
A Heap-based P2P Topology and Dynamic
Resource Location Policy for Process Migration in

Mobile Clusters

Y. Mohamadi Begum, M.A. Maluk Mohamed
Software Systems Group

M.A.M. College of Engineering
Anna University

Tiruchirappalli, India
ssg_mohamadi, ssg_maluk@mamce.org

Abstract— A mobile cluster experiences disruption in execution
of long-running applications due to its highly dynamic nature.
Process migration handles such dynamism to have seamless
computing with minimal disruption. The challenge in process
migration is that it should take considerably less time and
techniques adopted for static networks are not suitable for
mobile networks. This work is a novel effort that organizes the
cluster as a heap-based super P2P structure and process state
is transferred in terms of object migration between the peers.
Also, while migrating processes, load balancing is dynamically
done. As the mobile cluster has heterogeneous nodes with
varying processing capabilities, we devise a mechanism for
computing the capabilities of these nodes. Considering the
capability and current load of the nodes the right destination
for process migration is chosen and thus we attempt at a better
location policy for the migrated process.

Keywords- DHT; load balancing; mobile cluster; P2P
networks; process migration.

I. INTRODUCTION
A mobile cluster (MC) is a Network of Workstations

(NOW) or nodes that may be both stationary as well as
mobile. The mobile nodes (MN) communicating over a
cellular network, may leave or enter a cell any moment of
time, making it difficult to run long-running applications on
the MC. There are basically three issues that need to be
addressed because of the mobility and the resource-poor
nature of the nodes. Firstly, the mobile nodes may enter into
doze mode or voluntarily disconnect from the entire network
affecting the overall cluster availability and performance.
Secondly, disconnections can be abrupt, where the device
may enter into a region, out of coverage. However, during
such disconnections, the communication link would be
maintained by the Communication Subsystem (CS) of the
Mobile-OS. Since the seamless communication is maintained
by the CS, the out of coverage issue has no effect on the on-
going computation. That is, we can simply move the
computation along with the mobile node. Finally, there may
be disruption in service due to the sudden failure of the node,
which requires periodic checkpointing of the processes
running on that node and applying migration strategy

discussed in this paper. Hence, in this work, we consider
only the voluntary disconnections as an appropriate issue that
needs to be resolved.

This work focuses on pre-determined sign-off occurring
due to such voluntary disconnections. By anticipating such
disconnections, the MN has two options, namely, one that is
followed in Coda file system [2], where it pro-actively
downloads any data that is required so as to function
independently of the network in carrying out the task
assigned. Coda attempts at distributed file sharing
applications and not compute-intensive applications. It
assumes higher bandwidth communication with its servers.
Further, it requires user’s prediction on future needs for its
cache management policy. The second option for the MN is
to checkpoint its process state so that it transfers the same to
another node for resuming execution. In our work, we
choose the second option of process migration (PM) [3]. PM
is associated with moving a process state from one node to
another for resuming execution on the latter. In systems with
only static nodes, there are a number of implementations for
process migration. However, in MC those techniques
adopted for static nodes are not applicable or even irrelevant
owing to the mobility constraints. It adds to the complexity
when process migration is to be coupled with load balancing.

 The impact of mobility [1] on distributed computations
is severe that it requires a totally different approach for both
PM and load balancing. The migration cost is typically a
function of address space size of the process and
nevertheless includes the cost of locating an apt destination
node. The cost incurred in locating such a node in a static
network is obviously less compared to a dynamic one. In a
MC, what magnifies the cost is the way the devices
communicate with each other. Here the task is assigned to a
mobile device only through its Base Station (BS). Hence, a
copy of the program code as well as the static data is already
available with the BS. Whenever a migration request comes
from a MN, the BS pro actively sends this to the most
eligible device in its cell based on its computational power
and its current load. After receiving the process state from
the MN, the BS transfers the same to the destination. The
goal of load balancing is to assign to each node tasks

196

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

proportional to its performance. A MC whose nodes are
highly heterogeneous, comprising of a combination of
various resources, requires an efficient location policy to
determine a suitable node as a destination for the migrating
process.

