
Anonymous Agents Coordination in Smart Spaces

S. Balandin, I. Oliver, S. Boldyrev
Ubiquities Architectures team, Nokia Research Center

Itämerenkatu 11-13, 00180, Helsinki, Finland
{Sergey.Balandin, Ian.Oliver,
Sergey.Boldyrev}@nokia.com

A. Smirnov, A. Kashevnik, N. Shilov
Computer-Aided Integrated Systems laboratory, SPIIRAS

14-th Liniya 39, 199178, St.-Petersburg, Russia
{smir, alexey, nick}@iias.spb.su

Abstract – Rapid developments of communication, data
processing and storage technologies, and continuing proliferation
of consumer devices that surround user have created an
opportunity for creation of a new generation of services based on
smart spaces concept. The current approach for expanding
mobile devices functionality is integration of new physical
components. But this approach is bounded by the physical device
size limits, dissipation of heat and the limited scalability of user
experience due to small displays and incapability to produce
high-end experience (e.g., audio) to the user. The smart spaces
maximize the user benefits by utilizing capabilities of all
available devices. This leads to a shift in the concept when instead
of putting new functionality into the devices, all consumer
electronics become a building blocks of the common information
and service spaces. The smart spaces also provide another level
of handling the user data. However, development of the smart
spaces where a number of devices can use a shared view of
resources and services is related to a number of problems. One of
such problems is how to resolve possible conflicts arising from
attempts of simultaneous access to the shared information. This
paper describes an approach for coordination of anonymous
agents, which solve this problem for the Smart-M3 smart space.

Keywords: Smart Spaces; Use cases for consumer electronics;
Smart-M3; Agents coordination; Shared information;
Anonymous agents.

I. INTRODUCTION

Modern device usage is moving towards so called “smart
spaces” where a number of devices can use a shared view of
resources and services [1], [2]. Smart spaces can provide
better user experience by allowing the user easily integrate
new devices into personal information infrastructures and
allow seamlessly access all information distributed over the
multi-device system from any of the devices. Examples of
smart spaces can be found in [3], [4], [5]. One of the essential
features assumed by such environment is the information sub-
system that provides permanent robust infrastructure for
storing and retrieving the information of different types from
the multitude of environment participants.

Based on the analysis of earlier studies one can conclude
that development of the Smart Spaces methodologies and
techniques is a key requirement for creating attractive use case
studies and building efficient developer eco-systems in the
future. However, development of robust and efficient Smart
Spaces solution is related to a need of addressing a number of
practical problems. One of the problems to solve is
coordination between the smart space participants, e.g., for

resolving conflicts of simultaneous access to the shared data
resource. To some extend this problem looks similar to the
well known problem addressed in the database management
systems, but after deeper study a lot of key differences could
be identified. In computer science, the Atomicity, Consistency,
Isolation, Durability (ACID) [6] is a set of properties that
guarantee that database transactions are processed reliably.

The database modification procedure must follow the
atomicity states, which implements “all or nothing” principle
and refers to an ability to guarantee that either all of the
transaction tasks are performed or none of them. Each
transaction is said to be “atomic”, when if one part of the
transaction fails, the entire transaction fails and the original
state is preserved.

The consistency property ensures that the database remains
in a consistent state before the start of the transaction and after
its end (whether successful or not). It guaranties that only
valid data could be written to the database. If for some reason,
a transaction that violates the database consistency is executed,
the entire transaction will be rolled back and the database will
be restored to the last consistent state. On the other hand,
every successfully executed transaction takes the database
from one consistent state to another state that is also consistent.

The isolation refers to the requirement that other operations
cannot access or see the data in an intermediate state during
the transaction. This constraint is required to ensure good
performance and guaranty inter-transactions consistency.

The durability is a guarantee that once the user has been
notified about the success of the transaction, this state will
persist. This means that the database must survive system
failures and that the system already has checked the integrity
constraints and won't need to abort the transaction. Many
databases implement durability by writing all transactions into
a transaction log that can be played back to recreate the
system state right before a failure. In this case the new
transaction can only be deemed committed after it is safely
loaded into the log.

The well known and widely used in programming solution
for restricting access to the shared resources is use of
semaphores. The semaphore operations must be atomic, which
means that no process may ever be preempted in the middle of
one of those operations to run another operation on the same
semaphore. There is a number of different implementation of
semaphore principles, starting from a simple protected
variable that locks/unlocks a certain resource and up to

242

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

counting semaphores which are the counters for a set of
available resources, rather than a locked/unlocked flag of a
single resource [7]. The semaphore value is a number of units
of the resource that are free. If there is only one resource, a
"binary semaphore" with values 0 or 1 is used.

