
System of Development Patterns in Service-Oriented Software

Jaroslav Král and Michal Žemlička
Charles University, Faculty of Mathematics and Physics

Department of Software Engineering
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

kral@ksi.mff.cuni.cz, zemlicka@ksi.mff.cuni.cz

Abstract

Service orientation is the leading paradigm of contem-
porary software. Each paradigm has specific practices and
a specific set of design and development paradigms. For
service orientation it holds too. We show that service ori-
entation is a quite complex trend: There are several types
of service-oriented architectures (SOA). The various SOA
types may have different domain of application, different
patterns and antipatterns, they can use different model-
ing and development techniques. Proper selection of SOA
type can be a crucial task significantly influencing likeli-
hood of project success. The applicability of individual
SOA variants depends on requirements and on general busi-
ness circumstances like staff knowledge, planned business
alliances, and the need to reuse existing software. The pro-
per selection of a SOA variant is an important pattern often
made by the way. It is important that some patterns can de-
pend on the effects of the other ones. Patterns should there-
fore be orchestrated. We discuss here mainly the patterns
for the variant of SOA called confederation where com-
munication partners need not be looked for. Most impor-
tant patterns for confederations are user (business) oriented
service interfaces, reuse of legacy systems and third-party
products, and the use of so-called architecture services.
Architecture services can serve as message transformers,
heads of composite services, process managers, and inte-
gration constructs for the integration in the large. All ar-
chitecture services discussed in this paper can be viewed as
instances of one generalized concept from Petri nets.

keywords SOA types, SOA development patterns, user-
oriented service interfaces, generalized Petri place, specifi-
cation patterns, easy prototyping, interdependency of pat-
terns.

1. Introduction

Service orientation is a paradigm having many aspects.
It is manifested by the fact that the notions ”service orien-
tation” and ”service-oriented architecture” are overloaded.
Different people may assign different meanings to these no-
tions. Although there are multitudinous meanings, we will
focus only on a few – probably the ones being most impor-
tant in practice. We shall discuss the variant of SOA being
a virtual peer-to-peer network of peers behaving like real-
world (human) services. It means that any service can offer
capabilities as well as it can require them.

There are several variants of such SOA. They differ in
the degree of autonomy of peers and their ”size”.

Various SOA variants have different structure of the col-
lection of patterns they use. The selection of the patterns
depends on the ”importance” of individual patterns. It can
depend on the immediate technical effects of the patterns as
well as on the business circumstances and plans like the use
of third-party products, legacy systems, etc.

Some patterns can be blocked by business politics and
business conditions like market alliances or the level of staff
training. In this case it is good to know the possible losses
caused by the rejection of a given pattern.

Some patterns are a precondition of the applicability of
some other patterns. The most important case is the pattern
building service interfaces so that they are ”usable” or user-
oriented. It enables/implies the pattern ”coarse-grained in-
terfaces” and prototyping via redirecting the destination of
messages. Such a pattern is not generally known yet. The
development of the collection of patterns cannot be any one-
step process. This fact is often neglected.

Business needs and practical experiences led to an im-
portant change in the use of SOA-related communication
protocol – SOAP (Simple Object Access Protocol, [34]).
The shift is characterized by the increasing use of SOAP
document-literal (SOAP-D) and decreasing use of SOAP-
RPC (Remote Procedure Call) protocols [6]. In other words
SOAP is now used as a XML-document carrying tool. Note

47

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



the documents can be semantically rich and well understood
by users. It is, they can be usable. Usability is no matter of
choice now. It has substantial consequences for the applica-
bility of some powerful development techniques discussed
below. Such effects are not generally known.

We discuss SOA patterns according their importance for
the project success.

The structure of the paper is the following: A variant of
SOA called Confederation is specified. It is shown that it is
preferable to use in confederations the services of two types:
application services having coarse-grained user-oriented in-
terfaces and architecture (integration) services facilitating
integration of other services. Several variants of the archi-
tecture services are presented. It is shown that all the vari-
ants are instances of one concept called Generalized Petri
Place. It is shown that architecture services can be used to
provide user-oriented interfaces or to support powerful pro-
totyping. It is also possible to use architecture services to
compose other services and processes. It is discussed how
service orientation influences the specification patterns.

2. Choice of SOA Type

Crucial service oriented (SO) pattern is the choice of a
proper variant of SOA. It should follow just after the deci-
sion whether SOA will be applied or not. We must – using
the system environment – apply the variant of SOA best ful-
filling the requirements. The type of SOA implies what fur-
ther patterns are applicable, e.g., whether ESB (Enterprise
Service Bus [5]) is good for the given system.

The concept of service orientation is in this paper prag-
matically understood in the following way (see [23] for
more exact definition1): A software system is service-
oriented if it is a (virtual) peer-to-peer (p2p) network of
loosely related (autonomous) components called services.
The services somewhat behave like the services of real
world. For example they are permanently ready to accept a
request to do something. They can communicate with each
other. Technically they communicate primarily by asyn-
chronous message exchanges; synchronous communication
can be an option. We can then say that such a system has a
service-oriented architecture (SOA).

Service-oriented systems can have different architecture
details depending on main goals of the systems and contexts
in which the systems are used. Typical cases are:

1. e-commerce;

2. e-government, health-care systems, etc.;

1We, however, believe that this definition is too complicated and, may
be, too restricting for applications of service orientation in some areas, e.g.,
in small or middle-sized enterprises, or in process control (i.e., real-time
systems).

3. small and middle-sized enterprises;

4. large enterprises, especially global decentralized orga-
nizations;

5. process control systems (soft real-time systems, some
hard real-time systems);

6. systems logically having some features of SOA:

(a) distributed applications being logical monoliths
not allowing to apply full SOA. Common fea-
ture: communicating autonomous software com-
ponents.

