Trust in Automation: An On-Road Study of Trust in Advanced Driver Assistance Systems

Liza Dixon
Hochschule Rhein-Waal
University of Applied Sciences
Kamp-Lintfort, Germany
email: lizadixon@gmail.com

William M. Megill
Hochschule Rhein-Waal
University of Applied Sciences
Kleve, Germany
email: william.megill@hochschulerhein-waal.de

Karsten Nebe
Hochschule Rhein-Waal
University of Applied Sciences
Kamp-Lintfort, Germany
email: karsten.nebe@hochschulerhein-waal.de

Abstract-Appropriate user trust is critical in ensuring the acceptance and safe use of Advanced Driver Assistance Systems (ADAS). Despite the prevalence of ADAS on-road today, there is a limited understanding of how trust is affected by a user's first contact with the system on-road. Ten participants without prior experience were introduced to a level 2 system and completed an on-road test drive session. Utilizing a mixedmethods approach including the Trust in Automation (TiA) questionnaire, verbal trust scores, and Facial Emotion Recognition (FER), trust in the system was measured at key milestones. TiA scores increased in a majority of participants, and a significant shift in the factor Reliability/Competence (p<0.05) was observed post-drive. According to FER scores, participants with a gain in TiA post-drive and those with a loss in TiA post-drive, more frequently displayed the emotions happy and angry, respectively. Results indicate that trust increases after a user's first experience with ADAS and further that FER may be predictive of user trust in automation.

Keywords--Advanced Driver Assistance Systems (ADAS); Trust; Human-Machine Interaction; Autonomous Vehicles.

I. INTRODUCTION

Foreign, emerging technologies face a proverbial struggle; acceptance. As a safety-critical system that creates a fundamental shift the role of the primary user (driver to passenger), Automated Driving Systems (ADS) present substantial challenges in user acceptance.

The term *Automated Driving System* refers to vehicles that are conditionally, highly or fully automated (level 3, 4 or 5, respectively), whereas, Advanced Driver Assistance System (ADAS) refers specifically to level 1 (assisted) or level 2 (partially automated) systems [1][2]. The pervasiveness of partial automation (level 2) in the form of Advanced Driver Assistance Systems (ADAS) and the dawn of conditional automation (level 3) in production vehicles on-road necessitates a robust understanding of Human-Machine Interaction (HMI) challenges in vehicle automation [1].

From a road safety perspective, the incentive for acceptance is clear—a majority of auto accidents are due to human error, killing 1.35 million people each year and leaving up to 50 million injured or disabled, internationally [3]. In addition to a humanitarian concern, acceptance is also an economic concern for companies heavily invested in the research and development of vehicle autonomy [4]. Failure to

support users in their exchange with ADAS on-road today, "will become increasingly costly and catastrophic [5]," as these systems grow in their prevalence and capabilities.

A. Trust in Automation

Studies have been conducted to gather insight regarding user sentiment towards vehicle autonomy, the results of which point to trust as a major factor in the acceptance of the technology [6]–[8]. Trust is defined by Mayer et al. [9] as an attitude, it is not risk-taking, "but rather it is a willingness to take risk." Adjusted for the context of automated systems by Körber, trust is, "the attitude of a user to be willing to be vulnerable to the actions of an automated system based on the expectation that it will perform a particular action important to the user, irrespective of the ability to monitor or to intervene [10]." Trust affects reliance on automation, and in turn reliance aids the user in navigating the complexities of automated systems, especially when the context of use demands adaptive behavior, as is the case with ADAS [5].

1) Closed Courses & Simulator Studies: Experiments to measure trust in vehicle autonomy have been carried out in both closed courses [11][12] and simulators [13][14]. For example, in an experiment with 72 participants, Gold et al. [13] utilized a driving simulator modeling a level 3 system to "investigate how the experience of automated driving will change trust in automation and the attitude of the driver towards automation." A questionnaire was administered before and after a 15-20 minute driving experience. Gaze behavior was also recorded in an effort "to measure a change of trust by a change in [eye] scanning behavior." The results of this study revealed that participants reported a higher level of trust in automation after the driving experience, however gaze behavior could not be established as a "valid measurement."