Distributed scheduling related to process migration [3]
decides on when to migrate, which process, and where to
migrate. Some popular distributed scheduling policies like
sender-initiated, receiver-initiated, random policies are not
apt for resource-constrained mobile cluster. We propose a
novel approach for minimizing such overheads using Peer-
to-Peer (P2P) systems. Such systems share computer
resources by direct exchange, rather than requiring the
intermediation or support of a centralized server or authority.
In our work, this property of P2P systems is exploited to
implement a new location policy for dynamic process
migration.

We begin by building a hierarchical structured P2P
cluster of static workstations and mobile devices. The
overlay network thus arrived by employing Distributed Hash
Table (DHT) concept helps in linking resources (nodes) and
enables easy sharing of processing among them.
Traditionally Distributed Hash Table (DHT) is used only to
find and share content / file / data only. In our work, we use
the DHT to assist a mobile node find a destination node (to
which it can off-load its current processes) when it
voluntarily gets disconnected. A binary heap (max-heap) is
built and a selection algorithm is written to obtain the node
with maximum spare computational capacity. The
contributions of this paper can be summarized as follows.

1. We propose a process migration policy for a dynamic
MC built on a cellular network when it is processing a long-
running, compute-intensive application.

2. While migrating processes we devise a more accurate
mechanism for dynamic load-balancing considering the
variations in computing power of the different mobile nodes.

3. A DHT-based approach for location policy on where
to migrate is described.

4. Considering the resource-poor nature of the mobile
device, we have formulated an algorithm for a node to accept
a migration request or not.

5. We show how large prime numbers can be generated
on a mobile cluster while striving to harness the idle time of
the nodes. Also we demonstrate an efficient programming
way of storing such large numbers in memory-poor mobile
nodes.

This work does not spell any mechanism for PM, but a
facility that reduces the time taken for PM in a very dynamic
network and also increases the throughput of the system. We
also restrict our work to homogeneous PM in which we
migrate between nodes of same architecture. This restriction
is reasonable as our concern is not with the mechanism but
with the policy of when and where to migrate the process.
The rest of the paper is organised as follows. Section 2
presents the related work in this area of research. In section 3
we provide the background and also highlight the rationale
behind building a mobile P2P cluster. Section 4 provides
system analysis and design of the mobile cluster. Section 5
accounts for the test application of large prime generation

and a comparison of performance of the system with existing
ones. Section 6 concludes and gives an insight into the future
enhancements.

II. RELATED WORK
PM is extensively surveyed in [3, 4], which present a

number of approaches. Some recent efforts on PM include
[5] in which the authors describe the use of system-wide
pointers and global dynamic data structures for migration.
Gobelins DSM [6] moves processes or threads among cluster
nodes using the distributed shared memory concept. But it
again does not deal with mobile devices. Checkpointing for
mobile computing systems has been discussed in [7, 8, 9].
An evaluation of different checkpointing protocols is done in
[10]. One of the factors that amount to the cost of PM in a
dynamic network is the time taken for deciding on the
destination. All previous works on PM only focus on time
taken for state transfer, but not for locating the destination. In
[11], the issue of timeliness for rerouting and multicast when
handoff occurs in a MC is discussed. A model for
overcoming such issues in MC is presented in [12]. P2P
networks [13] are self-organising structures apt for realising
such clusters. Some important DHT-based P2P systems are
found in [14 – 16] and are focused on fixed networks only.
In [17], the authors propose a load balancing scheme for
heterogeneous cluster using mobile agents. An algorithm for
load balancing in heterogeneous dynamic P2P systems using
the concept of virtual servers is presented in [18]. P2P
networking in mobile environment is explored in JXME
[19]. In [20], the mobile devices are assumed as low-
performance nodes and hence only used to redirect their
requests to their associated static nodes. However, in reality
we cannot afford to keep mobile nodes without any useful
processing. Hierarchical P2P systems are said to improve
scalability. Such systems are discussed in [21, 22, 23]. Heaps
based on the concept of a complete binary tree, are a good
choice for implementing selection and priority based
algorithms. A distributed heap-based data structure called
CONE [24] has load balancing properties and is layered on
Chord DHT. To the best of our knowledge, none of these
works focus on a process migration facility for mobile
clusters. Thus, this work is a new attempt at such a design.

III. BACKGROUND

A. Problem Definition
The fact that the mobile devices are becoming powerful

in terms of computing cannot be overlooked. This calls for
mechanisms to run high-end applications on such devices
while taking care of their inherent mobility. The mobility
issue can be seen in two perspectives. Firstly, the devices
voluntarily disconnect themselves or move around; thus they
leave or join the network / cell anytime. Secondly,
disconnections can occur suddenly or the device itself may
fail suddenly. Voluntary disconnection forces the termination
of long-running applications. The problem is severe when
such applications get terminated especially when they are
nearing completion. PM eliminates this problem whereby the
mobile node transfers the non-static part of the computation

197

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

state to the BS and the BS finds another compute node in its
cell to resume the computation.

In systems with only static nodes, there are a number of
implementations for PM. Nevertheless, there should be a
justification between the choice of running a process from
the start after disconnection and PM because the time taken
for PM is not always negligible. It includes the time taken for
choosing a destination node with sufficient capability while
maintaining load balancing and transferring the process state
to such a node. In static networks the time for negotiations
between the nodes to choose a destination is generally a
constant depending on the type of the network and therefore
very negligible. To choose a destination node in mobile
clusters, techniques like polling, random or nearest neighbor
selection policies are not applicable or even irrelevant
because of inherent mobility and other constraints posed by
mobile nodes. This work attempts to define a dynamic
resource location policy so as to choose an eligible and
efficient destination node in a highly dynamic and
heterogeneous network.

B. Mobile P2P Cluster
In designing a mobile cluster, P2P system is an attractive

architectural alternative to the traditional client-server
computing. It solves the problem of server being down or
becoming overloaded. Therefore a number of critical, real-
time, computationally high-end applications can be
successfully implemented on a mobile P2P cluster. Further,
P2P network is self-organizing, which is a key advantage for
a dynamic network. They offer efficient search/location of
nodes and load balancing facilities. These characteristics
make P2P network a good choice for performing process
migration.

IV. SYSTEM DESIGN

A. Basic Model
The mobile cluster (MC) contains a set of mobile nodes

(MN) and static nodes or mobile support stations called as
Base Stations (BS). Static wired network connects BSs to
each other whereas a cellular network connects the MNs. In
such a network, there are multiple cells and each cell has
multiple channels to communicate with many mobile nodes.
Also each cell is equipped with a BS that governs multiple
MNs in that cell. Any MN stays in connection with at most
one BS at any given time and communicates with other MNs
and BSs only through the BS to which it is currently
connected.

B. Building a P2P Mobile Cluster
We consider the mobile cluster to adopt a Super-Peer

network model. In this model, the BS is categorized as super-
peer. A typical distributed application is submitted to the
cluster through a designated coordinator that is nothing but
the BS. The BS distributes the application to the peers. The
peers do not choose which processes to host. The processes
are allotted to peers depending on their capability and current
computational load. The peers periodically inform and

update their load information to their super peer, the BS. Fig.
1 depicts BS as super-peer and all other nodes organized as a
heap.

Process Queue

Super Peer
(BS)

Heap

…

Peers

Figure 1. Super Peer and Peers

1) DHT Design:
When a mobile node sends a migration request to BS, the

BS as a super-peer determines the destination on behalf its
client (the source). In designing such structured networks,
Distributed Hash tables (DHT) are employed. They are
distributed data structures for building robust P2P
applications. Conventional DHT maps keys to values, store
key/value pairs and retrieve values using the given keys and
are used in general for file storage and sharing. In contrast, in
our work, every node in the mobile cluster stores a hash table
and the resultant DHT performs two functions: (i) organizes
cluster nodes as a max-heap and (ii) distributes processes to
various nodes considering their current load and capability.

Each node in the cluster is known by a 128-bit identifier
that is unique in the cluster. Each process is assigned a
unique identifier that remains unchanged even when
migrated. On applying consistent hash function, we allow
nodes to join and leave the cluster with minimal disruption.
The hash function determines the node identifier by hashing
the IP address of the node and a key for each process by
hashing the process identifier. The node identifiers are
arranged in the form of a max-heap. A max-heap is a
complete binary tree in which at every node the data stored
at the node is no less than the data at either child. The heap is
constructed based on the spare capacity Si

The node that joins the cluster is added to the bottom of
the heap, keeping up the shape of a complete binary tree. If it
has more spare capacity than its parent, it is swapped with it.
Then the node continues to move up until it finds a place so
as to maintain the heap property. The node before leaving the
cluster initiates migrate operation forwarded to the BS. Also

 available at each
node i. We show in Section 4.2.2 on how to calculate this
spare capacity. Thus the root node always has maximum
spare capacity. The DHT supports basically three operations,
namely join, leave and migrate. The heap is reconstructed
whenever a node joins/leaves or a process migrates and is
done by heapify(). heapify() maintains the max-heap
property that the spare capacity of parent node is always
more than that of its child nodes.

