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Abstract— Wireless Sensor Networks are popular and proven
useful in various service areas. Energy optimization,
processing optimization and storage optimization are the main
challenges. While there is a debate for complete or partial data
extraction from sensors, having special data process functions
and operation primitives proves useful for sensor operating
systems. To deal with robustness and reliability, data
processing at the network/sensor level satisfies some of the
reliability requirements, especially when communications are
not operational. There are situations where data reduction is
an alternative when storage is no longer available and data is
accumulating, especially when some sensor links are not
operational. Using predictions and optimized parameters to
prioritize data reduction is a solution. In this article, we define
special heuristics for data reduction using a set of data
processing primitives and special data parameters. We apply
these heuristics via a methodology that enables various factors,
both internal and external to the sensor, to influence the data
aging process and the data reduction operations.

Keywords – sensor, data management, data sensor storage,
data priority optimized parameters, prediction models.

I. INTRODUCTION

Requirements posed by unattended data collections in
remote areas become very challenging for traditional
network deployments. The main problem is raised by the fact
that users might look for full collected data, while effective
business models take into consideration a small fraction of it.

Most of the WSNs (Wireless Sensor Networks) also
perform the essential functions for data processing; one of
the most important, in special cases of uncontrolled link
availability, is data reduction under several the constraints
driven by the nature of the data, the relevance of the data, the
data dependency, and the business model using such data. A
sensor on a node captures a time series representing the
evolution of a sensed physical variable over space and time.
Reducing the amount of data sent throughout the network is
a key target for long-term, unattended network sensors. A
second target, equally relevant, is defined by unattended
networks with unreliable links. In this case, gathered data
may be rapidly aging and could exceed the storage
availability on a given node. Data reduction mechanisms are
used to partially handle these cases [1][2][15].

Unnecessary communication as well as appropriate data
reduction techniques can be modeled in the case of physical
phenomena with a pre-defined, application-dependent

accuracy [15]. If an accepted measurement error is bounded
as [-e, +e], only values exceeding the predicted one by +/-e
will be considered. Similarly, if the errors of the gathered
values are within the bonded interval, data reduction can be
further simplified in the context of repeated equal
measurements.

In this paper, we present a series of heuristics on
predictions used to summarize collected data. These
heuristics are based on past experience in parameter variation
and on the intended use of the data. At the two extremes of
data usage are refinement and discovery. Data refinement
approaches collection from a perspective of pure prediction
where more data is collected around already confirmed
scenarios. Data discovery on the other hand tends to ignore
known data value patterns by putting more weight on
unpredictable corner case scenarios. The difference between
the two situations determines what reduction rules are used
and how data importance is computed.

The rest of the paper has the following flow. Section 2
introduces the state of the art concerning data management
and predictions in sensor networks. Section 3 revisits the
model used to reduce collected data. Section 4 includes
heuristics for prediction on data processing. Section 5
concludes and identifies future work.

II. RELATED WORK

In this section, we summarize a data processing model
introduced in [1][2] and prediction approaches for data
reduction [3].

In the past, the database community pushed different data
reduction operators, e.g., aggregation and reduction, with no
enough flexibility to handle extracting complete raw sensor
readings (i.e., using “SELECT *” queries).

There are two specific needs to perform in-network data
processing, i.e., (i) to significantly reduce communications
costs (energy), and (ii) to deal with link-down situations. In-
network aggregation was proposed in [5][6], while data
reduction via wavelets or distributed regression in [7][8]. All
these techniques do not provide the desired data granularity,
as requested by network users.

Managing data in a storage-centric approach was studied
in different approaches, based on a reliable connection [11],
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additional buffering [9], or collaborative framework [10].
Details on collaborative storage are provided in [2].

OS primitives acting on recurring and non-recurring data
collection have been proposed in [1]. Mainly, compression,
thinning, sparsing, grain coursing, and range representation
were used to deal with data aging in a pessimistic and
optimistic approach. As a note, data deduplication was not
considered in the above model. To optimize data reduction,
concepts of data units, data importance, and compensation
factors were introduced in [2]. Mainly, measurements are
partitioned into contiguous intervals; data importance relates
to the business semantics, while the compensation factor
affects the importance in business computation of a given
data unit after it has undergone some type of data reduction.
The model considers that there is data that cannot be reduced
in any circumstance. A mechanism for data dependency
between different data units was presented in [2]. Further
division of the data units (leading to more flexibility) was not
considered at this point. Associated with the new concepts,
the following functions were introduced: interval production
function (only for recurring data), default compensation
function, data importance function, and data reduction
function. Solutions based on data redundancy (leading to
more robust deployments and measurements) were not
considered.

