UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Securing Off-Card Contract-Policy Matching in Security-By-Contract for
Multi-Application Smart Cards

Nicola Dragoni, Eduardo Lostal, Davide Papini
DTU Informatics
Technical University of Denmark
{ndra,dpap} @imm.dtu.dk
eduardolostal @ gmail.com

Abstract—The Security-by-Contract (SxC) framework has
recently been proposed to support applications’ evolution in
multi-application smart cards. The key idea is based on the
notion of contract, a specification of the security behavior of
an application that must be compliant with the security policy
of a smart card. In this paper we address one of the key features
needed to apply the SxC idea to a resource limited device such
as a smart card, namely the outsourcing of the contract-policy
matching to a Trusted Third Party. The design of the overall
system as well as a first implemented prototype are presented.

Keywords- Multi-Application Smart Cards; Security; Con-
tract Matching.

I. INTRODUCTION

Java card technology has progressed at the point of
allowing several Web applications to run on a smart card
and to dynamically load and remove applications during
the card’s active life!. With the advent of these new Web
enabled multi-application smart cards the industry potential
is huge. However, concrete deployment of multi-application
smart cards have remained extremely rare. One reason is
the lack of solutions to an old problem: the control of
interactions among applications. Indeed, the business model
of the asynchronous download and update of applications by
different parties requires the control of interactions among
possible applications after the card has been fielded. In
other words, what is missing is a quick way to deploy new
applications on the smart card once it is in the field, so that
applications are owned and asynchronously controlled by
different stakeholders. In particular, owners of different ap-
plications (banks, airline companies, etc.) would like to make
sure their applications cannot be accessed by new (bad)
applications added after theirs, or that their applications will
interact only with the ones of some business partners.

To date, current security models and techniques for smart
cards (namely, permissions and firewall) do not support any
type of applications’ evolution. Smart card developers have
to prove that all the changes that are possible to apply
to the card are security-free, so that their formal proof of
compliance with Common Criteria is still valid and they do

Uhttp://java.sun.com/javacard/specs.html

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Javier Fabra

Department of Computer Science and Systems Engineering

University of Zaragoza
Jjfabra@unizar.es

not need to obtain a new certificate. The result is that there
are essentially no multi-application smart cards, though the
technology already supports them (Java Card and Global
Platform specifications).

The Security-by-Contract (5xC) framework has recently
been proposed to address this challenge [1]. The approach
was built upon the notion of Model Carrying Code (MCC)
[2] and successfully developed for mobile code ([3], [4] to
mention only a few). The overall idea is based on the notion
of contract, that is a specification of the security behavior
of an application that must be compliant with the security
policy of the hosting platform (i.e., the smart card). This
compliance can be checked at load time and in this way
avoid the need for costly run-time monitoring.

The effectiveness of SxC has been discussed in [1],
[5], where the authors show how the approach can be
used to prevent illegal information exchange among several
applications on a single smart card, and how to deal with
dynamic changes in both contracts and platform policy.
However, in those papers the authors assume that the key
SxC phase, namely contract-policy matching, is done on
the card, which is a resource limited device. What they leave
open is the issue of outsourcing the contract-matching phase
to a Trusted Third Party, in case this phase requires a too
expensive computational effort for the card. In this paper we
explicitly address this issue, discussing the design and a first
prototype of this key functionality of the SxC framework.

The paper is organized as follows. In Section II we
introduce the SxC framework and the problem we tackle.
Then the discussion of the design and implementation details
of the proposed system are depicted in Section III and IV,
respectively. Section V concludes the paper summarizing its
contribution.

II. SECURITY-BY-CONTRACT (5%C)... IN A NUTSHELL

In the SxC approach, mobile code carries with a claim
on its security behavior (an application’s contract) that
could be matched against a mobile platform’s policy before
downloading the code. In this setting, a digital signature does
not only certify the origin of the code but also binds together

27

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

the code with a contract with the main goal to provide a
semantics for digital signatures on mobile code.

At load time, the target platform follows a workflow
similar to the one depicted in Fig. 1 (see also [6]). First,
it checks that the evidence is correct. Such evidence can be
a trusted signature as in standard mobile applications [7]. An
alternative evidence can be a proof that the code satisfies the
contract (and then one can use PCC techniques to check it
[8] or specific techniques for smart-cards such as [9]).