198

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

when a process migrates to a new node, that node now has
less spare capacity and therefore moves down in the heap.
The nodes maintain information that enables communication
to their neighbor nodes. That is, except the leaf nodes, all
other nodes keep an account of their child nodes.

The super peer maintains a heap manager (HM) which is
responsible for keeping up-to-date information on the current
load and spare capacity of every node in the cell. Every node
that enters or leaves a cell causes an imbalance in the load
and the spare capacity of all other nodes is bound to change
and this is updated by the HM through appropriate function
calls. At any point in time in a heap it is always the root node
that has maximum spare capacity. This facilitates in
searching a destination node among n peers in O (1) time;
joining and leaving of nodes consumes O (log N) time where
N refers to total number of peers.

2) Capability of Heterogeneous Nodes:
We illustrate an effective way of computing the

capability of nodes in the cluster and thereby determine the
potential candidate to take up the migrated process. A
benchmark program is run on all the N nodes of the cluster.
The execution time is recorded for every machine, say e1,
e2, eN. Since the power of the node is inversely proportional
to the execution time, we take the largest ei. Compute its
inverse to make it our unit. We divide the inverse of every
other ei by this unit. This gives the relative power of the
various nodes of the cluster. For example if the execution
times are say: 100 ns, 500 ns, 1 micro sec, 5 micro sec, and
10 micro sec. The inverse of 10 micro sec is 100,000. The
computer that gave the result in 100 ns has an inverse of
10,000,000. On dividing 10,000,000 by 100,000 we get 100.
Thus we say that the first machine is 100 times more
powerful than the last machine.

We find the current load on the processor and find out the
spare capacity Si of the node i by subtracting current load
from 1. If the CPU utilization is k%, it means (100 - k) % is
available for the task to be added. The fact that the utilization
is less than 100% indicates that we could add a task to the
mobile node. The added task would then use the spare CPU
time, without degrading the performance of the system. For
example, let the CPU utilization be 0.999 for the node which
is 100 times more powerful and that of the slowest machine
be 0.1 The fastest machine now has a spare capacity of (1 -
0.999) x 100 = 0.001 x 100 = 0.1. The slowest machine has a
spare capacity of (1 - 0.1) x 1 = 0.9. Thus given the current
load situation, the slowest machine is 9 times more powerful
than the fastest machine. Accordingly the loads are assigned
so that both machines complete their assigned tasks at about
the same time. In [25], the authors propose Horse power
utilization (HPU). Our approach differs from HPU in two
ways. Firstly, in HPU the test is done once and the results are
used again and again. But here we check the CPU activity
register to test for CPU occupancy every time we migrate a
process. Testing CPU occupancy of course delays the
process migration. However, the decision would be more
accurate as we do not model the performance of a very
complex system like HPU, but measure it. Secondly, the
HPU approach is based on the assumption that the relative
power of heterogeneous systems reacts the same way under

all load conditions, which is not really true. In our approach,
for every migration request we query the CPU utilization and
use it to calculate the relative power.

3) Status of the Mobile node:
The queue of migrating processes is held at the processor

controlling the base station. We are desirous of removing the
waiting process to a free or less loaded mobile node. Since
the mobile nodes are resource-poor, we check for their
readiness to accept a migrated process or not. As regards the
checking of the status of a mobile node whether it could
accept a migrating process or not, the decision could be as
follows.

1. A time interval is decided for the mobile nodes to
inform their current base station of their status on current
load, say once every second. As long as the queue of
migrating processes is small compared to a predetermined
size, the reporting could be once every second, which means
once every billion instructions or so.

2. When the migrating process queue becomes too big
reduce this time from 1 second to 0.5 second and broadcast
this change to all mobile nodes connected to the base station.

3. Continue decreasing the delay between successive
reporting until the queue becomes smaller. In case the
reporting activity occupies more than a predefined
percentage of the processor time, say 5%, we suspend the
migrating process and reactivate when the load decreases.

4. When we find that the migration queue is smaller than
a predetermined size, we increase the delay again to 1 second
between successive reports from the connected mobile
nodes.