Another solution used in concurrent programming is a
monitor. The monitor is an object intended to be used safely
by more than one thread [8]. The defining characteristic of a
monitor is that its methods are executed with mutual exclusion.
So for each point of time, at most one thread may be executing
any of its methods. This mutual exclusion greatly simplifies
reasoning about the implementation of monitors compared to
the code that may be executed in parallel. The monitors also
provide a mechanism for threads to temporarily give up
exclusive access in order to wait for some condition to be met,
and after that regain exclusive access and resuming their task.
Monitors also have a mechanism for signaling to other threads
that such conditions have been met.

However studying of the available solution has discovered
that all of them are not suitable for the anonymous agent
coordination in smart spaces, so the new solution has to be
defined, which had been defined as a main target for this study.
The next section provides an overview of the use case scenario
that has been used as a main reference for studying the
proposed solution. In Section 3 we present basic reference
model of the discussed smart space. The method of resolving
possible conflicts arising from simultaneous access to the
shared information is described in Section 4. The following
Section 5 gives a description of the developed demo prototype
of the proposed solution for the reference use case scenario.
The main results and findings of our study are summarized in
Conclusion section.

II. SMART SPACE USAGE SCENARIO

The reference use case scenario describes a meeting taking
place in a “smart room”, equipped with an intelligent
whiteboard and a projector. The meeting participants have
mobile devices (smartphones, PDAs, laptops, etc.) that store
the appointments of the participants and their personal data,
e.g., contact information, areas of interests, etc. Those meeting
participants that are planning to make presentations have their
presentations available on the mobile devices or accessible via
internet/intranet (most important that the mobile devices
always “know” how to access them).

In extension of the use case scenario defined in the previous
works [9], this scenario is targeted in demonstrating the
coordination function for resolving problems that arise due to
possible simultaneous access to the shared information.

When the meeting participants entering to the room, their
mobile devices discover the available smart space facilities,
e.g., the whiteboard, and engage the handshaking protocol. If a
participant wants to make a presentation, his/her mobile
device is sharing the following information about the user:

name, photo, domain of interests, e-mail, and phone number;
and the presentation information: title, keywords, URI.

It is also necessary to schedule the presentations and create
the meeting agenda. In this scenario the scheduling is done in
the following simple way. There are several time slots
covering whole time of the meeting. When a user comes,
his/her presentation is scheduled into a free time slot. This is
done by updating appropriate information units in the meeting
room smart space, like it is illustrated by Figure 1.

Figure 1. Scheme of scheduling presentations to the available time slots.

But the schedule conflicts can occur if two or more users

simultaneously trying to schedule presentations (within
resource request transmission and processing time delay) to
the same time slot as it is shown in Figure 2.

Figure 2. Possible conflict due to simultaneous access to shared information.

As a result, before the meeting starts the agenda is shown on

the whiteboard including the speakers’ names and presentation
titles. However, the same time slots can be occupied by
different presentations or even some presentations will be lost
from the list. The meeting participants can see the detailed
agenda on the screens of their mobile devices, but agenda

243

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

might look differently for different people. The case can be
even further complicated when some additional services are
implemented, e.g., the presentation keywords could be
translated to the preferred language (using the translator KP,
which is also a part of the smart space), when the preferred
language is taken from the user profile (the translator KP
implements an interface to one of the Internet translation
services). And the result M3 implementation will look like it
is shown in Figure 3, where KP1 is a whiteboard, KP2 is a
projector (PKP), KP3 is a translator and KP4…N are KPs of
users’ mobile devices (UKPs).

Figure 3. Current view of the proposed use case scenario.

Later in the paper we will show how this reference use case

scenario can be implemented using the proposed coordination
solution.

III. SMART SPACE REFERENCE MODEL

The general reference model of the discussed smart space
could be illustrated by Figure 4.

Figure 4. The reference model of discussed smart space.

Where:
Nodes - are logical elements capable to perform certain

actions. One node can be distributed over several physical
devices and several nodes can be located at the same device.

Information storages - also are logical units that store users
information and can be distributed over several devices and
several information storages can be located on at the same
device.

I/F is an interface - that provides information exchange
between the nodes and information storages. The interface is
considered to be fully reliable and does not create additional
delay and energy overheads. In this reference model the
interface performs a technical function of connecting nodes to
information storages. It does not implement logical functions
and does not affect information transfer costs. For this reason
the interface is not considered in the mathematical model.