A data reduction specification use case considering data
dependency across data units was presented in [2].
Consequently, appropriate values for data importance can be
derived considering the constraints on the data importance
computation as pertaining to two categories: (i) internal
constraints and (ii) external constraints. External constraints
are caused by factors over which input data has no effect.
Such factors are data age and inherent interest in the data
depending on the exact purpose of the data collection.
Internal constraints represent inter- and intra-data
dependencies.

A prediction model for approximate data collection is
presented in [3]. The techniques are based on probabilistic
models (BBQ system, [12]). We apply the prediction models
to the framework proposed in [1][2] considering also the
approximation scheme providing data compression and
prediction [13] and predictive models from [14].

In this paper, we consider the PDR components
introduced in [2] (Figure 1) to derive appropriate data
reduction considering known correlations (spatial, temporal,
etc.) and prediction models.

III. BASIC MODEL FOR OPTIMIZATION

We consider a simplified sensor model introduced in [2]
with the following modules:

 Storage Engine (SE)

The SE is concerned with writing data to the node’s
storage. It makes no judgment as to the relevance or
importance of the data itself. It simply follows data
collection rules established by the business case and sends
them to the node’s permanent storage. At this time, there
may enough space on the storage device in which case the
data is simply recorded, or there isn’t enough space at which
point some data reduction occurs: either on the incoming
data, existing data, or both

 PDR Engine (PDRE)

The PDRE contains all the data reduction rules, which
are a direct reflection of the business case. They are not
constantly applied, but at specific times and with specific
space recovery objectives as dictated by the PDR Controller

 PDR Controller (PDRC)

The controller is responsible for monitoring the state of
the available storage, and, if dictated by the business case,
triggers the PDRE to perform data reduction operations.
Deciding what data to target and how much to reduce it is
again subject to the business requirements.

Figure 1 shows the interaction of the components shown
above: green represents data flow and red represents control
paths.

Figure 1. Interaction of main PDR components [2]

Two collection modes are allowed, i.e., Recurring Data
Instance (RDI) that represents a series of measurements
taken at specified intervals, starting at a given time and
ending at a given time, and (ii) Non-Recurring Data
Instance (NRDI), representing a single measurement of a
parameter at a specific time.

We introduced the following primitive operations that are
the basic actions that the PDRE employs to actually decrease
the amount of data. Here is a quick review of what they are
and how they operate:

 compression: a simple data compression algorithm is
applied which reduces the amount of space used, but any

Storage Engine

Data Storage

PDR Controller

PDR Engine
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further data reduction cannot be applied to the
compressed data

 thinning: in the case of an RDI, a section of data
corresponding to a time interval is discarded

 sparsing: in the case of an RDI, for a specific interval,
the data sampling rate is decreased and excess data is
discarded

 grain coarsing: the resolution/precision of a data
instance is decreased

 range representation: an entire interval of an RDI is
replaced by a tuple reflecting on the data that was
discarded: minimum value, maximum value, and the
average during that interval form the tuple.

To include a complete characterization of the data
reduction mechanisms, a few concepts were introduced:

 Data Units: Data collections can be both recurring and
non recurring. The non recurring collections generate
data that is stand alone and considered atomic. It makes
sense to consider a non recurring data record as a single
data unit (DU). Recurring data collections have several
values over a potentially long period of time.

 Data Importance: Data importance, denoted as I, is a
value that numerically reflects the relevance of a data
unit for the business case.

 Compensation Factor: The compensation factor, K, is
an importance modifier that reflects the data reductions
that have already been performed on the specific data
unit.

Data importance depends on the business model. In this
section, we identify input factors that can be used to establish
the importance of a data unit, such as age/collection time,
self values, other data units of same instance, and other data
instances [2].

The following fucntions are needed to handle the newly
introduced concepts for RDI and NRDI

 interval production function (for RDI only)
 default compensation factor
 data importance function
 data reduction operation function

In the next section, we present different predictive
heuristics for data processing, using the model exposed in
Section III.

IV. OPTIMIZATION AND PREDICTION
HEURISTICS

Let us assume a deployment of sensors that have the
ability to measure the UV Index. The UV Index is a
measurement of ultraviolet rays intensity and has a value
between 1(low) and 11+(extremely high). The value of this
index is collected for the purpose of gaining precise insight
into variations during the course of the year.

Expected results are already available:

Figure 2. Data UV Index for New York, 2009 [16]

Figure 2 presents the UV Index reading for New York
during 2009. We observe that the UV Index has lower values
during winter and higher values during summer. There is a
natural difference that is expected during a 24 hour cycle, but
there are also less obvious dips in the UV Index values. The
probable cause for this would be overcast conditions. This
naturally interferes with the data collection and is of no
interest.