No No
Check Enforce Perform
: Run-time
Evidence Policies
Monitoring
Yes Yes
Match Contract Perform
& Policies in-lining
No
Yes Execute
Application
Figure 1. SxC Workflow

Once we have evidence that the contract is trustworthy,
the platform checks that the claimed policy is compliant with
the policy that our platform wants to enforce. This is a key
phase called contract-policy matching in the SxC jargon. If
it is, then the application can be run without further ado. At
run-time, a firewall (such as the one provided by the Java
Card Runtime Environment) can just check that only the
declared API in the contract can be called. The matching step
guarantees that the resulting interactions are correct. This is
a significant saving over full in-line reference monitors.

A. Off-Card Contract-Policy Matching

A key issue in the SxC framework concerns who is
responsible for executing the contract-policy matching. Due
to the computational limitations of a resource limited envi-
ronment such as a smart card (SC), running a full matching
process on the card might be too expensive. In the SxC
setting, the choice between “on-card” and “off-card” match-
ing relies on the level of contract/policy abstraction [1],
[5]. Indeed, the framework is based on a hierarchy of con-
tracts/policies models for smart cards, so that each level of
the hierarchy can be used to specify contracts/policies with
different computational efforts and expressivity limitations.

This paper focuses on the situation where contract-policy
matching is too expensive to be performed on the card.
The idea, depicted in Fig. 2, is that a Trusted Third Party
(TTP), for instance the card issuer, provides its computa-
tional capabilities to perform the contract-policy compliance
check. The TTP could supply a proof of contract-policy
compliance to be checked on the smart card. The SC’s policy

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

is then updated according to the results received by the
TTP: if the compliance check was successful, then the SC’s
policy is updated with the new contract and the application
can be executed. Otherwise, the application is rejected or
the policy enforced off-card (for example, by means of a
service provided by the TTP in addition to contract-policy
matching). In case the TTP includes a proof of compliance
in the reply, then a further check is needed to verify the
proof, as shown in Fig. 2.

Trusted Environment : Untrusted Environment
(ON CARD)| | |(OFF CARD)
Match
Yes/No

|

|

1

Encrypt _:_
and sign 1
1
1
1 contract &
! policy
1 Decrypt
Encrypt L1 anrzp
and sign ! if
: verity (proof of contract-
1 policy compliance)
|
!
T

1
1
1
1
1
1
1
1
1
1
1

CONTRACT

Smart Card Trusted Third Party

&

Decrypt
and

verify

Encrypt
and sign

Reject application
or enforce policy
(off-card)

—

Execute
Application

Update
Policy

Figure 2. Off-Card SxC Contract-Policy Matching

In this scenario, the communication between SC and
TTP must be secured in order to deal with an untrusted
environment. Both contract and policy must be encrypted
and signed by SC before they are sent to the TTP to ensure
authentication, integrity and confidentiality. Analogously, the
results of the compliance check should be encrypted and
signed by TTP before they are sent back to SC.

III. SECURING OFF-CARD MATCHING

To secure the system we use Public Key Infrastructure
(PKI), where keys and identities are handled through certifi-
cates (namely, X.509 certificates [10]) that are exchanged be-
tween parties during communication. For this reason, the SC
must engage an initialization phase, where certificates are
stored in the SC along with security policies. The security
of the system relies on the assumption that the environment
in this phase is completely trusted and secure. As above
mentioned all messages between SC-TTP will be signed
and encrypted. We have decided to use two certificates (i.e.
two different key-pairs), one for the signature and one for
the encryption, so that in the unlikely event of one being
compromised the other is not. The use of two certificates is
optional, but it makes the system more secure.

In this Section we first show the design of the
initialization phase and then pass over the contract-policy
matching one. Since the system is based on Java card
2.2.2, the SC acts as a server which responds only to
Application Protocol Data Unit (APDU) commands by

28

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

means of APDU-response messages.

Initialization Phase. This phase is divided into three dif-
ferent steps: Certificate Signing Request (CSR) building
[11], certificates issuing, and finally certificates and policy
storage. As shown in Fig. 3 the first step consists in building
the CSR for the two certificates to be sent to the Certification
Authority (CA). The Trusted Reader (TR) queries the SC for
its public key, then TR builds the CSR and sends it back
to SC that signs it. Message #4 SPrKSCEnc (SCEncCSR)
means that the CSR for encryption is signed (S) with private
key (PrK) of SC for encryption (Enc). Messages throughout
all figures are likewise.