Information is described by information units (IU) -
represented as logical expressions: “subject”-“predicate”-
“object” = [true | false], where subject is an actor (human or
node that performs certain actions), predicate is an action that
is being performed or supposed to be performed (e.g.,
“playing music”) and object is what the action is performed
with (e.g., a song being played). The nodes have predefined
behavior rules defining their actions in line with the received
information units.

From the implementation point of view the smart space can
be illustrated as is shown in Figure 5.

Figure 5. The Smart Space from implementation point of view.

The smart space itself consists of one or several Semantic

Information Brokers (SIBs). The rules of information usage
(applications) are implemented in knowledge processors (KP)
connected to the smart space via SIBs. The SIBs are
responsible for storing smart space information and its sharing:
as soon as an information unit becomes available for the SIB,
it becomes available for every KP. The knowledge processors
are responsible for information processing.

IV. COORDINATION FOR CONFLICT RESOLUTION

So let’s assume that we have a space that is used by 2 users.
The users interact with the space by using their standard
Knowledge Processors (KP), e.g., “u1” and “u2”
correspondingly. If the “u1” needs to occupy certain resource
R1, it currently only has to check that the statement: {“R1”,
“is_occupied_by”, None} is valid, and if it is true then the KP
“u1” can submit the triple: {“R1”, “is_occupied_by”, “u1”} to
occupy it.

However, this works fine as long as we can guaranty that u1
and u2 will not try to simultaneously get access to the same
resource, where term simultaneously is defined by the time
interval from the moment when u1 has executed the first triple

244

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

and till the moment when it executes the second triple. But if
during this time interval the node u2 will try to do the same, it
also will get information that R1 can be occupied, which will
result in resource access collision, as both nodes will have
logical permission to occupy resource R1. As a consequence
handling of the second triple becomes very complex procedure
and independently of what tricks and fixes we will introduce
at this stage with high probability it will lead to the logical
errors and inconsistencies.

So in order to overcome the described above problem we
introduce a special type of KP – the Coordinator KP. The
Coordination KP acts as a kind of resource access manager.
However, unlike classical resource manager solutions, which
assume presence of a centralized application, to which all
other application should send their resource requests, the
functionality of Coordination KP is done based on principles
described in the previous chapter. Most important that other
applications do not need to know about presence of the
Coordination KP in the space.

The coordination is performed seamlessly, automatically
and anonymously by introducing a special set of RDF triples
for handling access to the critical resources. Also the
Coordination KP is subscribed to special triples that monitor
all “resource access requests” and handles these requests on
behalf of SIB, so that other KPs will not notice it. Below is the
explanation how it works:

The Coordinator KP is subscribed to the information unit
(RDF triple): {None, “check-insert”, None}, where “None”
logically means “any”.

As a result, with the Coordinator KP the above scenario is
changed as follows: the KP “u1” inserts the following rule into
the smart space: {“R1, is_occupied_by, u1”, “check-insert”,
“None”}, and subscribes to {“R1, is_occupied_by, u1”,
“check-insert-result”, None}. The Coordinator KP checks the
existence of the triple: {“R1”, “is_occupied_by”, None}. If it
exists, the Coordinator KP inserts the triple {“R1,
is_occupied_by, u1”, “check-insert-result”, “failure”}, the KP
“u1” receives the result “failure” since it is subscribed. If the
triple does not exist the Coordinator KP inserts the triple
{“R1”, “is_occupied_by”, “u1”} and the triple: {“R1,
is_occupied_by, u1”, “check-insert-result”, “success”}. The
KP “u1” receives the result “success” since it is subscribed.

In case of simultaneous insert of rules by two KPs (u1 and
u2): (“R1, is_occupied_by, u1”, “check-insert”, “None”) and
(“R1, is_occupied_by, u2”, “check-insert”, “None”), the
Coordinator KP inserts the rule for the first KP and doesn’t
insert it for the second one. After that the KP u1 will occupy
the resource R1 and the KP u2 will have to try to occupy some
other resource, which can be offered to it by the Coordinator
KP or defined internally by the KP u2. The result M3 smart
space architecture with the Coordinator KP is presented in
Figure 6, where the dotted lines show the information flow
coming via the Coordinator KP.

Figure 6. Organization of the information flow via Coordinator KP.

Further in-deep description of how the proposed solution

can be implemented and used for the reference use scenario
and the role of the Coordinator knowledge processor are
discussed in the next chapter. Please also note that the same
principle of coordination can be implemented completely
inside the SIB.