The above process is dynamic balancing the need for
higher efficiency at the mobile nodes against the queue size
of the migrating processes.

C. Process Migration
Before the MN signs off, it initiates a daemon that has

two responsibilities: one, to inform BS the intention of the
node to leave the cluster and second, to save the process
image as an object with the process information available in
task_struct (in Linux kernel). Using object serialization, the
process state is transferred to the destination via the BS. The
destination node i will be chosen based on its relative power
(Pi) and current CPU load (Li) obtained periodically. The BS
receives periodically the Li information from its peers as
discussed above.

The algorithm is summarized with the various actions
that take place in the following three entities:

(i) At Super-peer:
• Receives migration request from the node that is

going to sign-off.

• Determines root node as destination in heap.

• Pro actively sends code and static data to the
destination; Receives from MN and transfers
process state and dynamic data to destination.

(ii) At mobile node (source):
• Before signing-off: Issues migration request to

its BS.

199

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

• Checkpoints and saves it current state; Transfers
process state to BS.

• On return to its previous cell / another: Gets
assigned new process; Starts execution.

(iii) At static / mobile node (destination/root node in
heap):

• Receives migration request from its BS

• Receives process state, code and data

• Resumes execution of the migrated process

• Process gets executed on this node until
completion; else if the node leaves the cluster
the heap gets reorganized and its child node now
becomes the root node. The request is passed
onto the new root node and process repeats until
completion.

V. PERFORMANCE COMPARISON

A. Prime Number Generation
Generating very large primes it is a compute-intensive

application. Let us assume that we assign 1 million numbers
to each partition. The partition upper bounds then are 1M,
2M, 3M, ... At the beginning of this sequence the time taken
by the different partitions would be appreciably different
from each other. However, the time difference would
decrease as the upper bound of the partition becomes much
larger. An important issue is to resolve the memory
constraint of nodes while dealing with such huge numbers. If
we consider the memory requirement in terms of digits or
bytes, it might increase linearly as the range moves away
from 1. This is because the number of digits keeps increasing
as the range moves away. Even here, since the digits change
only over the first lowest weighted 6 digits, the higher value
digits being common, a clever programming trick would
store only the lowest 6 digits for every prime and store the
higher value common digits in a separate place once. Then
the memory would remain constant. For example, all the
prime numbers between 123000000 to 123999999 are of the
form 123xxxxxx, where the xxxxxx alone need to be stored.
The required prime is generated by appending 123 to xxxxxx
at run time. A similar approach is used in clusters to save the
memory access time and can be found in [26].

B. Comparison
The two tasks that make PM time-consuming are the time

to negotiate and choose a destination node and the state
transfer from source to destination. Location policy in
distributed scheduling determines the destination node for
the migrated process, and some of these policies include
polling, random and nearest neighbor algorithms. These
techniques when employed for systems with static nodes
have proven performance based on the system workload.
However, when applied to mobile clusters these strategies
incur more overheads and also sometimes not applicable at
all. For example, polling involves checking for the status of a

node to accept the migrated process and continues the same
until a suitable node is found. Here the best case can be the
first node that is approached and the worst case is the node
that is finally approached. This strategy causes increased
communication cost in the worst case. Further, a node which
indicated its willingness to be the destination may choose to
sign off later to conserve energy or because it simply chooses
to move away. In this case the mobile node needs to repeat
the process of polling. Also any communication from a
mobile node to another is via the BS and this amounts to a
huge overhead. The same issues are true in the case of
random algorithms.

The third strategy of contacting the nearest neighbor is
again not applicable for a mobile cluster. Here it is difficult
to determine the nearest neighbor and also if we do so it will
only be an estimate and not an accurate one. Moreover as
mobile cluster is very dynamic, it is difficult and time-
consuming to determine the right destination. In comparison
with these existing approaches, our proposed model of a
heap-based DHT approach takes very negligible time to fetch
the destination as well as maintains load balance. This is
made possible because as the nodes join and leave we
organize them in the form of a heap based P2P cluster.
Further, using appropriate benchmarking we estimate the
power and also with the current CPU utilization rates, the
heap gets reorganized. Now as in existing approaches the
mobile node does not correspond with any other nodes for
their availability. The root node in the heap is simply chosen
as the destination node. Even if this node moves, the heap
gets reorganized and the next root node is tried. Thus this
model chooses the destination node with ease. In the
following table, we provide a comparison of some existing
systems with ours in terms of various features.