In an experiment using a Wizard of Oz setup (simulating an automated vehicle), Ekman et al. [12] explored a mixed-methods approach for the assessment of trust during a 15 minute drive on a closed course with 18 participants. The results of the study indicated that "data should not only be collected at the very end of a trial only but be complemented with data collection also during a trial, in particular in relation to events that may influence and contribute to a user's overall experience."

2) Framework & Questionnaire: Researchers have developed frameworks, models and scales for the assessment of user trust in vehicle autonomy. Ekman et al. [11] constructed the Lifecycle of Trust (LCoT) framework, to serve as a tool for HMI design. The LCoT identifies 11 trustthroughout the *Pre-Use* affecting factors (Implicit/Explicit Information), Learning Phase (all activities from Entering the Vehicle to transitions from Manual to Automated Control, to Exiting the Vehicle) and Performance Phase (covering Continuous Usage, Change of Context & Incidents). Validation of LCoT factors, specifically through the Pre-Use and Learning Phases are an area of interest for this study, as it is the most current, comprehensive framework for understanding the development of trust in automation.

Based on empirical research, Jian et al. [15] developed the "Checklist for Trust between People and Automation" a 7point Likert scale comprised of 12 questions designed for use as a general scale in any area where human-automation interaction occurs. Based on this, the work of Mayer et al. [9], Lee & See [5] and others, Körber [10] developed a refined model of Trust in Automation (TiA) with an accompanying 19-item, 5-point Likert scale questionnaire covering the Reliability/Competence. factors: following Understanding/Predictability, Intention of the Developers, Familiarity, Propensity to Trust and Trust in Automation. The questionnaire features questions, such as "The system is capable interpreting situations clearly," (Reliability/Competence) and inverse items such as "The system reacts unpredictably," (Understanding/Predictability) which correspond to the underlying factors. To the knowledge of the authors, this questionnaire has yet to be applied in a study of trust in partial automation on-road.

3) Facial Emotion Recognition: Facial Emotion Recognition (FER) via the analysis of facial expressions is of growing interest to HMI researchers in the area of automated driving. FER is currently being used as a tool for in-vehicle driver state monitoring (via driver facing cameras) in order to improve user experience [16]. According to Lee & See [5], "Emotional response to technology is not only important for acceptance, it can also make a fundamental contribution to safety and performance."

FER consists of three main events: 1) face and facial component detection, 2) feature extraction, and 3) expression classification [17]. The facial expressions which are associated with the emotions *happy* (*joy*), *anger*, and *surprise* are thought to be the most relevant in the context of automated driving and are used by commercial software companies in their analysis [16]. Studies have confirmed that the emotions *happy* and *angry* are the most influential on how a car is driven [18]. When used as part of a mixed-method approach in post-production, FER enables the observation of connections between driver emotional states, vehicle behaviors and reported trust in automation.

B. Research Questions

While closed courses and simulators provide a stable research environment, they are not fully aligned with the context of use, nor the state of the art. The release of one's personal safety to the system occurs exclusively while engaging with partial automation in an on-road setting. Hence,

existing research on is unable to specify how exposure to and experience with a level 2 system might impact user trust. In order to fill this gap in on-road studies, the following research questions were addressed in an experiment:

- Q1: How does a driver's first experience with an Advanced Driver Assistance System on-road affect their level of trust in the system?
- Q2: What emotions do first time drivers of Advanced Driver Assistance Systems display and is there a relationship between the emotions displayed and their reported levels of trust in the system?

Incorporating a mixed-method approach utilizing verbal trust scores, the Trust in Automation questionnaire [10], Facial Emotion Recognition, and qualitative/observational data, it was expected that the results of the experiment would indicate the following:

H1: Participants will report higher levels of trust in ADAS after their first experiential drive with an ADAS.

H2: FER analysis will reveal a relationship between a participant's TiA score and their emotions displayed during the drive.