(b) batch systems – autonomous software systems
communicating offline or applying bulk data
communication.

The autonomy of components is strongest in e-commerce
systems and typically weakest in process control systems.
In the cases 2, 3, and 4 the systems are formed by a core net-
work of not too large number of services providing the basic
capabilities of the systems (e.g., the services being wrapped
information systems of individual offices of a state adminis-
tration) and ”peripheral” services providing e.g., portals on
web.

SOA in large enterprises can consume large resources
– money, people, and so on. There usually are powerful
supervising authorities. The developed services forming
the SOA are therefore in fact in large enterprises less au-
tonomous than in small or medium firms. Large enterprises
can moreover afford to develop the system from scratch or
buy system like ESB and train people to use the new system.

Service-oriented systems integrate legacy systems, third-
party products, and newly developed software artifacts. It is
often required (see below) that the services have interfaces
mirroring the languages of user knowledge domains. It is
the main reason why SOAP-message literal is widely used.

In the case of the process control systems the system
need not be open, the messages can have therefore formats
based on remote procedure call (RPC) and middleware can
be a proprietary one (e.g., based on system bus and primi-
tives provided by operation systems).

2.1. Web Services

This version of service orientation endorsed by W3 Con-
sortium focuses on web-oriented standards. These standard-
s concern many aspects of service development and use.

The main idea is that the individual services should be
strictly standardized to be able to communicate (or serve)
to anyone (any other service) in the web world. The com-
puterization should go so far that selection of cooperation
partners can be done by services themselves.

48

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



It is very promising. But there is also an opposite side of
the solution: Implementation of all the standards (that are
very complicated and moreover changing) is very compli-
cated and can be reasonably done by quite large teams only.

There are several further issues with SOA based on web
services. Web services must use universally applicable stan-
dards and such standards are difficult to be used properly by
(human) users unless the use is based on libraries provided
by large software vendors. But it leads to a dangerous situ-
ation called Vendor Lock-In Antipattern [4]. The standards
like SOAP [34] and SOAP-related solutions tend to support
the point-to-point communication rather than more compli-
cated communication protocols and have a limited power to
support orchestration of the services.

Web services seem to be the best solution for SOA sys-
tems like business-to-customer (B2C) e-commerce where
communication partners must be looked for at the start of
the cooperation. We call such systems alliances [18] for
short.

The standardization of the semantics of communication
messages is easier if the communication protocol is SOAP-
RPC-based. It is a quite common practice that communica-
tion partners know each other permanently so the partners
need not be looked for. In this case it is better to use a com-
munication protocol based on exchange of documents as it
enables the use of user-oriented interfaces discussed below.
It is due to the fact that the documents can have syntax and
semantics close to the language and knowledge domain of
users. Such messages can be designed to be well understood
by users. We say that they are user oriented or user friend-
ly. It has many desirable consequences (compare e.g., [6]).
An issue is that the semantics of the messages cannot be at
present fully standardized and almost proprietary solutions
must be invented. The above mentioned shift to document-
based communication is an indication that confederations
deserve substantial focus.

2.2. Software Confederations and Software
Unions

Software confederation is a peer-to-peer network of
loosely coupled services knowing each other. The commu-
nication between the services can be (and practice usually
is) the high-level (declarative and coarse-grained) one. It
makes sense to use semi-proprietary communication pro-
tocols like SOAP-D similar to inter-human communication
specific for given problem domain. If the communication is
SOAP-D-based, the documents should be in XML dialects.

Many existing service-oriented systems are confedera-
tions. Examples are information systems (ERP – Enter-
prise Resource Planning) of decentralized enterprises, ad-
vanced forms of CRM (Customer Relationship Manage-
ment, [7]) and SCM (Supply Chain Management, [22]),

e-government, health-care systems, etc. The principle to
use user-oriented messages and user-oriented interfaces is
probably the most important design and development pat-
tern in certain SOA types. We call it User-Oriented Inter-
faces (UOI).

User-oriented interfaces have the following advantages.
They are:

1. stable (rarely modified),

2. declarative (hiding implementation details),

3. good for agile development,

4. enabling easy integration of legacy systems and agile
business processes

5. enabling easy implementation of screen prototypes,

6. improving system usability.

The main disadvantage of user-oriented interfaces is that
they are usually not well standardized.

UOI is therefore a crucial SO pattern (a good practice,
see [11] for definition). UOI covers functions like Facade2

[11], but it substantially changes the properties of the sys-
tem as a whole. Neglecting the use of UOI is itself an
SO antipattern (a practice having usually undesired conse-
quences; see [4] for definition). It is especially dangerous as
people having object-oriented skills usually (according our
long-time experience) do not see the prospects and opportu-
nities of UOI. It is the SO antipattern ”Well, What’s New?”
from [3].

The use of UOI is especially easy and desirable in con-
federations having a small number of highly autonomous
core services. It is the case when legacy systems or third-
party products are used. A good example is e-government,
SOA-based information systems of small enterprises and
municipal offices. We call such systems having such pro-
perties unions.

Unions are now frequently used by software vendors in-
tegrating large software artifacts being open source, legacy
systems, third-party products, web services, and newly de-
veloped components.

3. User-Oriented Interfaces

The requirement that systems should have user-oriented
(usable) interfaces implies that the interfaces of the services
forming SOA must have specific property – they must be
user-oriented (usable) as well. It is typical for the imple-
mentation of agile business processes (see below).

2Roughly speaking Facade is in object-oriented world an object pro-
viding common uniform interface to several other objects.