TABLE I. COMPARISON WITH EXISTING SYSTEMS

S.No. System Scheduling
(Centralized
/
Distributed)

Load-balancing Location Policy

1. Heap Distributed
(P2P)

Continuously and
Dynamic

Root node of the
Heap

2. Sprite Centralized Only during
creation or
eviction of a
process

History of Idle
Time Length

3. Condor Centralized
& Priority-
based

Only during
creation or
eviction of a
process

Polling

4. Mosix Centralized Continuously and
Dynamic

Decentralized Load
Vector with Load
information on a
set of random
nodes

5. MPVM Centralized Only during
creation / eviction
of a process and
very high load on
a node

Idle node
availability

200

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

The task of transferring the process state is equally

challenging and those adopted for static nodes again are not
suitable for mobile clusters. The eager (all) approach is used
by checkpoint/restart implementations in which the entire
process state is transferred at a time to the destination. If we
apply this approach in mobile cluster, the transfer is via the
BS and there is a possibility that the power-constrained
mobile device may go off while the transfer is going on. The
eager (dirty), copy-on-reference, pre-copy and flushing
strategies again are not applicable because of the dynamic
nature, resource-constraints and heterogeneity prevailing in
mobile clusters. Our model takes care of these issues by
doing two tasks in parallel: as soon as the migration request
is received by the BS, it chooses the destination and pro
actively sends the static data and code; at the same time the
remaining process state alone is extracted from the source
and sent to the destination by means of object serialization,
reducing the time taken for transferring the process state.
Conclusion

The motivation to migrate a process in a mobile cluster is
manifold. There are various components that contribute for
the longer time taken to migrate a process. By organizing the
cluster as a P2P network with nodes arranged as a heap
topology, the time taken can be considerably reduced.
Normally a migration request is issued to a remote node and
only after negotiation, we decide to move the process. This
has been avoided since the BS quickens the process
migration by choosing the root node from the max-heap.
Also, once the migration request is received, the BS sends
the constant data and code to the destination even before the
process state is dispatched from the source to the BS. This
work can be extended for process migration among a finite
collection of clusters and thereby a computational grid.
Further we can consider migration in a heterogeneous
environment because in a mobile cluster the likelihood of
heterogeneity among nodes is more.

REFERENCES
[1] B.R. Badrinath, A. Acharya, and T. Imielinski, “Impact of Mobility

on Distributed Computations,” ACM SIGOPS Operating Systems
Review, vol. 27, no. 2, April 1993, pp. 15-20.

[2] James J. Kistler and M. Satyanarayanan, “Disconnected operation in
the Coda file system,” ACM Transactions on Computer Systems, vol.
10, no. 1, Feb. 1992, pp. 3-25.

[3] D.S. Milogicic, F. Douglis, Y. Paindaveine , R. Wheeler , and S.
Zhou , “Process Migration,” ACM Computing Surveys, vol. 32, no. 3,
Sep. 2000, pp. 241-299

[4] M. Singhal and N.G. Shivaratri, Advanced Concepts in Operating
Systems, 2001, McGraw Hill.

.

[5] K. Noguchi, M. Dillencourt, and L. Bic, “Efficient Global Pointers
with Spontaneous Process Migration,” Proc. 16th Euromicro
Conference on Parallel, Distributed and Network-Based Processing
(PDP 2008), 2008, pp. 87-94.

[6] G. Vall´ee1, C. Morin, J. Berthou, Ivan D. Malen, and R. Lottiaux,
“Process Migration based on Gobelins Distributed Shared Memory,”
Proc. Workshop on Distributed Shared Memory (DSM'02), held in
conjunction with CCGRID 2002, Germany, May 2002, pp. 325-330.

[7] R. Prakash and M. Singhal, “Low-Cost Checkpointing and Failure
Recovery in Mobile Computing Systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 7, no. 10, October 1996, pp.
1035-1048.

[8] B. Gupta, S. Rahimi, and Z. Liu, “A New High Performance
Checkpointing Approach for Mobile Computing Systems,” IJCSNS
International Journal of Computer Science and Network Security, vol.
6 no. 5B, May 2006.