Section II of this paper discusses participant demographics, the technical capabilities of the vehicle utilized for test drive sessions, and the experiment procedure. Results are reported in both Section III and Section IV, summarizing qualitative and qualitative findings, respectively. Section V is a discussion of the results, followed by Section VI which outlines the limitations of this study. The paper concludes with Section VII, which offers an outlook on future work.

II. METHODS

A total of n=10 participants were introduced to the same level 2 vehicle and completed one individual test drive session. All participants completed their test session within the same two-week period. The driving route was designed as a loop, beginning and ending at the participant's respective campus. The route included driving time on the autobahn (including a construction zone), country roads and in urban settings. Each experiment session lasted 1 hour and 30 minutes, approximately an hour of which was driving time. The same moderator accompanied all of the participants; participants were not explicitly told to activate the ADAS. A pilot test was conducted to refine the experiment structure and equipment, after which it was determined the route did not include enough highway time and was therefore revised.

A. Participants

Of the ten participants selected for this study, there were six females and four males. All participants were members of the university community. The mean age was M = 31.66 years (SD = 9.17), ranging from 20 to 48 years old). Six of the participants had been driving for over ten years while four had been driving for ten years or less. Educational level was split 50/50 between the participants, half holding a master's degree

or above and the other half having received vocational training.

Participants were screened prior to the experiment session to ensure they met specific requirements for the study: holding a valid driver's license, experience with automatic transmission, have no prior experience with the vehicle class (Mercedes-Benz GLC), not own or regularly operate a Mercedes-Benz, have no prior first-hand experience with ADAS, any semi-autonomous or autonomous vehicle systems (including for example: autopilot systems, adaptive cruise control or lane keeping assistants. Excluding: standard cruise control/speed limiters, back up cameras or blind spot assistants).

1) Disclosure: Participants were informed only that they would be taking part in a study of Human-Machine Interaction in ADAS which involved an on-road test drive. The focus of the study being specifically about their trust in the ADAS was intentionally withheld from the participants. It was not disclosed explicitly nor by accident (e.g., titles removed from trust questionnaire, discussion about experiment sessions prohibited) in order to mitigate the *Hawthorne Effect*. This effect refers to the inclination of research participants to adjust their behavior and act in a way that they believe is aligned with the expectation of the moderator [19]. This decision was also made in part due to the high cognitive demands of the experiment [20] (driving an unknown vehicle with unfamiliar technology on public roadways, while under observation) and to obtain unbiased and natural reactions in any participant commentary related to the discussion of trust in the system.

B. Vehicle

The same Mercedes-Benz GLC-250 4Matic was driven by all participants. This vehicle was equipped with the Driving Assistance Package Plus option which includes an Advanced Driver Assistance System (sub-systems relevant to this study are listed in TABLE I.). These features qualify the vehicle as a partially automated, level 2 system [1].

TABLE I. SELECT DRIVER ASSISTANCE PACKAGE PLUS FEATURES.

Feature	Function	Active
Distance-Pilot DISTRONIC with Steering Assist and Stop&Go Pilot	"Autonomous intelligent cruise control system" able to accelerate and decelerate according to traffic conditions. Steering interventions help the driver stay in lane. The system can follow the vehicle ahead even where there are no or unclear lane markings (<130 km/h).	0-200 km/h, driver activated
Hands-Off Warning	A haptic (steering wheel vibration) and graphic warning (in the multifunction display, next to the speedometer), alerts the driver to return their hands to the wheel. If this is not heeded, it is enhanced via an auditory warning tone.	Active with DISTRONIC
Active Lane Keeping-Assist Detects unintentional lane drift by monitoring road markers. Can tell if the vehicle veers out of lane without signaling, and will vibrate the steering wheel. Brakes individual wheels for correction, keeping the vehicle within the road markers.		60-200 km/h, (conditional)

Feature	Function	Active
PRE-SAFE® Brake with Pedestrian Detection	Able to detect pedestrians ahead and will apply the brakes automatically.	Up to 50 km/h
Traffic Sign Assist	Identifies traffic signs and speed limits on the instrument display via camera and GPS data.	Always active.