49

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



SOA, if used properly, is the first broadly used software
development philosophy allowing a seamless integration of
existing software system into new aggregates. It allows
existing systems to be reused and it is not difficult to see
that it is the only way to build information system of e-
government [17] as well as the systems supporting global
enterprises, health-care systems, and others. The resulting
aggregates are typically confederations.

Let us discuss the case of e-government in details: The
system of e-government must be as a rule constructed as an
integration (interconnection) of the information systems of
autonomous offices. The systems must be integrated with
their local interfaces and without any substantial change of
their already existing functions. The only feasible way of
achieving it is to connect the systems to a middleware (in
this case usually web – either Internet or a private network)
enabling the communication between the systems. Business
processes are in e-government called admministrative pro-
cesses. Technically the admministrative processes do not
differ from usual business processes.

The construction of the systems in such way has from
managerial point of view substantial advantages – it allows
saving of immense investments into existing (legacy) soft-
ware. The proposed solution of the integration of the com-
ponents (e.g., information systems) can be implemented al-
most unnoticeably by their existing local users. It saves in-
vestments into training and the expenses and loses caused
by errors of end users during their adaptation to a new sys-
tem. The resulting system tends to be a confederation, usu-
ally a union.

The service-oriented architecture is then a principle al-
lowing the integration of software artifacts providing basic
capabilities. They are often wrapped applications. We shall
call them application services. The integration can be sup-
ported by architecture services discussed below. This atti-
tude is a crucial SOA pattern.

Application services provide basic user domain capabil-
ities. Application services integrated into a service-oriented
system must be usually designed so that they can be easily
used in business processes. The business processes must be
agile – they should allow on-line users’ involvement to be
able to react to emergency situations. The users should be
responsible for the business consequences of the processes.
It is difficult to achieve if the interfaces are not user orien-
ted.

User-oriented interface is as a rule coarse-grained and
rather declarative, i.e., specifying rather what to do some-
thing than how to do it. It brings a pleasant benefit – the
reduction of the load of the communication channels. Ap-
plication services must and should be integrated as black
boxes (like in e-government).

User-oriented interfaces of application services must be
as a rule developed in close cooperation of developers and

users. The system documentation can consist of the inter-
faces of application services only. It indicates that during
the development of such systems many features of agile de-
sign and development of software systems can and should
be used. At the same time SO enables the use of agile prin-
ciples in the development of quite large systems [21]. It is
typical for unions.

A very important advantage of user-oriented interfaces
is that they mimic the interfaces of real-world services. The
interfaces of real world services are often successfully used
for a long time; some of them for decades and some even for
centuries. Such real-world inspired service interfaces have
a good chance, if formalized properly, not to be modified
frequently. User-oriented interfaces enhance the usability
[26] of the application services and also the usability of the
entire system. Application services (e.g., legacy systems)
are usually integrated together with their already existing
local user interfaces. THe concept of usability of interfaces
should be applied inside the system. It is not easy for IT
experts to accept it as they must be able to be a bit skilled
in user problem domain. Usability is advantageous for re-
quirements specifications as well as for the agile software
development processes.

4. Service Roles

Crucial property of services in SOA is that they all have
technically the same properties. It is, they are all peers of
a virtual peer-to-peer network. In confederations, however,
using a logical view we need services providing functions
supporting the integration of the application services. The
services can provide the capabilities of Enterprise Service
Bus or enhance them. They can provide broker services.

It can happen that the current interfaces of an applica-
tion service are not user oriented, see the antipattern Chatty
Services from [3]. Chatty services require many ”tiny” mes-
sages per one meaningful action in the sense of users. The
antipattern Chatty Services can be refactored (avoided) by
the use of specific services called front-end gates (FEG).
FEG is a service transforming user-oriented semantically
rich messages produced by users or other services into se-
ries of fine-grained (implementation-oriented) messages re-
quired by the interface of a given application service and
vice versa.

Front-end gate is one of the so called architecture ser-
vices being the units facilitating the construction of service-
oriented architectures. The existence of architecture ser-
vices is an important feature of service-oriented philosophy.
It can be viewed as a development as well as design pattern.
Application services are often legacy systems. The pat-
tern ”Integration of Legacy Systems” is an important SOA
pattern. It is, however, similar to the object-oriented an-
tipattern Legacy Systems [4]. It is an indication that the

50

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



service-oriented philosophy is substantially different from
the object-oriented one. FEG provides capabilities similar
to Facade or Proxy patterns known from [11] but it has sub-
stantially different overall properties. FEG3 is more an ar-
chitecture pattern than a design pattern. For details see the
section Generalized Petri Places below.

Application service is usually integrated as a black box
whereas infrastructure services are usually newly developed
and therefore integrated as white boxes.

To summarize the services in software confederations
can of two basic types:

1. Application services (typically wrapped legacy sys-
tems or third-party products) providing basic capabili-
ties (operations) of the system can be legacy systems,
third-party products, or newly developed systems.

2. Architecture (or infrastructure) services supporting
the integration of application services into a service-
oriented system. (Note that the term ”infrastructure
service” has here the meaning different from the mean-
ing used in ITIL methodology [14, 15], so we will not
use it.) Besides the front-end gates we shall discuss the
following architecture services: portals, data store ser-
vices, process managers, screen prototypes, and gener-
alized Petri places. All the services can be developed
using very similar techniques and tools.

The acceptance of the concept of architecture services is
crucial for the applicability of the patterns discussed below.
The architecture services should be applied in all contexts
except alliances and process control systems.

4.1. Architecture Services

Architecture services provide capabilities enabling vari-
ous forms of integration of application services. The capa-
bilities include enhancement of services interfaces and com-
munication protocols, business process control services, or
services acting as routers.