On the other hand, let’s consider the example of CO2

concentration collection in an isolated forest area on a
somewhat active volcano. The point of this is not to refine
data, but to monitor CO2 and possibly offer an explanation to
unexpected values. CO2 increase could be caused by a fire in
the area or volcanic activity. In such a case, correlations are
to be made with seismic sensors, and with temperature and
visibility sensors.

In Figure 3 we have a section of interest in a deployment
where the objective is not data refinement, but data
discovery. We seek correlation between different parameters
and possibly seek causality relationships.
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Figure 3. Parameter correlation

The cases presented in Figure 2 and Figure 3 are opposite
ends of a spectrum of cases. In Figure 2 we seek to confirm
and gain better resolution with respect to expected parameter
values, while in Figure 3 we seek to explain observed but not
expected parameter values. These cases require different
approaches with respect to data reduction.

The data reduction rules that are deployed need to give to
the PDR Engine (Figure 1) possibilities to select a reduction
approach. Each possibility has different expected outcomes
with respect to freed space, effect on the compensation
factor, and amount of data importance parameters to be re-
calculated.

Figure 4. Selecting reduction operation

To investigate optimization of data reduction we define
an optimization function as follows:

{fi} = {reduction option 1, . . , reduction option n}

{gj} = {interval production function, compensation
factor, data importance, data reduction}

F (x, y) = {fi x gj | constraints}, (1)

where

constraints represent the dependability relations among
correlated data.

constraints ::= {context | bounding}

We define the context constraints as follows; let x and y
be two variable to gather the values for, and “oo” an operator
that is defined by

oo = {same, opposite, nil} with the following semantic

x same y = when the collection of x is more frequent, then
the collection of y should increase too

x opposite y = when the collection of x is more frequent,
then the collection of y should decrease

x nil y = collection of x and y are independent

We define the bounding constraints as following:

{x | [-e, +e], with e in R+} p(x/e, y/e’) (2)
{y | [-e’, +e’], with e’ in R+},

with the semantic: a computation F is not necessary when
x’s values hold in the bound interval defined by +/-e with the
prediction that y’s values are bound by +/-e’.

p(x/e, y/e’) is the probability that the y’s variations hold
in the given interval when x’s variations are in a given
interval; p(x/e, y/e’) is derived from the prediction model.

The optimization function triggers the computation of K
according to the primitive operations applied for data
reduction assuming the prediction model holds. This is an
important decision for saving computation power and
energy.

These formalisms are used to specify the behavior of the
PDR controller mentioned in Figure 1.

We can improve the presented data reduction function
considering an average model, i.e., an average ~X of {xi} in
the given approximation bounds +/-e predicts a ~Y of {yi}
in the +/-e’ bounding interval. Computation of ~X and ~Y
using in-network data aggregation reduces the consumed
computational resources for F, with a reasonable
approximation.

Other parameters have to be considered in the data
reduction, based on the fact that:

- Some sensing features exhibit typical correlations, e.g.,
correlation preciseness is inversely proportional with the
distance between sensors (temperature)

- The data units can be smaller, especially when working
with average values.

CO2 %

seismic
activity

time

time

PDR
Engine

reduction option 1

reduction option 2

reduction option 3

reduction option 4

reduction option nconstraints

outcome 1

outcome 2

outcome 3

outcome 4

outcome 5
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Extensive simulations for identifying correlations
patterns are needed. Most of the time, in sensor network, and
approximate answer is more useful; in special applications,
extensive experiments should be conducted to evaluate the
performance of data reduction under error threshold define
by the bounding constraints. Considering the datasets
mentioned in [15], we conclude that a reasonable
identification of a correlation pattern requires a sensing
period of about one year with a number of samples
exceeding 7-8 thousands. For some applications, a tolerated
prediction error can relax the bounded interval [-e, +e].

V. CONCLUSION AND FUTURE WORK

Data reduction in unattended sensor networks with
intermittent or non reliable connections is an important
computation when considering data storage and data aging.

In this paper, we proposed an optimization function using
prediction to map the use of data reduction primitives,
optimization parameters (K, I) and dependency constraints
(contextual or bounding). The model considers a probability
that a variation of a variable is correlated with a variation of
another variable. A variant of average values can also be
considered.

A simple use case had shown the nature of dependencies
and computation challenges for two correlated readings.

Accurate evaluation of the model requires extensive
simulations, where combinations of the primitives and data
parameters are combined with various type of constraints.
We estimate that finding some correlation patterns will favor
the use of average values, leading to a reasonable
computation effort.
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