Trusted Reader (TR) Smart Card (SC)
SC’s public key order

PuKSCEnc
SC's CSR:
SCEncCSR |; SCEncCSR
CSR’s signature:
SPrKSCEne (SCEncCSR) ; | SPrKSCENC(SCENCCSR)
Store
signed CSR SC’s public key order
PUKSCSig
SCSigCSR

) N CSR’s signature:

SPrKSCSig (SCSigCSR) ; |SPrKSCSig (SCSigCSR)
Store

signed CSR

SC’s CSR:
SCSigCSR K

Figure 3. CSRs Building

In the second step (Fig. 4) the TR - Certificates Manager
(TRCM) sends to CA the CSRs previously built, CA issues
the certificates and then sends them back to the TRCM.

TR - Certificates
Manager

Certification
Authority (CA)

SPrkSCEnc (SCEncCSR)
: Certificate issuance:
‘J SCCertEnc
& <
[

| SPrKSCSig (SCSigCSR)
N

| SCCertEnc

Certificate issuance:

SCCertSig SCCertSig
-

]
d
b

Figure 4. Certificates Issuing

The final step, shown in Fig. 5, completes the initialization
phase by storing in the SC the two certificates, the security
policy and the CA digital certificate (this is needed by the
SC to verify certificates of TTP).

After the SC has been initialized it is ready to securely
engage in any activity that involves the contract and policy
matching. Specifically the card will be able to verify the
identity of the TTP, authenticate and authorize its requests.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Trusted Reader (TR)
CACert

Smart Card (SC)

Acknowledgment

Store CA’s
SCCertEnc

Store

Acknowledgment ; | certificate
SCcCertSig

Store

Acknowledgment 2 certificate
Policy

Store

Acknowledgment 2 policy

Figure 5. Storage of Keys and Certificates on Smart Card

Contract-Policy Matching Phase. During this phase the
contract and the security policy, stored in the card, are sent
from SC to some TTP which runs the matching algorithm
and then sends the result back to SC. Our goal is to secure
communication between TTP and SC in terms of mutual
authentication, integrity and confidentiality. The solution we
propose is shown in Fig. 6. It is divided into three parts:
certificates exchange, contract and policy sending, matching
result sending.

r Trusted Third Party (TTP) Smart Card (SC)
TTPCertEncr
TTP’s certificate
SCCertEncr 2 verification
Certificates SC's certificate
exchange verification E TTPCertSign
TTP’s certificate
SCCertSign ; Iveriﬁcation
SC'’s certificate
verification | ; Contract and Policy order
L x Generation:
K_sess, N_sc
Encryption: EK_sess(M),
Contract [EPUKTTPENc(K_sess,N_sc), EPUKTTPENC(K _sess,N_sc)
and policy EK_sess(M),
sending SPrkSCSig(HMAC(M,N_sc))] Digital Signature:
SPrKSCSig(HMAC(M,N_sc))
Decryption and (—/’—'—
verification K
r Run algorithm
Matching Encryption
result EK_sess(R)
) Digital Signature: [EK_sess(R),
sending SPrKTTPS\g(l SPrKTTPSig(HMAC(R N_sc+1))]
HMAC(R,N_sc+1))
Decrypt, verify and
Acknowledgement ; |get the result

Figure 6. Protocol for Off-Card Contract-Policy Matching

In the first part TTP and SC exchange their own pair of
certificates (one for encryption and one for the signature) and
then respectively check the validity of those. Particularly,
the SC checks them against CA certificate stored during
Initialization phase. If the certificates are valid then the
TTP asks SC for the contract and policy. At this point the
SC engages in a sequence of actions aiming to secure the
message M containing requested information that needs to

29

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

be sent back to TTP. Specifically:

1) It generates a session key and a NONCE (Number used
Once) that will be used for this communication.

2) It encrypts the session key and the NONCE with TTP
Public Key, and then message M with the session key.

3) It computes the HMAC (a hash mixed with a salt, i.e.
the NONCE (Vs.)) and it signs it.

Then the message is sent to TTP which verifies the message
and extracts the needed information.

In the last part TTP runs the matching algorithm against
contract and policy, and builds a secure message containing
the algorithm result R to be sent to SC. The key used for
encryption is still the session key generated previously by
SC. The signature is done as before except that the HMAC
uses as salt the value Ng.+ 1. At this point SC decrypts and
verifies the result and sends an acknowledgement to TTP.