The use of architecture services is a very important de-
velopment and design pattern of (confederative) service-
oriented systems. It is possible that this principle can be
successfully used in some alliances too.

Front-End Gates

If we want to reuse legacy systems or simply applications
in SOA, the first issue to be solved is the reconstruction of
their interfaces. The original interfaces are usually too fine-
grained, disclosing implementation details, and often too

3FEG is a software service working as an interface adapter. It is there-
fore similar to the concept ”service adapter” but its philosophy has specific
features; see details below.

GA
fine-grained

messages FEG
coarse-grained

messages Middleware

Figure 1. Connection of a front-end gate

GLS

GA

FEG

Middleware

Portal
HTML2

¢A

g

Portal

XML

HTML

¢A

g

XML2
FEG G LS1

¡¡
FEG HHH

XML1

¢A

g

local
interface

Figure 2. Multiple front-end gates

developer oriented. A very flexible solution is based on the
technique of front-end gates (service adapters). The front-
end gates provide capabilities provided in object-oriented
world by object adapters (facade), proxies, and so on. The
capabilities of front-end gates are, however, substantially
more powerful than the ones offered by the object-oriented
techniques.

The interface of an application A can be provided by
none, one, or more front-end gates (FEG). A is accessible
only through its FEG(s). FEG is a generalization of the con-
cept of connectors in Enterprise Service Bus [30].

It is crucial that FEG is a peer of the virtual peer-to-peer
network too. It is in fact an adapter service – compare object
adapters in object-oriented world.

The resulting service-oriented system then can have the
logical structure from Figure 2. Different FEG of a service
can be used for different groups of its communication part-
ners.

The development of FEG has a lot of common with the
development of portals of the system as in both cases the
task is to develop an automaton transforming k-tuples of in-
put messages into m-tuples of output messages and sends
them to (distinguished) destination services. The destina-
tion service consumes/processes them. We can use XSLT
[33] or tools known for compiler construction for it. So we
can conclude that the interface of (application) services can
always be user-oriented, if necessary. The condition is that
the software component providing services have properly
designed ”boundaries”.

Data Store Services

Practical experience with SOA indicates that service-
oriented systems must integrate batch systems and therefore

51

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



services requiring an implementation of data stores on com-
munication channels. Some parts of such systems have then
features of functional decomposition. Another application
of data stores is the support of sophisticated communica-
tion protocols, sometimes more complex than the publish-
subscribe one.

Data store services enable us to implement a part of
service-oriented system in the way known from structured
design – i.e., to apply main principles of functional decom-
position. Note that functional decomposition is an object-
oriented antipattern [4] but here it is an important pattern
enabling a seamless integration of batch applications.

Examples when data store services are needed:

• Business process control service (see Process Mana-
ger service below) can use a data store to maintain and
interpret business process control data.

• Some algorithms are too complex to be executed on-
line. The components implementing such algorithms
must then work in batch mode and their results must
be stored in a data store possibly implemented as
a specialized data-oriented service. A good exam-
ple is scheduling algorithms in manufacturing systems
[19]. The manufacturing scheduling algorithms are
performed on enterprise level in batch mode as the al-
gorithms are too complex to be started online. The
schedules must be sent to workshop level in bulk mode
and then possibly modified by a workshop manager or
dispatcher.

• The communication must be supervised and possibly
committed/blocked by users. It is typical for business
processes if we need that they can be used in and agile
way. Note that the agility is necessary if it is needed
that the process owner is responsible for process con-
sequences. Agile processes in small-to-medium enter-
prises must be agile to respond properly on business
condition changes [20].

• Data store services can be used to implement complex
communication schemas, e.g., the publish-subscribe
one if not provided by the middleware yet. In this case
the data memory component stores a set of messages.
It can be used to solve the point-to-point antipattern
[3, 16].

• There can be reasons to change dynamically the desti-
nation of a message due the facts known to users only
(e.g., machine tool failures, incomplete data used by
scheduling algorithm, etc.). The changes can be per-
formed by a user or by an application/service or by
activities of destination services.

• Data store services can be used to implement functions
necessary for debugging.

Data stores can therefore be used to enhance middleware
functions, they can be used to integrate batch applications
and can serve as a powerful enhancement of business pro-
cesses control, especially in the cases when a given function
can be provided by several application services that need not
provide the same collection of elementary services or pro-
vide the same elementary services but with different quality
(see [19] for details).

Process Managers

Business processes must often require on-line involvement
and supervision of process owners into their operation. This
feature is known as agility. Agility is a very desirable fea-
ture of business processes – especially in small and middle-
sized enterprises. It is the condition for the requirement
that process owner should be responsible for business loss-
es caused by process steps as well as for on-line process
changes performed by the owner. The reasons are (compare
[20]):

1. The process model/definition is based on data that need
not be for various reasons timely, accurate, or com-
plete. The business conditions may also change.

2. The process owner can be obliged to commit some
risky process steps.

3. The information on the process should be understand-
able for experts (not necessarily IT ones), e.g., at a
court judging a business case.

4. The process model M should be stored as a part of
business intelligence and updated by users.

5. It is desirable to be possible to have process model
in different languages, if necessary, e.g., in BPEL [2],
Aris, [13], workflow [36], or in a semistructured text.

As it is not desirable to have centralized services in peer-
to-peer systems (compare experience with UDDI [32] and
with UDDI-based world-wide repositories) we can use the
following solution (see Figure 3):

1. During the process enactment a new service instance
called Process Manager (PM) is generated on the re-
quest of the process owner O. During the generation
of PM a process model M (if any) is transformed into
a process control data C using parameters provided by
O. O can possibly generate C directly without M . M
can be copied from a data store. A solution when M
contains no data or when O is a proper textual docu-
ment used by a process owner, is also possible. C can
be stored inside PM.

