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Abstract — The recent diffusion of smart mobile devices deeply 
influences current technological landscapes also supported by 
a blooming market economy. New forms of users, interaction 
styles and ubiquitous paradigms are growing with this 
technological revolution. Connected mobile devices equipped 
with accelerometers represent, for geological Research, the 
opportunity to increase the information on several phenomena 
that are difficult to study because of the limited availability of 
observation data. Information provided from a cloud of mobile 
sensors, randomly localized on the territory, may contribute to 
extend the fixed nature and the very limited number of 
traditional Earth observation points. This paper describes the 
Earth Seismic Tomographer system, a mobile application that 
analyzes triaxial accelerometer data, aiming at collecting travel 
time information on earthquake events. The system relies on 
the voluntary participation of users that devote personal 
mobile resources to detect and provide seismic data to the 
central server. The Earth Seismic Tomographer adopts neural 
network classifiers to separate user movement from the seismic 
signal. The proposed system will increase the amount of 
information on seismic events enabling Earth scientists to 
study problems still undetermined with the currently available 
data.  

Keywords - Mobile Smart Devices, Earthquakes, Seismic 
Tomography, Accelerometer Sensing, Neural Networks. 

 

I.  INTRODUCTION 
Technological market and progress are depicting novel 

scenarios in which users and applications exploit increased 
degrees of connectivity and ubiquity. In several field of 
parameter estimation [2], for example, it would be 
indispensible for researcher to exploit the increased amount 
of data provided by new mobile smart mobile devices. 

Indeed, new generation mobile devices are, almost 
always, equipped with accelerometers, orienteer and camera 
and often are GPS localized or, at least, estimate their 
position by triangulating GSM cells or WiFi repeaters. 

This paper presents the Earth Seismic Tomographer 
system (EaST), a mobile application that aims at providing 
geologists with a redundant amount of data on seismic events 
by recording ground acceleration data. 

The problem of estimating physical parameters values 
from experimental data is a crucial matter in many 
geophysical investigations. In geophysical literature, this 
problem is denoted as model inversion and the goal is to 

combine information arising from physical theories and from 
experimental results, in order to infer some characteristics of 
given Earth properties. In general, theories are represented 
by a set of equations relating values of unknown properties 
to the physical parameters observed in the experiment.  

In particular, seismic tomography [13] is a technique 
aiming at reconstructing the velocity structure (s(r) in 
equation 1) of a body, given the measurement of travel times 
(T in equation 1) of waves that have propagated through that 
body. 

 
(1) 

 
 

In this expression, s is the slowness and is defined as the 
reciprocal of the velocity: s = 1/v. The slowness, used instead 
of the velocity, keeps the integrand linear respect to the 
quantity we aim at retrieving. 

It would be tempting to conclude from (1) that the 
relation between the travel time and the slowness is linear. 
However, this is wrong because the integration in (1) is 
along the path on which the waves travel. The rays are 
curves of stationary travel time, and hence the ray location 
depends on the slowness as well. 

 

 
Figure 1.  The discrete slowness model for seismic tomography. 

Seismic tomography is thus a nonlinear inverse problem: 
the unknown slowness is present in (1) both in the travel 
time integral and in the integrand, where it determines the 
ray position r[s]. 

When one divides the earth-model in cells where the 
slowness perturbation is assumed constant, the discrete form 
of (1) can be written as: 

 
(2) 
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In this expression, the subscript i labels the different 
travel times used in the inversion, while j is the cell index 
and lij is the length of ray i through cell j. Figure 1 depicts 
this discrete version with ray paths, homogeneous slowness 
cells, seismic source and receivers. 

In the seismic tomography problem, the aim is to 
reconstruct, using (2), the Earth velocity model (Vi=1/si for 
i=1, … ,n) from a set of travel time measurements. In the 
ideal case, an exact theory exists that prescribes how the data 
should be transformed in order to effectively reproduce the 
model. For some selected examples such a theory exists 
assuming that the required infinite and noise free data sets 
would be available. 