Source:[21].

The purpose of this study is not to cross-compare various technologies, but rather, to analyze the inherent trust in a particular vehicle's systems, holding this as a constant.

C. Procedure

In order to ensure consistency and objectivity between the experiment sessions, the moderator adhered to a set procedure (see TABLE II.) and script. At the start of the session, the moderator greeted the participant outside of the vehicle in the parking lot. This is when the participant was first exposed to the make and model of the vehicle. The participant was invited to enter the vehicle, where they were then interviewed regarding their initial impressions of the vehicle, Mercedes-Benz, thoughts about ADAS, vehicle autonomy, and their expectations of the system, including their initial feelings of trust in the system. They were then asked to give a verbal rating of trust in the ADAS on a scale from 1 to 5 (1=low, 5=high). Next, they watched an introductory video, featuring original content from Mercedes-Benz, edited to reflect the capabilities of the specific vehicle used for testing. The participant was informed that they were in full control of the vehicle at all times and responsible for obeying all traffic laws and posted signs. Next, the Trust in Automation questionnaire (modified from [10]) was administered to the participant in their native language (German or English, translation from [10]). After, they were encouraged to ask questions, to ensure their understanding of the system's functions and capabilities. They were asked to rehearse how to activate/deactivate the system while the car was parked. Following the introduction, each participant was asked for a second time to give a verbal rating of trust in the ADAS. Trust in Automation, Pre-drive vs Post-drive.

TABLE II. EXPERIMENT PROCEDURE

Pre-Drive		Drive	Post-Drive
Introduction I	Introduction II	Test Drive	Closing
1) Interview 2) VTS #1	1) Intro video 2) TiA #1 3) Interview 4) VTS #2	1) Planned route 2) Think aloud 3) FER	1) TiA #2 2) Interview 3) VTS #3

VTS = Verbal Trust Score, TiA = Körber's Questionnaire for Trust in Automation, FER = Facial Emotion Recognition

As the participants began the test drive with the route preprogrammed into the vehicle's GPS, the cameras were activated. The driver-facing camera was mounted to the windshield to the right of the steering wheel for later FER analysis. The driving scene (roadway ahead), multi-function display, and participant's interaction with the system's interface was were captured by a second camera mounted behind/next to the driver's right shoulder.

During the test drive, the moderator did not give any tasks to the participants other than to follow the route on the GPS.

The moderator played an observatory role, giving instruction only when prompted (e.g., clarifying a system limitation). Participants activated the system only as they felt comfortable, in the appropriate conditions and were encouraged to think aloud [5] while doing so. Participants were asked to state aloud whether they or the car was performing certain actions (steering, braking, acceleration/deceleration) throughout the drive and to share their thoughts on the vehicle's behavior as it occurred. Top speed with ADAS active was recorded for each participant as well as adjustments in posture (positioning of hands, arms and feet on/off pedals). Immediately following the drive, the TiA questionnaire was administered a second time. Participants then completed a post-drive interview and gave a final verbal rating of trust in the ADAS on a scale from 1 to 5 (1=low, 5=high), based on their experience. All interview audio was recorded for later reference.

1) Data Analysis: The responses to the TiA questionnaire were scored following the procedure used by the System Usability Scale [22]. Adjusted for the number of questions, responses were reverse coded, added together and then multiplied by a factor to convert the original scores of 0-68 to a 0-100 value, in order to better identify discrepancies in participant's pre-use and post-use scores (the factor Familiarity was removed from analysis, as all participants were selected purposefully to have no prior experience with the technology). A Wilcoxon Signed-Rank Test was used to examine differences in pre-drive and post-drive, reverse coded TiA questionnaire medians. This method was chosen as it is appropriate for the comparison of medians in ordinal data from related groups with a symmetrical distribution [23]. Wilcoxon was performed for all TiA factors together (Reliability/Competence, Understanding/ Predictability, Intention of the Developers, