
subsystem speed.

• PostMark [22] creates a large pool of little files
constantly updating just to measure de workload trans-
action rate, simulating a big Internet e-mail server.
The creation, deletion, read, and attaching transactions
have minimum and maximum sizes between 5Kb and
512Kb. PostMark executes 25.000 transactions with
500 files simultaneously, and after the transactions,
the files are deleted, producing statistics relating its
contiguous deletion.

In short, we present all benchmarks used in this work and
its basic characteristics in Table II.

TABLE II. BENCHMARKS CHARACTERISTICS.

RESOURCE BENCHMARK UNIT

CPU

HPL GFLOPs
DGEMM
PTRANS
FFT GB/s

MEM
STREAM GB/s
RAM Speed SMP
Random Access GUPS

STO PostMark Transactions/s

NET beff µs
Loopback TCP s

B. Resources Overhead
Simplifying the organization of the resources’ performance

analysis in a cloud computing system, we can split them into
two requirement groups: CPU and I/O resources. Performance
studies utilizing general benchmarks show that the overhead
due to CPU virtualization reach 5% as was mentioned before
at Section II. The host hypervisor directly controlling the
hardware and managing the actual operational system, showing
low overhead.

Virtualization also imposes I/O overhead, concerning mem-
ory, networks and storage. Cloud applications have specific
requirements, according to their main goal. In this way, the
network is critical to every single cloud application because it
determines the speed with which each remaining I/O resource
will work. In other words, the network must provide capability,
availability, and efficiency enough to allocate resources without
compromising delays.
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The online content storage is just one of the most popular
features of cloud computing systems. Its performance is so
much dependent on memory buffer updates rate as regarding
the processing rate that feeds the buffer. These two active
functions significantly affect the storage services on the cloud.

Lastly, but not less important, memory is the most required
resource on a cloud computing system. In distributed systems,
it is considered a critical issue, because it works along with
processing in the updates of running applications, user require-
ments, and in the data read/write coming through network
adapter or storage component. So, many functions overload the
resource, representing the biggest bottleneck in whole cloud
computing infrastructure.

TABLE III. VIRTUALIZATION OVERHEADS [9].

RESOURCE OVERHEAD (%)

I/O
Memory 40
Network 30
Storage 25

CPU Processing 5

Each hardware resource available in the cloud computing
infrastructure possesses a unique utilization quota regarding
its own functioning. However, they feature interdependencies
between to each other. Table III shows the overhead portions
to each resource analyzed in this work. Then, we address
weights based on the significance of each resource in a cloud
computing infrastructure using the DEA methodology.

C. DEA Methodology

The DEA methodology is a linear programming mathe-
matical technique, which consists of a multicriteria decision
support, analyzing multiple inputs and outputs simultaneously.
In this way, the DEA is capable of modeling real-world
problems meeting the efficiency analysis [23].

This methodology provides comparative efficiency analysis
from complex organizations obtained by its unit performance
revelation so that its reference is obtained by the observation
of best practices. The organizations once under DEA analyses
are called Decision Making Unit (DMU)s and must utilize
common resources to produce the same results. With this, will
be defined efficient DMUs (those which produce maximum
outputs by inputs) and the inefficient ones. The first ones are
located on the efficiency frontier while the later ones under
that same frontier.

In this work, we chose one model among all DEA method-
ology models, which is the Multipliers BCC-O model. The
output orientation was chosen because of the input variables
(VM instances) are fixed. The main goal is to obtain the
best benchmarks’ performance executed on the VMs, then we
intend to obtain the larger amount of outputs by inputs. By
the way, the DEA methodology was applied to parametrize
the benchmarks results calculated for each resource in all VM
instances.

The required terms to the weighting on the proposed formu-
lation are generated by the BCC-O model. This mathematical
model consists of the calculation of the input (VM resources)
and output (benchmarks results) variables weights. In the
model objective function we minimize the input weighted sum

(product from input value by its respective weight) subjected
to four restrictions, presented on the formulation shown in (1).

Running the model shown earlier in a linear programming
solver, we can get the weight sum equal to 1, showed in (1c).
The restriction of the inequality (1d) will be performed for
each one of the 1500 total iterations from running instances.
This model allows weights to be chosen for each DMU (VM
iteractions) in a way that suits it better. The calculated weights
must be greater than or equal to zero as it is shown on
inequalities (1f) and (1g). The efficiency ratios of each DMU
is calculated by the objective function too. Thus, the number of
models to be solved is equal to the number of problem DMU.

In order to achieve the best performance of the resulting
benchmarks (outputs) ran on the five VMs showed in Table
I. The weights are obtained by a weighted average according
to the significance of each test on the system. The greater
values will have the higher weights. We consider each one of
the ten benchmarks executed ran, at least, 30 times for each
one of the five VMs used in this experiment, accounting for
1500 iterations. Each one of these had its respective weight
calculated by DEA, then we ran a solver (BCC-O) to calculate
the inputs and outputs weighted sum obeying the methodology
constraints.

Minimize ef(0) =

m∑
i=1

viXi0 + v (1a)

(1b)

Subject to
S∑
j=1

ujYj0 = 1 (1c)

S∑
j=1

ujYjk −
m∑
i=1

viXik − v ≤ 0 (1d)

k = 1 . . . n (1e)
uj ≥ 0,∀j (1f)
vi ≥ 0,∀i (1g)

Where: v ∈ < , v unrestricted
uj = output j weight
vi = input i weight
k ∈ {1 . . . n} DMUs
j ∈ {1 . . . s} outputs of DMUs
i ∈ {1 . . .m} inputs of DMUs
Yjk = output j value of DMU k
Xik = input i value of DMU k

Running the model shown earlier in a linear programming
solver, we can get the weight’s values. The restriction of the
inequality (1d) will be performed for each one of the 150
iteractions of running instances. This model allows weights
to be chosen for each DMU (VM iteractions) in a way that
suits it better. The calculated weights must be greater than or
equal to zero, as it is shown on inequalities (1f) and (1g). The
efficiency ratios of each DMU is calculated by the objective
function too. Thus, the number of models to be solved is equal
to the number of problem’s DMU.
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In order to achieve the best performance of the resulting
benchmarks (outputs) ran on the VMs, the weights are obtained
by a weighted mean according to the significance of each test
to the system. The greater values will have the higher weights.
We consider each one of the ten benchmarks executed ran at
least thirty (30) times for each one of the five (5) VMs used
in this experiment, accounting for 1500 iteractions. Each one
of these had its respective weight calculated by DEA, then
we ran a solver (BCC-O) to calculate the inputs and outputs
weighted sum obeying the methodology constraints.

Concerning the constraints, first of all, the outputs’
weighted sum must be equal to one, setting a parameter for
assigning weights in each VM. The inputs and outputs’ weights
must be greater than or equal to zero. Lastly, the subtraction
between the inputs and outputs’ weighted sums and the scale
factor, must be lower than or equal to zero. The scale factor
will not be considered because it will just determine if the
production feedback is increasing, decreasing or constant to a
set of inputs and products. This way, weights are the factors
considered on the formulation.

D. Formulation
In a cloud computing system, the required resources are

allocated automatically according to user needs. All of them
have a standard overhead and significance variable level ac-
cording to hosted application guidance. To analyze the system
performance, we used a mathematical formulation that pro-
vides evidence from utilization levels measured, and from the
iteractions among resources. The DEA was used to define the
weights of Performance Index.

We must consider that benchmark execution will simulate
an application that overloads the assessed resource. Then, we
adopted PIRG

as the Resource Global Performance Index,
whose variable will assume the resulting value from the
product between RPIR (Resource Real Performance Index)
and the APIRj

(Average Performance Index by Resource in
each VM Instance), as shown in (2).

PIRG
= RPIR ×APIRj

(2)

The term RPIR is the result from the subtraction between
the maximum theoretical performance (100%) and the over-
head associated to each running resource, shown in Table III.
The relation is shown in (3).

RPIR = (100%−OvR%) (3)

The term APIRJ
is calculated by the mean of each BPIRj

(Benchmark Performance Index by Resource in each Instance),
as it is shown in (4). BPIRj

is calculated by the product sum
between weights (UiRj

) obtained from DEA methodology for
benchmarks (i) by resource (R) in each instance (j). The term
nj stands for the amount of VMs where benchmarks were
hosted. In this case, five VMs were implemented to run the
tests based on the Amazon EC2 infrastructure.

APIRj
= BPIRj

÷ nj (4)

The results (XiRj
) obtained from benchmarks (i), by

resource (R) in each instance (j), as shown in (5), where
p is the number of benchmarks and q is the number of
instances. The XiRj is normalized related to maximum the-
oretical performance in order to permit an index independent
from benchmark units, e.g., GB/s, GFLOPS, Sec.

BPIRj
=

∑
1≤i≤p
1≤j≤q

(UiRj
×XiRj

) (5)

The benchmark suites were set up to simulate each resource
behavior in a cloud computing infrastructure. We will calculate
the (BPIRj

) Benchmarks Performance Index to each resource
(R) in each instance (j), considering each benchmark running
to its respective resource, and after that we calculated the
mean for each resource, obtaining the APIRj

dividing each
BPIRj

by the number of VM instances nj . In following
formulation, CPU means computing resource, MEM means
memory, STO means storage resource and NET means
network resource.

BPICPUj
= (UHPL ×XHPL) + (UDGEMM ×XDGEMM )

+ (UFFT ×XFFT ) + (UPTRANS ×XPTRANS)

BPIMEMj
= (USTREAM ×XSTREAM ) + (URA ×XRA)

+ (URSMP ×XRSMP )

BPISTOj
= (UBB ×XBB) + (UPM ×XPM )

BPINETj
= (UBE ×XBE) + (ULTCP ×XLTCP )

APICPUj
=

∑
BPICPUj

÷ nj

APIMEMj
=

∑
BPIMEMj

÷ nj

APISTOj =
∑

BPISTOj ÷ nj

APINETj =
∑

BPINETj ÷ nj

The next step consists in solving the global performance
expression:

PICPUG
= RPICPU ×APICPUj

PIMEMG
= RPIMEM ×APIMEMj

PISTOG
= RPISTO ×APISTOj

PINETG
= RPINET ×APINETj
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IV. RESULTS AND DISCUSSION

The proposed methodology was tested in a real environ-
ment, composed by servers and network typically used in
a datacenter. Although it was a small environment, all the
machines was running only the benchmark software, providing
correct measurements without any external interference.

The hardware used was a Dell Power Edge M1000e enclo-
sure with six blades powered by Intel Xeon x5660 2.8 GHz
processor and 128 GB 1333 MHz DDR3 RAM. All blades
have 146 GB SAS HDs. The storage was a Dell Compellent
with six 600 GB SAS disk and six 2.0 TB NL-SAS disk. The
OS was the Linux Ubuntu 12.04 over VMWare ESXi 5.0.0
hypervisor.

All the results are based on the initial set of benchmarks
showed in Section III. As we could see in Table I, we created
a homogeneous environment from 1 to 21 cores based on five
Amazon EC2 instances, where we run the benchmarks which
will evaluate the performance on the cloud environment. The
application chose was an XAMPP 1.8.1 Web server [24].

A. Benchmark Evaluation per Resource
This section shows the graphs of each benchmark eval-

uation by resource. It is shown the results in running the
benchmark in each VM tested.

The first evaluation was the CPU performance. Figure 2
shows the results of HPCC Benchmark (CPU), comparing
HPL, DGEMM and FFT benchmarks, all of then giving results
in GFLOPS. There is a small discrepancy in c1.medium and
m1.large result due different VMs profiles. The c1 profile
provides more cache than m1 that produces a better results in
DGEMM benchmark because it is based on matrix operation
that takes advantage of cache memory.