Nevertheless, the model that we aim at determining is a 
continuous function of the space variables. This means that 
the model has infinitely many degrees of freedom while, in a 
realistic experiment, the amount of data that can be used for 
the determination of the model is usually finite. A simple 
count of variables shows that the available data do not carry 
sufficient information to determine uniquely the model. The 
fact that in realistic experiments a finite amount of data is 
available to reconstruct a model with infinitely many degrees 
of freedom necessarily means that the inverse problem is not 
unique in the sense that many models explain the data 
equally well. The model obtained from the inversion of the 
data is therefore not necessarily equal to the true model to 
seek.  

EaST project aims at improving the availability of 
seismic data, providing more information about seismic 
events, about their effects on the territory and contributing to 
improve Earth phenomena models. In the case of a seismic 
event, a network of volunteer sensing devices sends toward 
the server the temporized acceleration tracks. The server 
offline elaborates these tracks to detect the seismic rays 
travel times providing a new amount of information for the 
Seismic tomography and other geophysical problems.  

The remainder of the paper is organized as follows: 
Section II presents and discusses similar research 
approaches; Section III details the system, while Section IV 
concludes the work. 

 

II. RELATED WORK 
This section resumes the state of the art related to seismic 

signals detections and the approaches aiming at 
automatically understanding user movements from 
accelerometer data.  

The earthquake detection is the goal of the Quake-
Catcher Network project [16]. It is a collaborative initiative 
for developing the world's largest, low-cost strong-motion 
seismic network. The QCN is collecting a great amount of 
data on seismology by combining new Micro-Electro-
Mechanical Systems technology with volunteer seismic 
stations distributed computing. The system has a twofold 
nature since it utilizes two kinds of sources:  

 
• laptop built in sensors (the authors refer that only 

Apple and ThinkPad laptops offer this feature),  

• specific sensing components attached to internet-
connected computers (that need to be bought and 
configured).  

QCN originated from an idea of Elizabeth Cochran [3], a 
seismologist at UC Riverside. The project started in 2006, 
and is operative since April 2008, now being one of the 
largest and densest earthquakes monitoring system.  

Actually, QCN is the only system similar to EaST in 
terms of expected diffusion and limited cost. Obviously, 
there are other specific Earth monitoring networks, but they 
are based on a small number of accurate but geographically 
concentrated observation points. Differently from Cochran et 
al., we completely rely on ordinary mobile devices and on 
already available hardware sensors to increase the amount of 
information on seismic events enabling Earth scientists to 
study problems still undetermined with the currently 
available data. Additionally, in our case, the adoption of 
mobile devices causes the perturbation of seismic data with 
user movements and it is necessary to adopt some detection 
mechanism. 

The neural networks (NNs) are software classifiers 
inspired to biological nervous system [10]. NNs simulate the 
human brain activities with a self-adapting system composed 
of simple elements, the neurons, connected with each other 
and operating in parallel. The theory of NNs has a broad 
application sphere in several fields including pattern 
recognition, identification, classification, speech, vision, and 
control systems. The main interesting feature of NNs is in 
their self-adaptation mechanism that can solve problems that 
are difficult for conventional computing or human beings. As 
in nervous systems, the connections between elements 
determine the overall network function. The training phases 
of a network adapt it to the desired function by adjusting the 
values of the connections between neurons. 

Earthquake detection and classification belong to a class 
of problems where artificial NNs may be useful [4].  

Indeed, the most important characteristic of a NN is its 
capability to learn from examples, so that NNs are powerful 
tools in approaching problems, like the earthquake related 
class, that are difficultly described using a classic 
algorithmic strategy. 

In [17], Romero proposed two NN applications at 
earthquake detection problem: a simple NN (Perceptron 
[18]) classifying earthquakes recorded at the Bardonecchia 
(North Italy), and an auto associative NN that has proved 
useful to build an adaptive neural trigger for earthquake 
detection. 