52

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



¢A

g

process owner
¢A

g

system user

System
portal

Management

portal

Repository of
process models

Process
manager

¾ model request

-
model

¡¡ ££ BB @@
services performing

business process operations

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQs

PM generation

-granting access to PM

6

?

process initialization

data/process supervision

Figure 3. The use of Process Manager

2. During the operation of the process PM generates (u-
sing C) service calls. The calls can be synchronous
(call and wait for answer) or asynchronous (just send
a message). C can be modified on-line by process ow-
ner, if necessary.

3. It is important for the reasons discussed above that if
the process owner can supervise the process run and
the process run is understandable by non IT experts,
then the services should have interface based on the
languages of user knowledge domains – it is, the in-
terfaces are user oriented. We have seen that user-
oriented interfaces have many software engineering
advantages. Note that Process Managers are from lo-
gical point of view portals of subnetworks of services
providing the operations of the business process. The
subnetwork behaves like a portal SOA.

Portals

It is advantageous to design a portal (system user interface)
as a service (peer of the network) providing the user inter-
face to the some functions of the system to a specific group
of users. Any system can have several portals.

In the case of process managers it is meaningful to gen-
erate not only the manager but also a portal (user-interface)
for it. Another implementation can be via portlets plugged
into a portal. According to our experience it is a less flexible
solution.

Portal SOA A service in SOA can in principle communi-
cate with any other service. This possibility can be reduced
according to service role it plays in the system according

the principles of the design and implementation of a given
variant of SOA.

The simplest version of SOA has services of only two
types: application services and (usually) one portal. The
application services can communicate with and using the
portal only (Figure 4). Such solution is called portal SOA.
Note that the application services can be structured, they
can be again (virtual) networks of subservices.

portal -¾
¢A

g
user(s)

process
owner(s)

¡
¡ª¡

¡µ ¤
¤²¤
¤º C

CWC
CO @

@R@
@I

Services

Figure 4. Portal SOA: logical view

A SOA system can have subnetworks possessing diffe-
rent SOA construction principles. An example is inclusion
of multiple e-commerce (sub)systems in a large ERP. Ano-
ther example is the subnet providing support of a business
process. The head of the subnet can be a proper service –
for example a process manager service PM discussed above.
Often the services can be composite services.

Portal SOA is recommendable in the situation when the
application services are very autonomous and the agility of
business processes is desirable, the application services can
be equipped by user-oriented interfaces and the system re-
sponse times need not be too short. Such conditions are
fulfilled quite often. The implementation of portal SOA is
simpler than the development of general SOA. It is there-
fore important to detect whether the system to be developed
can have the architecture of portal SOA.

53

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



Supervisor control messages

?

Source

services
messages or data

HHHHj

-

©©©©*

GPP

6
?

§ ¦
¨
§

¥
¦

©©©©*

-

HHHHj

Destination

services
messages or data

Figure 5. Generalized Petri place (simplified)

Generalized Petri Places

All the above discussed architecture services (with a par-
tial exception of portals) can be viewed as specific variants
of the service type called Generalized Petri Place (GPP).
GPP transforms tuples of input messages into tuples of out-
put messages. It can have its local data store (Figure 5).
The functions of GPP, e.g., message routing, can be influ-
enced by a (human) supervisor. GPP is a generalization of
the concept ”place” in colored Petri nets [27]. It is possi-
ble to use tools like an XSLT [33] engine to generalize the
implementation of a front-end gate to have m ”inputs” and
n ”outputs” (Figure 5). In other words: a front-end gate
can be transformed into a generalized transducer transfor-
ming m-tuples of input messages from several sources into
n-tuples of messages sent to several destinations.

The functions of GPP are similar to the ones of Fa-
cade [11] but GPP is a more general concept as the syn-
tax of messages can be substantially changed by GPP and
the messages themselves can be declarative and therefore
not procedure-call oriented. The links from Figure 5 can
be dynamically changeable at runtime. GPP can easily im-
plement the functions of many other patterns from [11] like
Build or Abstract Factory. The functions and behavior pat-
terns are easily changeable at run-time as almost no source
code changes and recompilations or no relinking is neces-
sary to change the behavior. Redirecting of messages is
needed e.g., for screen prototypes discussed below or in e-
mergency situations. Redirecting can be set up on a request
of a human supervisor.

On the other hand the power of GPP can be a dangerous
tool in hands that are not skilled enough as there is a little
syntax overhead. It is, however, well known that coding
(programming) is no bottleneck of software development.
The bottleneck is the requirements specifications [31]. The
root reason of the problems is the snags in cooperation with
users and it is almost not needed here.

A specific variant of it is the use of GPP as an entry point
of a subnetwork of services (to assemble into a composite
service). GPP then plays the role of a FEG of this composite
service. It suffices to require that any message sent to any
service of the subnetwork must pass the GPP being FEG of
the composite service. This technique is then a service com-
position tool. We call such a GPP the Head of Composite
Service.

GPP can be used to integrate several service-oriented
systems. GPP then can serve as a hub enabling the inte-
gration. GPP can also connect subnets having properties of
alliances, e.g., if the peers of the subnet are web services.

The systems using GPP can therefore have a very rich
structure.

4.2. Operations on Generalized Petri Places

We have noted that all above discussed variants of archi-
tecture services can be viewed as modifications or special
cases of generalized Petri places. Let us now systematize
the types of modifications. Variants of communication pro-
tocol:

Standard (or public) protocols. The protocols used as a
basic variant of communication in given SOA.

Bulk communication. This is a variant of communication
used for the communication with batch systems.

The role of data store. We have discussed the following
cases:

• massive data store filled in bulk mode,

• data store of messages,

• log memory,

• data store (repository) of the models of business
processes.