Figure 2. HPCC Benchmark (CPU): HPL x DGEMM x FFT (GFLOPS).

Figure 3 shows the results of HPCC Benchmark (CPU)
PTRANS, that gives the results in GB/s. As showed in
DGEMM results, there is a small discrepancy in c1.medium
and m1.large result due the same reason. PTRANS benchmark
is based on matrix operation that takes advantage of more
cache in c1 profile.

The second evaluation was the Memory performance. Fig-
ure 4 shows the results of Phoronix Test Suite (Memory): RAM
Speed SMP Integer x Float, that gives the results in MB/s. The

Figure 3. HPCC Benchmark (CPU): PTRANS (GB/s).

results shows small difference in all tested VMs. The PTS test
is affected by hypervisor’s cache memory.

Figure 4. Phoronix Test Suite (Memory): RAM Speed SMP Integer x Float
(MB/s).

Figure 5 shows the results of HPCC Benchmark (Mem)
STREAM, which gives the results in GB/s. There is a small
discrepancy in c1.xlarge and m1.xlarge comparing to m1.large
results due the fact that xlarge profiles have more CPU cores
that dispute the internal bus that reduces the memory reading
performance.

Figure 6 shows the results of HPCC Benchmark (Mem)
Random Access, which gives the results in Giga Updates Per
Second (GUPS). There is a small discrepancy in c1.medium
and m1.large result due the difference on VM profile. As the
c1 profile provides more cache than m1, the memory update
process takes advantage of cache memory.

The third evaluation was the Network performance. Figure
7 shows the results of HPCC Benchmark (Network): Beff ,
which gives the results in milliseconds. The results shows that
m1 profile gives bad network performance.

Figure 8 shows the results of HPCC Benchmark (Network):
Loopback TCP, which gives the results in seconds. These
tests measure the network adapter performance, affected by
processor performance.
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Figure 5. HPCC Benchmark (Memory): STREAM (GB/s).

Figure 6. HPCC Benchmark (Memory): Random Access (GUPs).

The fourth evaluation was the Network performance. Fig-
ure 9 shows the results of Phoronix Test Suite (Storage): Post-
Mark, which gives the results in transactions per seconds. The
results show the performance is related to VM performance
because all of then used the same disk storage system.

B. DEA Analysis

After running each benchmark, we generate Table IV,
which shows the efficiency index of each experiment related
to maximum theoretical performance. The normalization is
necessary to compare different units from benchmarks. Then,
we calculated its efficiency percentage to use it on the proposed
formulation.

In order to consider the results from the benchmark ex-
periments, we used DEA methodology through BCC-O model
(output-oriented). Beyond the efficiency index calculation, we
calculate the output variable weights (benchmark results). In
this way, we minimize the inputs weighted sum dividing it by
the outputs’ weighted sum of the benchmark at hand. After
that, we ran a BCC-O solver to address weights to each
benchmark, considering each VM instance according to its
influence in the obtained results shown in Table IV. Table V
shows the weights calculated by the BCC-O solver that will

Figure 7. HPCC Benchmark (Network): Beff (ms).

Figure 8. HPCC Benchmark (Network): Loopback TCP.

influence the performance of each resource attached to each
benchmark in each VM.

The benchmark results were shown in Table IV and the ef-
ficiency index were calculated by DEA methodology (BCC-O)
in Table V. Applying these results on (5), its two factors will
assume values for benchmark performance to each resource in
each instance (XiRj), considering the DEA assigned weight to
each benchmark result (UiRj). We can observe the more the
resource is used, greater is the weight assigned to it.

We can see in Figure 10 that the network performance
is clearly greater than the rest, and the memory is the only
resource that has an index relatively close. These resources
are the most affected ones by the overhead issue, justifying
their bottleneck condition. Figure 11 shows the relevance of
each instance through benchmark execution. The c1 instances
have very similar performances because they both have a pro-
cessor/memory ratio which allows achieving quite satisfying
performance levels.