Sharma et al. present and evaluate the precision of 
several approaches for detecting seismic event signals in 
presence of background noise [20]. In their work, the authors 
examine several trigger algorithms, ranging from a very 
simple amplitude threshold type, to sophisticated pattern 
recognition, adaptive methods and NN based approaches. All 
the detection triggers have been tested on natural events and 
on artificial ones (e.g., underground nuclear explosions). 

In our case, we do not have previous knowledge about 
the sensitivity of devices and their response to seismic 
events, but we can exclude perturbations due known user 
movements. As a dual approach of previous ones, the 
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adoption of NNs let us filter out, on the client device, a good 
number of false positive detections by training neural 
classifiers on typical user movements. 

In [11], user activity classification is performed analyzing 
acceleration magnitude and rate of change, as well as 
piecewise correlating the three components of acceleration. 
A simple Multi-Layer Perceptron is trained for classification. 

Fabian et al., train a set of NNs to recognize six typical 
human activities: resting, typing, gesticulating, walking, 
running and cycling [5]. They collect body-part acceleration 
values reading three MotionBand devices attached to the test 
subjects. In our case, we have a single accelerometer moving 
with the user, as in [22] where Yang et al. adopt a multilayer 
feed-forward NN as activity classifiers. They propose an 
effective activity recognition method using acceleration data 
collected from a single triaxial accelerometer.  

 

III. THE PROPOSED SYSTEM 
EaST is a client server system aiming at collecting travel 

time information on earthquake events. Each client is a 
mobile receiving station and sends seismic acceleration data 
to the central server. To prevent false positive seismic 
triggers due to user movement, several NNs, trained on 
typical user activities, detect perturbations that can interfere 
with the seismic detection. The configuration of clients is 
fully dynamic: the server stores all configuration data and 
provides updates to all clients. It is always possible to change 
the client behaviour simply acting on the server, an easy and 
user transparent operation compared to the distribution of a 
new release of the client. This runtime dynamic 
configuration is not limited to simple processing parameters 
but also to the architecture and the configuration of adopted 
NNs. As NN engine, EaST system embeds Joone [9]. The 
core engine of Joone is suitable for small devices, having a 
small footprint and is executable on Personal Java 
environments. The framework enables to serialize a NN 
object (structure and weights) to a file. On update, the server 
propagates new NNs to each client. 

Actually, the client application is only available for 
Google’s Android, an open source Linux based platform for 
mobile devices [1], but we foresee to develop EaST client 
versions for other mobile platforms. The Android 
architecture has been developed by the Open Handset 
Alliance [15], a federation of device manufacturers, mobile 
operators and other companies (i.e., semiconductors 
manufacturers, software developers, etc.). The Alliance 
ensures that the same implementation of the software is 
suitable for all devices that support the Android software 
stack. This feature greatly improves diffusion expectations of 
EaST system. 

An interesting feature of Android is the availability of 
free API libraries for controlling the device hardware. The 
Android SDK includes APIs for location-based hardware 
(such as GPS), camera, network connections, Wi-Fi, 
Bluetooth, accelerometers, touch-screen, and power 
management [1]. 

Accurate location and time for each client are crucial for 
the effectiveness of measurements. At this aim, EaST clients 

interrogate the Android Location service searching for GPS 
localization that is affected by an error lower than 20 m. As 
an alternative, if GPS is not available (often in indoor 
locations) clients use the network localization, whose 
precision is of some hundreds of meters. In any case, the 
error esteemed for the localization is communicated to the 
server. In the case GPS service were available, the time 
provided by satellites is used also for periodically 
synchronizing the client clock. Alternately, the time is 
periodically synchronized with the Network Time Protocol 
time as in [3], with a verified a precision of 20 ms [6]. 

A. The instrument and the phenomenon sensitivity 
To tune and test the system, we use mobile devices 

equipped with a Qualcomm processor working at 528 MHz, 
512 MB ROM and 288 MB RAM, an internal GPS receiver, 
a G-sensor accelerometer, a digital compass, a 320x480 pixel 
touch-screen and an opposite 3.2 megapixel integrated 
camera. As additional memory, the devices support SD cards 
up to 16 GB. In particular, the devices have an AK8976A 3-
axis accelerometer, even if the SDK ensures the application 
to be suitable for all Android devices that are equipped with 
a similar low cost hardware component. 
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Figure 2.  The noise affecting accelerometer for 300 measurements at 
different sampling rates, on a time scale in seconds. 