Message paths. We discussed the case when messages
must go through a Head of Composite Service and the
case of Connector. In fact in Portal SOA the applica-
tion services communicate via Portal only.

The roles of human interfaces:

• observing and administration only,

• intelligent human interfaces.

The lifetime of services – generable and destroyable
vs. permanent ones.

The transformations can be combined, so we can have a
broad set of architecture services. It is a topic of further
research to find out whether it can lead to further variants of
architecture services.

54

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



P
¢A

g
System
user

A

Outer
system HH

HH
C

DSM

A

A

FEG DS

©©©©©©

Batch
system

HCS

@
@

@

¡
¡

¡
P

¢A

g
System

user

FEG

FEG

A

A

A

¢A

g
Local
user

PM

½
½

½
½

½
½½

@
@

@
@

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¢A

g
Process
owner

A A

J
J

JJ

HHHHHH

DS – data store, DSM – data store of messages, FEG – service adapter, A – application, P – portal, PM – process manager,
C - connector, HCS – head of composite service

Figure 6. Structure of SOA with architecture services

4.3. Architecture Services in Action

The architecture services discussed above enable us to
design flexible service-oriented system having flexible and
open logical structure that can be easily changed. Example
of such a service-oriented system is in Figure 6.

The virtual p2p network in Figure 6 has two subnetwork-
s. One comprises a service providing business operations
for the architecture service Process Manager (PM). The sec-
ond is a composite service headed by a Head of Composite
Service (HCS).

Note, however, that the services providing operations for
the business process controlled by PM can provide capabil-
ities for other processes if appropriate.

Figure 6 shows how flexible and powerful is the service-
oriented paradigm. It can be, however, dangerous if not
used with caution.

A very important SOA pattern is a proper use of univer-
sal middleware components and the proper use of architec-
ture services. ESB is not broadly used in unions. The rea-
sons are not clear yet. Note, however, that ESB can imply
Vendor Lock-In antipattern.

4.4. Fuzzy Tiers in Confederations

If we summarize the above discussion, we can distin-
guish the following tiers in a confederation: basic message-
transport middleware, partly programmable middleware
(typically Enterprise Service Bus – ESB), middleware en-

data store
¡

¡
¡

¡

@
@

@
@

user interface

orchestration

composed application

application

extended middleware

inner

user

interface

ESB
middleware

Figure 7. Tier view of a confederation

hancements (FEG, some Data store types, etc.), application
services, composite services, orchestration, and system por-
tal(s). Orthogonal to these tiers are local user interfaces. So
the system has the structure from Figures 7 and 8. Problem
is that there are cases where the services provide function-
s for more than one layer (tier) – for example data stores.
These services can serve as a middleware enhancement as
well as a process manager. It is a service orchestration tool.
GPP can serve as a service orchestration tool as well as a
service composition tool.

55

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



system user interface UI

application services DS, HCS, PM

middleware extension (FEG, DSM)

ESB (optional)

basic middleware

Local

UI

Figure 8. Tiers in SOA

4.5. Screen and Simulation Prototypes

Native service-oriented development process is the in-
cremental one. An issue is how to simulate a service S not
implemented yet. As it suffices to simulate the communica-
tion with S, we use the following procedure:

1. The middleware or a GPP can change the destina-
tion of (redirect) some messages. The messages being
preferably in XML format to be sent to S are redirect-
ed to user interface UI (portal).

2. UI responses like the S would have responded.

This solution can be generalized to test response times in
service-oriented process control system (real-time control
systems). In this case the messages are sent to a Simulator.
The Simulator can be either a hardware device or a simu-
lator program written in a simulation language or in a lan-
guage similar to C. The simulation program uses a Calendar
of Coming Events (CCE) known from discrete event simu-
lation languages. CCE can be programmed in e.g., C++ or
even a discrete simulation language can be used. Details
can be found e.g., in [19].

The implementation of the screen prototype is substan-
tially simplified if the interfaces of the application services
are user-oriented and uses XML documents (see SOAP-D
above).

4.6. Crucial Vision and Specification Pat-
tern

We understand SOA as a virtual peer-to-peer network
of software components behaving in some sense like real-
world services. The peers are called (software) services.
If there is no danger of misunderstanding, the term service
will mean software service. This broad definition cover-
s quite different systems, the main goals/visions of which
can be quite different. Different visions then imply diffe-
rent marketing and technical (engineering) properties, the
system of patterns inclusive.

Every SOA system4 (SOA in the above sense) consists
of (compare [20]):

• application services providing basic ”atomic” business
capabilities, atomic means a software system provid-
ing ”basic” business capabilities viewed as a black
box. An example of an application system is an (en-
capsulated) legacy system. Application services are
usually integrated as black boxes. The development
from scratch can be used if necessary or appropriate.

• middleware providing tools for transport of messages
between (i.e., supporting the communication of) the
peers

• architecture services enhancing the capabilities of mid-
dleware. Examples are service adapters and portal-
s. Architecture services are usually developed from
scratch, i.e., they are white boxes.

The properties of all the three tiers substantially depend
on the global system goals. It then implies what patterns are
applicable. Let us give some examples.

1. e-commerce systems. The aim is to support world-
wide business activities. It follows that a world-wide
network must be used to implement the middleware.
It is feasible only if no proprietary standards are used.
The use of architecture services is very limited. Sys-
tems are very open. The use of web services is appro-
priate.

2. Process control systems. The main aim is very secure
software developed almost entirely from scratch. The
number of services is limited. The details of commu-
nication protocols can be agreed, the architecture ser-
vices are usually not used. An exception is the use of
portals (client/user tier). The service interfaces can be
fine-grained and IT developer oriented (e.g., using R-
PC philosophy).