IV. PROTOTYPE IMPLEMENTATION

A first prototype of the proposed framework has been
implemented, representing almost a fully-functional imple-
mentation. Java version 1.6 has been used to implement the
TTP and the TR, and Java Card 2.2.2 was used for the SC.
This version was used instead of Java Card 3 due to the
lack of mature in version 3 (actually, there are no cards
supporting its real implementation). An APDU extended
length capability has been implemented in order to allow
sending up to 32KB data messages instead of the by-default
maximum 255 bytes size.

All message exchange protocols have been implemented
and authentication, integrity and confidentiality are ensured
by means of X.509 certificates in communications between
the TTP and the card. These certificates are managed by
means of the CA, which generates self-signed certificates
using OpenSSL 0.9.8n.

The implementation of the initialization phase is almost
finished. All required data is stored and sent to the installer
and also sent back to the card. On the other hand, some work
must be done in the contract and policy matching phase.
Certificate exchange is working properly, but verification
is only carried out in the TTP and not on the card yet.
RSA keys are used to achieve PKI encryption, but digital
signatures and block ciphering must be developed too.

To test the prototype, two different simulation environ-
ments have been used. At first stages, the Java Card plat-
form Workstation Development Environment tool (Java Card
WDE) was used. However, saving the status of the card
and all the session data is currently being addressed, so the
environment has been changed to the C-language Java Card
RE (CREF), which eases this feature.

V. CONCLUSION

In this paper we have addressed the issue of outsourcing
the SxC contract-policy matching service to a Trusted Third
Party. The design of the overall system as well as a first

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

implemented prototype have been presented. The solution
provides confidentiality, integrity and mutual authentication
altogether. In particular, the following mechanisms have
been implemented to strengthen the security of the system:
(i) The use of two different certificates for signature and
encryption. (ii)) A NONCE created for each session to ensure
freshness of the messages. (iii) Both the session key and
the NONCE are generated within the SC, and then sent
encrypted to TTP. The fact that TTP uses them to correctly
compose the message R is a proof that TTP is the one
that decrypted the message in the same session (due to the
freshness of NONCE) and no one else did (the only way
would be to get the Private Key of TTP but Public Key
Cryptosystems are considered secure and unbreakable). (iv)
The HMAC sent within the response is salted with Ng. + 1.
The change in the value of the salt introduces variability in
the hash making it more unlikely to forge.

REFERENCES

[1] N. Dragoni, O. Gadyatskaya, and F. Massacci, “Supporting
applications’ evolution in multi-application smart cards by
security-by-contract,” in Proc. of WISTP, 2010, pp. 221-228.

[2] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and
D. DuVarney, “Model-carrying code: a practical approach for
safe execution of untrusted applications,” in Proc. of SOSP-
03. ACM, 2003, pp. 15-28.

[3] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan,
“Security-by-contract: Toward a semantics for digital signa-
tures on mobile code,” in Proc. of EUROPKI. Springer-
Verlag, 2007, pp. 297-312.

[4] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,
F. Piessens, I. Siahaan, and D. Vanoverberghe, “Security-by-
Contract on the .NET platform,” Information Security Tech.
Rep., vol. 13, no. 1, pp. 25 — 32, 2008.

[5] N. Dragoni, O. Gadyatskaya, and F. Massacci, “Security-by-
contract for applications evolution in multi-application smart
cards,” in Proc. of NODES, DTU Technical Report, 2010.

[6] D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen,
F. Piessens, K. Naliuka, and F. Massacci, “A flexible security
architecture to support third-party applications on mobile
devices,” in Proc. of ACM Comp. Sec. Arch. Workshop, 2007.

[7]1 B. Yee, “A sanctuary for mobile agents,” in Secure Internet
Programming, J. Vitek and C. Jensen, Eds. Springer-Verlag,
1999, pp. 261-273.

[8] G. Necula, “Proof-carrying code,” in Proc. of the 24th ACM
SIGPLAN-SIGACT Symp. on Princ. of Prog. Lang. ACM
Press, 1997, pp. 106-119.

[9] D. Ghindici and I. Simplot-Ryl, “On practical information
flow policies for java-enabled multiapplication smart cards,”
in Proc. of CARDIS, 2008.

[10] ITU-T, “ITU-T Rec. X.509,” 2005.

[11] M. Nystrom and B. S. Kaliski, “PKCS #10: Certification

Request Syntax Specification version 1.7,” RFC 2986, 2000.

30