The Android SDK lets programmers to choose between 
four sampling frequencies with a progressively decreasing 
sampling period: NORMAL, UI (i.e., User Interface suitable 
sampling rate), GAME and FASTEST. It is important to 
point out that Android system is a multitasking one and, 
therefore, the sampling frequency is not constant. 

The coordinate space adopted for acceleration sensing is 
the OpenGL ES [14] coordinate system. When the phone lies 
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on a table with upward screen, the origin is in the lower-left 
corner with respect to the screen, with the X axis horizontal 
and pointing right, the Y axis vertical and pointing up and 
the Z axis pointing outside the front face of the screen. In 
this system, coordinates behind the screen are characterized 
by negative Z values. The axes are not swapped when the 
device's screen orientation changes. 

All values are expressed in IS units (m/s2) and measure 
the acceleration applied to the phone minus the force of 
gravity. 

If the device lies flat on a table, the force of gravity acts 
only on the z component of the sensed acceleration. When 
the device is in a jacket pocket of a user, like in reported 
samples, the acceleration component Ay is decreased with 
the force of gravity (- 9.81 m/s2). The Ax and Az components 
measure, respectively, a lateral acceleration and a front rear 
acceleration respect to the user. 

Before starting the development of the system, we 
sampled the sensor noise and sensitivity at different rates. 
The objective of the feasibility study was twofold: verifying 
if earthquakes propagation time enables to obtain meaningful 
measures from devices spread on the territory and that the 
phenomena are perceptible in a geographic area wide enough 
respect to the temporal resolution of measures. 

Figure 2 plots the accelerometer values, when the phone 
is in state of rest, sampled at all the available frequencies. In 
particular, 300 measurements are represented respect to time 
in seconds, and increasing frequencies are compared. The gz 
component of the force of gravity has been subtracted from 
the Az measure for better graphically comparing all the 
components on a smaller scale. By observing Figure 2, it is 
possible to note that the FAST SAMPLING subplot appears 
as the less affected by measurement noise. For this reason, 
and to obtain the best signal resolution possible, we adopted 
the fastest frequency available for sampling the acceleration. 
Even in the fastest sampling case, produced track files are 
thin respect to modern microSD cards and network 
transmission rates: 1.70 Mbytes are sufficient to record more 
than 15 minutes of signal and can be compressed in less than 
300 Kbytes. As depicted, the error results lower than 0.2 m/s2 
= 2%g. These values enable to detect a seismic signal from a 
wide geographic area surrounding the source. 

TABLE I.  A SAMPLE OF PEAK GROUND ACCELERATIONS FOR SEISMIC 
EVENTS 

ACCELERATION (%g) 
SOURCE M Depth Km 10 Km 50 Km 100 Km 

1 5.0 10 6 1 // 
2 6.0 57 20 5 // 
3 6.2 60 2.1 1.0 0.5 
4 6.8 40 9 4-7 1 
5 6.2 10 20 7 3 
6 6.8 35 30 10 4 
7 6.9 11 40 10 // 

 
Table I resumes the peak ground acceleration measured 

during some strong seismic events and obtained analyzing 
the USGS (U.S. Geological Survey) maps [19]. The reported 

measures of peak ground acceleration are expressed as a 
percentage of g (gravity acceleration).  

Comparing a sample of seismic ground acceleration 
values (Table I) with current instrument sensitivity, it is 
possible to esteem that the devices will be capable to detect 
arrival times for seismic events in a range of 10-50 Km from 
the source. However, it is important to point out that this 
estimation is pessimistic, since the ground acceleration is the 
minimal measured since does not consider the amplifying 
effect due to building structures and heights.  

Table II reports the earthquake transmission velocities of 
some soils. The values ensure a time delay of several 
seconds, compatible with the time resolution of the 
instrument, in a distance of 50 Km, esteemed according to 
Table I, to be the sensitivity of EaST clients. 

TABLE II.  EARTHQUAKE TRANSMISSION VELOCITIES, VP, 
AGGREGATED BY SOIL CLASSIFICATION 

SOILS  
Classes Vp (Km/s) 

Rocks  5.7 - 0.85 
Dense Clays  1.4 - 0.5 
Sands and Gravels 0.7 - 0.1 
Loose Clays 0.16 - 0.14 

extracted from [21] 

B. The detection 
The EaST system is based on a mobile and not inertial 

sensor device set. The localization of sensor is performed via 
GPS, that provides also time synchronization, or by network 
triangulations, even if the detection algorithm has still to 
cope with all the problems due to the user movements. 

The detection of a seismic event is performed both on the 
clients, to avoid overloading the server with false positives, 
and on the server, where a predetermined fraction of seismic 
triggers is always sent. 

On the client, the detection is based on three subsequent 
phases characterized by increasing computational complexity 
and based on the dynamically updated execution parameters 
α, β, γ: 

• STA/LTA detection: evaluation of Short Time 
Average (STA) and Long Time Average (LTA) ratio, 

• probabilistic positivity, 
• detection of user activity. 
 
In particular, α (α>1) represents the threshold for 

STA/LTA detection, β (0≤β≤1) the probability of excluding 
the NN detection of user activity and γ (0≤γ≤1) the NN 
sensitivity.  

The clients continuously perform the STA/LTA detection: 
they observe a time window of accelerometer signals and 
compare the relative average values LTA with a shortest 
sample average value, the STA. When the STA/LTA ratio 
exceeds α, the client is measuring a rapid change in 
acceleration signals and an earthquake event is possible. 

Probabilistic positivity is the second phase of the 
algorithm and guarantees that, after STA/LTA detection, a 
known percentage of the receivers will however send the 
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seismic trigger to the server. This phase enables to avoid 
starting the next one, and to demand a part of the detection to 
the server. The server maintains a list of working devices 
positions, and in presence of a good coverage of suspected 
area, is able to understand when a seismic trigger is a false 
positive to discard, according to the diffusion of the alert. 
Exploiting this server capability, during the probabilistic 
positivity phase, we explicitly exclude with p=γ, the NNs 
detection; basing on the other near clients, the server 
understands if the signalled variation in the ratio STA/LTA 
is due to a seismic phenomenon. 

As stated in [20], STA/LTA based detection usually does 
not perform well at sites with high, irregular and in 
particular, man caused acceleration noise. 

To overcome this limitation, the proposed algorithm 
combines this approach with the NN analysis of user 
activities, the detection of user activity phase. This enables to 
obtain good client robustness to user movements, still 
requiring only a light computation for on-line controlling the 
accelerometer signals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  A schematic view of the seismic detection algorithm 

As previously stated, the adopted sampling frequency for 
the sensor is the highest available, and oscillates around 15 
measures per second (since Android is a multitasking 
system, the frequency adjusts according to the system 
scheduler). This big amount of on-line accelerometer data 
and the voluntary nature of user participation in the project, 
impose a strong optimization of required device resources. 

Indeed, the evaluation of user activity is the only 
expensive phase, in terms of required processing time, as 
four NNs classify the acceleration signal aiming at excluding 
false positives seismic triggers. This phase is executed only 
when the STA/LTA ratio exceeds the threshold α and with 
p= 1-γ. 

Figure 3 depicts the detection algorithm, graphically 
representing the acceleration and the samples adopted for 
LTA e STA. The execution parameters α, β, γ and the 
structure and configuration of the NNs are updated on the 
client during the time synchronization, when necessary. 

Further details on the adopted NNs and the training 
phases are reported in next subsection. 

Resuming, when the ratio STA/LTA exceeds α, with p=γ 
or when the NNs do not recognize any known user 

movement pattern (NNs output < β), a text file is prepared 
and sent to the server, communicating the client position, the 
device orientation, the current time and the acceleration data. 

C. NNs and training 
The NNs are software classifiers inspired to human brain 

[10]. NNs simulate the human nervous system activities with 
a self-adapting system composed of simple elements, the 
neurons. Each neuron computes a simple threshold function 
on its inputs. NNs are usually constructed organizing 
neurons in three layers: input layer, hidden layer and output 
layer.  

According to [17] and [11], the EaST clients embed four 
simple Back Propagation NNs aiming at recognizing user 
movements as walking, using a lift, climbing the stairs or 
moving in a vehicle.  

The Back-Propagation BP NNs are trained in a two steps 
procedure:  

• in the first step, the forward propagation by positive 
model, the NN analyzes a sample and calculates, 
layer by layer, the input and output, 

• in the second step, the error respect to the expected 
classification is propagated back and proportionally 
adjusts the weight and neuron threshold. 

The operation is repeated until the error reaches the 
allowable range. The recognizing of user movements is not a 
simple task, and the variability in user habits does not help to 
give specific analytic functions or descriptions. 
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Figure 4.  Acceleration sampled during four typical user actions. 

In this way, the NNs can learn from historical data, 
stimulate the movement through neurons network, and 
approach the practical function by hidden layers to establish 
a relation model between acceleration and user movements, 
without considering specific details. Figure 4 reports one 

LTA

STA

True 
if (LTA/STA > α)

True 
if (NN output < β)
or with p =  γ
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graph for each class of samples on which we trained the first 
version of EaST clients. The training phase is still on going 
to obtain a good generalization of NNs to different users. 
More NNs, trained on other typical user movement patterns, 
are also going to be prepared form embedding on the EaST 
client. 

During the detection algorithm, when the neural 
detection is required, the acceleration data are analyzed by 
the NNs. If the NNs do not classify any known user 
movement pattern, the client position and the device 
orientation, the current time and the acceleration data are 
sent to the server.  

 

IV. CONCLUSION 
The EaST system is still in tuning: we are simulating a 

device population to establish the best values of execution 
parameters respect to client number and geographical 
density. Once distributed, the EaST system will be based on 
the voluntary contribute of users that are asked to offer some 
resources on their mobile devices to detect seismic waves 
and provide seismic data to the central server. It is the 
analogous of other volunteer computing projects such as 
SETI@home (radio telescope data), Einstein@home 
(gravitational wave data), and climateprediction.net (testing 
the accuracy of climate models) that exploit user desktop PC 
resources to perform heavy scientific computations. In our 
case, the aim is slightly different since we aim at collecting 
data and do not require, usually, computational resources to 
our users. 

After the current tuning of the system, the adoption of 
Android will let us freely distribute EaST application and 
arrive to a big community of potential users just using the 
official distribution channel of this platform: the Market. 
Android has surged to fourth place overall, growing from 
1.6% to 9.6% market share from 2009 to 2010 [8]. 

The future development of clients for other common 
mobile platforms will ensure a bigger diffusion of the EaST 
system and an increased amount of data available on seismic 
events.  

Indeed, actual estimations of mobile technology future 
strongly encourage our and general interest toward these 
technologies. According to Gartner Inc., an information 
technology research and advisory company, location based 
services user number will grow from 96 million in 2009 to 
more than 526 million in 2012 [7] and the 3G connection 
will be available on the 61% of mobile devices [12]. In the 
foreseen landscape, it will be crucial experimenting and 
proposing new ubiquitous and distributed, often pervasive, 
applications exploiting available resources.  

Besides its interest for Earth scientists, we also expect 
that the research work connected with the realization and the 
improvement of the EaST system, will provide also 
interesting results in human computer interaction field. A 
better understanding of user habits and movement patterns 
will improve and propose new forms of life logging, context 
based services and content providing. 

ACKNOWLEDGMENT 
The authors are grateful to Donato Cirillo for the support 

provided during the development of the system. 