3. System supporting large (partly) decentralized orga-
nizations (e.g., e-government, municipal authorities,
health institutions and networks, etc.) and small to
medium enterprises. The main aim is the reduction
of the maintenance of such systems and integration
of autonomous. The system consists of large appli-
cation software services. It is preferable to use archi-
tecture services enabling a seamless integration of the
services supporting organization units or the integra-
tion of third-party products. Some parts of such sys-
tems can support e-commerce. These subsystems then
have the properties specified in the point 1. Such sys-
tems are quite frequent and are in fact the engine of
global economy.

4SOA system is an abbreviation for ”system having SOA”.

56

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



4. Portal SOA. The communication of services must be
controlled or supervised by users. In this case it can be
good to generate service requests by portal The capa-
bilities of middleware are used not too much. Service
adapters (front-end gates, FEG) can be useful. Such
an arrangement can be used for the implementation of
agile business processes (see [28] and below). The cru-
cial pattern is to start with the decision what variant of
SOA is to be used and what application services and
architecture services should be used. For the reason-
s discussed below the software artifacts implementing
application services are as a rule large and the service
interfaces are coarse-grained.

4.7. Further Notes on the Choice of a Pro-
per SOA Type

The crucial decision is the proper selection of optimal
SOA type. We often have no choice. We must use different
solutions for large critical systems than for an information
systems supporting a small enterprise.

On the other hand the properties of SOA systems sup-
porting business in a small enterprise and in a very large
one must be surprisingly similar although due different rea-
sons:

SME have limited resources, so it must (re)use legacy
systems as much as possible. The functions of services
must be user-oriented to be used properly as there are few,
if any, available IT experts able to understand user need-
s. User-oriented interfaces are necessary for agile business
processes. They are welcome if the responsibility of busi-
ness process owners for their processes is required.

Large enterprises have more resources but large changes
can be too time consuming and implying too high burden on
end users. Agility of processes is desirable and responsibili-
ty are needed. User-oriented interfaces support information
hiding in the sense of software engineering. It is good for
in- and out-sourcing.

We conclude that the proper detection of the SOA type is
crucial architectural and requirement pattern. It is crucial in
the sense that not applying it implies fatal antipattern. Note
that in business the unions are often the only possibility.

5. Conclusion

The most important property of SOA is that it is a vir-
tual peer-to-peer architecture. It is a quite broad definition,
broader than all the SOA variants defined in standards by
e.g., OASIS and W3 Consortium. It includes also quite dy-
namic structures not having all the properties required by
the standrads. For example, it allows to integrate batch sys-
tems, web services (either complying or not to the W3C
web services standards), and other systems not satisfying

the requirements of the standards. Too strict definitions of
SOA and software services could be the reasons of partial
dissatisfication with SOA observed in the last year.

We have shown that we can adapt useful SOA solution
not fulfilling the requirements of complex definition typical
for many SOA-oriented standards. Such solutions can suc-
cessfully support the development of information systems
supporting ERP of small or middle-sized enterprises. We
can even apply solutions not leading to pure peer-to-peer
networks. We can use tools like MQ by IBM or solutions
offered by operating systems like named pipes. It is a big
promise and challenge that is often missed.

We require only that all the services (peers) of a SOA
have structurally similar properties. The overall logical
structure of SOA is an implicit consequence of the inner
functionality of the particular services and their communi-
cation rules in the way discussed in this paper. We believe
that the importance of this almost obvious property is sig-
nificantly underestimated and often not taken into account
at all.

It is still open what further architecture services should
be invented and used.

SOA could be useful in business only if the user involve-
ment is taken into account during development and allowed
during use of the system. It implies the use of user-oriented
interfaces of services and application of certain features of
agile development. User involvement and ROI imply that
the main SOA development and even specification patterns
in business should be the integration of legacy systems.

If we look into the history, we see that the problem of
year 2000 (Y2K – problems with changes in immense num-
ber of COBOL programs necessary due to century change)
was the consequence of the use of legacy systems written in
COBOL and used for decades with almost no maintenance.
It caused the problem that there were no COBOL program-
mers able to make the changes. It is desirable to develop
systems needing almost no maintenance. The use of legacy
systems is the way to the true reusability (substantial than
in the object-oriented environment – compare [10]). It is
difficult to assume that the modern software should not use
legacy services requiring almost no maintenance. SOA en-
ables it.

The vendors must, however, adapt their marketing strate-
gies to the challenges of SOA revolution. Users must devel-
op new skills and develop new business processes able to
benefit from the power of the service-oriented paradigm.

The main contributions of the paper are the following:

1. It is shown that it is good to study SOA variants used
especially in small firms and called confederations and
unions.

2. The criteria for the selection of the variants are speci-
fied.

57

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



3. The detection of the dependencies among patterns
used for the development of confederations and union-
s.

4. Analysis of the importance of user-oriented service in-
terfaces and proposal how to implement them.

5. Powerful system development prototyping.

6. Concept of services and design of the most important
ones.

7. The development of the concept of generalized Petri
place and treatment of the architecture service as in-
stances of the generalized Petri places.

Acknowledgement

This research was partially supported by the Program
”Information Society” under project 1ET100300517 and
by the Grant Agency of Czech Republic under project
201/09/0983.

References

[1] J. Král and M. Žemlička. Crucial patterns in service-oriented
architecture. In Proceedings of ICDT 2007 Conference,
page 24, Los Alamitos, CA, USA, 2007. IEEE CS Press.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. K-
lein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana. Specification: Business
process execution language for web services version 1.1,
2003. http://www-106.ibm.com/developerworks/library/ws-
bpel/ 2009-05-14.