V. IMPLEMENTATION OF THE SCENARIO

This scenario has been implemented using 6 personal
computers (PC controlling the whiteboard, PC controlling the
projector, PC controlling the Coordinator, PC controlling the
Translator) and one Nokia N810 Internet Tablet emulating the
user’s mobile device. The other two user mobile devices were
emulated on PCs. A proprietary M3/Piglet toolkit has been
used for the prototype development. The knowledge
processors were implemented using Python programming
language.

Figures 7–10 are the screenshots for different knowledge
processors at different stages of the scenario, e.g., Figure 7
shows work of the KP installed on the MAEMO device of the
first meeting participant, which presentation was assigned to
the first time slot. Figure 8 reflects work of the KP of the third
meeting participant. The presentation was assigned to the third
time slot. One can also see the translations of the presentation
keywords, which were translated into Finnish language. The
execution log of the Coordinator KP is shown in Figure 9. It
lets the UKP of the first participant to occupy the time slot TS
1, the second participant to occupy the time slot TS 2, and the
third participant to occupy the time slot TS 3.

The result output for the whiteboard KP is shown in Figure
10. One can see how the agenda is built based on users
entering the room and occupying presentation time slots. Then,
during the meeting the current presentation is highlighted
(with three asterisks).

245

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Figure 7. Screenshot of UKP running on Nokia N810 MAEMO device.

Figure 8. The status window of KP on PC of the third meeting participant.

Figure 9. Log-output window of the Coordinator knowledge processor.

Figure 10. Log-output window of the Whiteboard knowledge processor.

As a result, nowadays we have full implementation for all

of the above described elements that allow performing
anonymous agents’ coordination in Smart Spaces.

VI. CONCLUSIONS

The paper describes a solution for anonymous coordination
of the agents, which allows addressing and solving a huge set

of problems arising from a possibility of simultaneous access
to the shared information.

The existing mechanisms for solving similar problems, such
as transactions (used in database management systems),
semaphores and monitors (used in programming) could not be
applied directly. As a result an additional coordinator
knowledge processor implementing the required functionality
was introduced and described in the paper.

The paper gives detailed description of this knowledge
processor work principles, which are also illustrated using an
example implementation of the proposed principle for the
reference case study scenario.

ACKNOWLEDGMENT

This paper is done within scope of the joint project
between St. Petersburg Institute for Informatics and
Automation of the Russian Academy of Sciences (SPIIRAS)
and Nokia Research Center. Some of the results are due to
research carried out as a part of the project funded by grants
09-07-00436-а and 08-07-00264-a of the Russian
Foundation for Basic Research, and project # 213 of the
research program “Intelligent information technologies,
mathematical modelling, system analysis and automation” of
the Russian Academy of Sciences. The authors would like to
thanks Nokia, Russian Foundation for Basic Research and
Russian Academy of Sciences for the provided financial
support.

REFERENCES

[1] Oliver, I. and Honkola, J. Personal Semantic Web Through A Space
Based Computing Environment, Middleware for Semantic Web 08,
proceedings of ICSC'08, 2008.

[2] Oliver, I., Honkola, J., and Ziegler, J. Dynamic, Localised Space Based
Semantic Webs, WWW/Internet Conference, Freiburg, Germany, 2008.

[3] Oliver, I. Design and Validation of a Distributed Computation
Environment for Mobile Devices, proceedings of European Simulation
Multiconference: Modelling and Simulation, 2007.

[4] Oliver, I., Nuutila, E., and Seppo, T. Context gathering in meetings:
Business processes meet the Agents and the Semantic Web, proceedings
of the 4th International Workshop on Technologies for Context-Aware
Business Process Management, 2009.

[5] Jantunen, J., Oliver, I., Boldyrev, S., and Honkola, J. Agent/Space-Based
Computing and RF memory Tag Interaction, proceedings of the 3rd
International Workshop on RFID Technology - Concepts, Applications,
Challenges, 2009.

[6] Wikipedia: http://wikipedia.org/wiki/ACID. Retrieved: 16.7.2010.
[7] Dijkstra, E., Cooperating Sequential Processes, Technical Report EWD-

123, Technological University, Eindhoven, Netherlands, 1965.
[8] Hoare, C. Monitors: an operating system structuring concept,

Communications of the ACM, Vol. 17 No. 10, pp. 549–557, 1974.
[9] Oliver, I., Nuutila, E., and Törma, S. Context gathering in meetings:

Business processes meet the Agents and the Semantic Web, proceedings
of the 4th International Workshop on Technologies for Context-Aware
Business Process Management (TCoB 2009), 2009.

246

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