[9] L. Chen, Q. Zhu, and G.Agrawal, “Supporting dynamic migration in
tightly coupled grid applications”, Proc. ACM/IEEE Conference on
supercomputing (SC’06), 2006, pp. 28.

[10] A. Agbaria and R. Friedman, “ Model-based performance evaluation
of distributed checkpointing protocols,” Performance Evaluation, vol.
65, no. 5, 2008, pp. 345-365.

[11] H. Zheng, R. Buyya, and S. Bhattacharya, “Mobile cluster computing
and Timeliness issues,” Informatica, vol. 23, 1999, pp. 5-17.

[12] M.A. Maluk Mohamed, A. Vijay Srinivas, and D. Janakiram, “Moset:
An anonymous remote mobile cluster computing paradigm,” Journal
of Parallel and Distributed Computing, vol. 65, 2005, pp. 1212 –
1222.

[13] E.K. Lua, J. Crowcort, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of Peer-to-Peer overlay network schemes”, IEEE
Communications Surveys and Tutorials, March 2004.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,” Proc. ACM SIGCOMM,
2001, pp. 161–172.

[15] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup protocol for internet
applications,” IEEE/ACM Transactions on Networking, vol. 11, no.
1, 2003, pp. 17–32.

[16] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.
Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, January 2004, pp. 41–53.

[17] M. Abdallah and E. Buyukkaya, “Fair Load Balancing under Skewed
Popularity Patterns in Heterogeneous DHT-Based P2P Systems,”
Proc. IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS), Cambridge, Massachusetts, USA,
November 2007, pp. 484-490.

[18] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Dynamic Structured P2P Systems,” Performance
Evaluation, vol. 63, no. 3, March 2006, pp. 217-240.

[19] A. Arora, C. Haywood, and K.S. Pabla, “JXTA for J2ME – Extending
the Reach of Wireless with JXTA Technology,” Sun Microsystems,
March 2002.

[20] S. Zoels, S. Schubert, W. Kellerer, and Z. Despotovic, “Hybrid DHT
Design for mobile environments,” Proc. AP2PC Workshop at
AAMAS 2006, Hakodate, Japan, May 2006.

[21] G. Erice, E.W. Biersack, K.W. Ross, P.A. Felber, and G.U. Keller,
“Hierarchical Peer-to-Peer Systems,” Proc. ACM.IFIP International
Conference on Parallel and Distributed Computing (Euro-Par), 2003.

[22] B. Yang and H.G. Molina, “Designing a Super-Peer Network,” Proc.
International Conference on Data Engineering (ICDE), 2003.

[23] I. Rimac, S. Borst, and A. Walid, “Peer-Assisted Content Distribution
Networks: Performance Gains and Server Capacity Savings,”

[24] Bhagwan, R., Mahadevan, P., Varghese, and G., Geoffrey M Voelker,
“CONE: A Distributed Heap-Based Approach to Resource
Selection,” Technical Report CS2004-0784, UCSD, 2004.

Bell
Labs Technical Journal, vol. 13, no. 3, Fall 2008, pp. 59-69.

[25] R.K. Joshi and D. Janaki Ram, “Anonymous Remote Computing: A
Paradigm for Parallel Programming on Interconnected Workstations,”
IEEE Trans. Software Eng., vol. 25 no. 1, 1999, pp. 75-90.

[26] S. Hwang, K. Chung, and D. Kim, “Load Balanced Parallel Prime
Number Generator with Sieve of Eratosthenes on Cluster
Computers,” Proc. 7th IEEE International Conference on Computer
and Information Technology (CIT 2007), 2007, pp. 295-299.

201

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Friedman:Roy.html�
http://www.informatik.uni-trier.de/~ley/db/journals/pe/pe65.html#AgbariaF08�
http://www.informatik.uni-trier.de/~ley/db/journals/pe/pe65.html#AgbariaF08�
http://www.informatik.uni-trier.de/~ley/db/journals/pe/pe65.html#AgbariaF08�

	I. Introduction
	II. RELATED WORK
	III. BACKGROUND
	A. Problem Definition
	B. Mobile P2P Cluster

	IV. System design
	A. Basic Model
	B. Building a P2P Mobile Cluster
	1) DHT Design:
	2) Capability of Heterogeneous Nodes:
	3) Status of the Mobile node:

	C. Process Migration

	V. Performance Comparison
	A. Prime Number Generation
	B. Comparison
	References