[3] J. Ang, L. Cherbakov, and M. Ibrahim. SOA antipat-
terns, Nov. 2005. http://www-128.ibm.com/developerworks
/webservices/library/ws-antipatterns/. 2009-05-14.

[4] W. J. Brown, R. C. Malveau, H. W. S. McCormick, III, and
T. J. Mowbray. AntiPatterns: Refactoring Software, Archi-
tectures, and Projects in Crisis. John Wiley & Sons, New
York, 1998.

[5] D. A. Chappell. Enterprise Service Bus. O’Reilly, 2004.
[6] F. Cohen. Discover SOAP encoding’s impact on web ser-

vice performance. developerWorks, Mar. 2003. http://www-
106.ibm.com/developerworks/library/ws-soapenc/ 2009-05-
15.

[7] J. Dyché. The CRM Handbook: A Business Guide to Cus-
tomer Relationship Management. Addison Wesley Profes-
sional, Boston, 2002.

[8] T. Erl. Service-Oriented Architecture – A field Guide to In-
tegrating XML and Web Services. Prentice Hall, 2004.

[9] T. Erl. SOA principles of Service Design. Prentice Hall,
2008.

[10] L. Finch. So much OO, so little reuse. Dr. Dobb’s Journal,
May 1998.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, MA, 1993.

[12] Gartner Inc. Gartner says the number of organizations plan-
ning to adopt SOA for the first time is falling dramatically,
Nov. 2008. http://www.gartner.com/it/page.jsp?id=790717
2009-05-15.

[13] IDS Scheer. Aris process platform.
[14] International Standards Organization. ISO/IEC 20000-

1:2005: Information technology – service management –
part 1: Specification, 2005.

[15] International Standards Organization. ISO/IEC 20000-
2:2005: Information technology – service management –
part 2: Code of practice, 2005.

[16] S. Jones. SOA anti-patterns, 2006. http://www.infoq.com
/articles/SOA-anti-patterns 2009-05-14.

[17] J. Král and M. Žemlička. Electronic government and soft-
ware confederations. In A. M. Tjoa and R. R. Wagner,
editors, Twelfth International Workshop on Database and
Experts System Application, pages 125–130, Los Alamitos,
CA, USA, 2001. IEEE Computer Society.

[18] J. Král and M. Žemlička. Software confederations and al-
liances. In CAiSE’03 Forum: Information Systems for a
Connected Society, Maribor, Slovenia, 2003. University of
Maribor Press.

[19] J. Král and M. Žemlička. Service orientation and the quality
indicators for software services. In R. Trappl, editor, Cy-
bernetics and Systems, volume 2, pages 434–439, Vienna,
Austria, 2004. Austrian Society for Cybernetic Studies.

[20] J. Král and M. Žemlička. Implementation of business pro-
cesses in service-oriented systems. In Proceedings of 2005
IEEE International Conference on Services Computing, vol-
ume II, pages 115–122, Los Alamitos, CA, USA, 2005.
IEEE Computer Society.

[21] J. Král, M. Žemlička, and M. Kopecký. Software confedera-
tions – an architecture for agile development in the large. In
P. Dini, editor, International Conference on Software Engi-
neering Advances (ICSEA’06), page 39, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[22] B. Lowson, R. King, and A. Hunter. Quick Response: Man-
aging the Supply Chain to Meet Consumer Demand. John
Wiley & Sons, New York, 1999.

[23] C. M. MacKenzie, K. Laskey, F. McCabe, P. F.
Brown, and R. Metz. Reference model for service-
oriented architecture 1.0, committee specification 1, 19
July 2006, 2006. http://www.oasis-open.org/committees
/download.php/19361/soa-rm-cs.pdf 2009-05-15.

[24] E. A. Marks and M. Bell. Service-Oriented Architecture – A
Planning and Implementation Guide for Business and Tech-
nology. John Wiley & Sons, Hoboken, New Jersey, USA,
2006.

[25] J. McKendrick. Gartner: SOA sinking into trough of dis-
illusionment, Nov. 2008. http://blogs.zdnet.com/service-
oriented/?p=1211 2009-05-15.

[26] J. Nielsen. Usability Engineering. Academic Press, New
York, 1993.

[27] C. A. Petri. Kommunikationen mit automaten (Communi-
cation with automata, in German). Schriften der IIM, (2),
1962.

[28] A. Schatten and J. Schiefer. Agile business process manage-
ment with sense and respond. In S. C. Cheung, Y. Li, K.-M.
Chao, M. Younas, and J.-Y. Chung, editors, ICEBE, pages
319–322. IEEE Computer Society, 2007.

58

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/



[29] D. Sholler. 2008 SOA user survey: Adop-
tion trends and characteristics, Sept. 2008.
http://www.gartner.com/DisplayDocument?id=765720
2009-05-15.

[30] Sonic Software. Enterprise service bus, 2004.
http://www.sonicsoftware.com/products/sonic esb/ 2009-
05-15.

[31] Standish Group. Chaos: A recipe for success, 1999.
[32] UDDI Initiative. Universal definition, discovery, and

integration, version 3, 2002–2003. An industri-
al initiative, http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3 2009-05-15.

[33] W3 Consortium. XSL transformations (XSLT), 2007. W3C
Recommendation. http://www.w3c.org/TR/xslt20 2009-05-
15.

[34] W3 Consortium. Simple object access protocol, 2000. A
proposal of W3C consortium. http://www.w3.org/TR/SOAP
2009-05-15.

[35] W3 Consortium. Web services activity, 2002.
http://www.w3.org/2002/ws/ 2009-05-15.

[36] Workflow Management Coalition. Workflow specification,
2004.

59

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/