REFERENCES 
[1] Android SDK, retrieved on May 2010 from 

http://developer.android,com/index.html . 
[2] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation 

and Inverse Problems, Elsevier Academic Press, 2005. 
[3] E. Cochran, J. Lawrence, C. Christensen, and A. Chung, A novel 

strong-motion seismic network for community participation in 
earthquake monitoring, Instrumentation & Measurement Magazine, 
IEEE, vol.12, no.6, 2009, pp.8-15. 

[4] F. D. Dowla, S.R Taywr, and RW. Anderson: Seismic discrimination 
with artificial neural networks: preliminary results with regional 
spectral data, Bull. Seismol.Soc. Am., 80, 5, 1990, pp. 1346-1373. 

[5] Á. Fábián, N. Győrbíró, and G. Hományi, Activity recognition system 
for mobile phones using the MotionBand device, Conference on 
Mobile Wireless Middleware, Operating Systems, and Applications, 
2008, pp 1-5. 

[6] A. Frassetto, T.J. Owens, and P. Crotwell, Evaluating the Network 
Time Protocol (NTP) for Timing in the South Carolina Earth Physics 
Project (SCEPP), Seismological Research Letters, vol.74, 2003, pp. 
649-652. 

[7] Gartner Identifies the Top 10 Consumer Mobile Applications for 
2012, retrieved on May 2010 from 
http://www.gartner.com/it/page.jsp?id=1230413 . 

[8] Gartner Says Worldwide Mobile Phone Sales Grew 17 Per Cent in 
First Quarter 2010, retrieved on May 2010 from 
http://www.gartner.com/it/page.jsp?id=1372013 . 

[9] Joone, Java Object Oriented Neural Engine, retrieved on May 2010 
from http://sourceforge.net/projects/joone/ . 

[10] N. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and 
Knowledge Engineering, 1996, The MIT Press. 

[11] H. Ketabdar and M. Lyra, ActivityMonitor: Assisted Life Using 
Mobile Phones, IUI’10, Hong Kong, China, 2010, pp. 417-418. 

[12] Mobile Life 2012, retrieved on May 2010 from 
http://www.bitkom.org/en/Default.aspx . 

[13] G. Nolet, Seismic wave propagation and seismic tomography. 
Seismic Tomography, edited by G.Nolet, Reidel, Dordrecht, 1987, 
pp. 1-23. 

[14] OpenGL ES - The Standard for Embedded Accelerated 3D Graphics, 
retrieved on May 2010 from http://www.khronos.org/opengles/spec/ . 

[15] Open Handset Alliance, retrieved on May 2010 from 
http://www.openhandsetalliance.com . 

[16] The Quake-Catcher Network, retrieved on May 2010 from 
http://qcn.stanford.edu/ . 

[17] G. Romero, Seismic signals detection and classification using 
artificial neural networks, ANNALI DI GEOFISICA, VOL. XXXVII, 
N. 3, 1994, pp. 343-353. 

[18] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the 
Theory of Brain Mechanisms, Spartan Books, New York, 1962. 

[19] ShakeMaps Technical Manual, User’s Guide, and Software Guide 
retrieved on May 2010 from http://pubs.usgs.gov/tm/2005/12A01/ . 

[20] B. K. Sharma, A. Kumar, and V. M. Murthy, Evaluation of Seismic 
Events Detection Algorithms, JOURNAL GEOLOGICAL SOCIETY 
OF INDIA, Vol.75, 2010, pp.533-538. 

[21] K. Terzaghi and R. B. Peck, Geotecnica, 1974, UTET. 
[22] J. Y. Yang, J. S. Wang, and Y. P. Chen, Using acceleration 

measurements for activity recognition: An effective learning 
algorithm for constructing neural classifiers, Pattern Recognition 
Letters, Elsevier, 29, 2008, pp. 2213–2220. 

 

207

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-100-7


	I.  Introduction
	II. Related Work
	III. The proposed system
	A. The instrument and the phenomenon sensitivity
	B. The detection
	C. NNs and training
	IV. Conclusion
	Acknowledgment
	References