With the two performance results in hands, we should get
the resource’s average by instance, applying the formulation
shown in (4). Then, we calculate the global index considering
the overhead rate by the index found by each resource as shown
in (2).
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TABLE IV. BENCHMARK RESULT FOR EACH VM (XiRj ) RELATED TO MAXIMUM THEORETICAL PERFORMANCE.

BENCHMARKS m1.small c1.medium m1.large m1.xlarge c1.xlarge

CPU

HPL 4.64% 11.27% 14.84% 24.81% 27.51%
DGEMM 1.15% 13.27% 4.30% 8.54% 11.08%
FFT 0.94% 3.62% 2.49% 4.52% 4.59%
PTRANS 6.83% 27.86% 14.71% 39.63% 38.52%

MEM

RAMSpeed SMP/Integer 22.01% 28.38% 25.7% 30.4% 30.77%
RAMSpeed SMP/Float 24.46% 28.96% 26.30% 27.13% 31.36
STREAM 19.53% 28.27% 44.02% 37.53% 41.36%
RandomAccess 0.41% 9.82% 3.73% 17.3% 17.6%

NET beff 98.2% 99.9% 98.8% 99.5% 99.4%
Loopback TCP 0.58% 62.07% 92.65% 94.34% 96.02%

STO PostMark 3.75% 4.42% 13.99% 13.00% 14.26%

TABLE V. WEIGHTS ADDRESSED TO RESOURCES TO EACH VM (UiRj ).

BENCHMARKS m1.small c1.medium m1.large m1.xlarge c1.xlarge

CPU

HPL 0.77 0.13 0.66 0.28 0.51
DGEMM 0.88 0.42 0.23 0.29 0.20
FFT 0.003 0.58 0.25 0.5 0.58
PTRANS 0.15 0.32 0.07 0.33 0.43

MEM

RAMSpeed SMP/Integer 0.38 0.78 0.17 0.42 0.37
RAMSpeed SMP/Float 0.46 0.96 0.3 0.68 0.65
STREAM 0.14 0.18 0.67 0.33 0.61
RandomAccess 0.91 0.93 0.37 0.73 0.56

NET beff 0.42 0.59 0.48 0.55 0.43
Loopback TCP 0.24 0.43 0.33 0.28 0.48

STO PostMark 0.57 0.24 0.19 0.42 0.62

Figure 9. Phoronix Test Suite (Storage): PostMark (Transaction/s).

From these results we verified that the memory and net-
work performances are the most relevant to a cloud computing
system. These two resources, when well balanced, leverage the
cloud computing infrastructure managing workloads, reaffirm-
ing its bottleneck condition. In this way, this proposal gives
more information regarding resource performance relevance in
application when comparing to the work of Huber [9].

To analyze the proposal scalability, we repeat the data
collected from the six servers 10,000 times, in order to
emulate the benchmark of 60,000 server, comparable to a big
datacenter. The overall time to execute the methodology was
below 5 seconds, a reasonable time to obtain the results.

V. CONCLUSION AND FUTURE WORK

In this work, we could observe that the benchmarks had
met the simulation needs very well, overloading the resources

Figure 10. Benchmark Performance by Resource.

efficiently, returning real-world results. The DEA methodol-
ogy helped us to analyze the efficiency of each experiment,
providing an efficiency index (weight) to benchmarks in each
instance implemented, for each resource evaluated. Finally,
the proposed formulation highlighted the impact of resource’s
overhead on the global performance evaluation.

Then, we concluded that, in a generic Web application,
the memory and network resource performance is the most
relevant to a cloud computing system, and for this reason,
they are considered the bottlenecks. We confirmed that the
resource performance evaluated here is directly proportional
to the overhead execution rates, assigned in [9].

Since develop an application to be hosted on a cloud
environment to measure its resource consumption rate, or its
behavior during a VM migration process, until configure the
benchmarks in a more aggressive way, generating more data
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Figure 11. Benchmark Performance by Instance.

Figure 12. Global Resource Performance.

blocks. Then, we should pay attention to cloud computing
system constant evolution to make possible the use of the
approach proposed in this work.
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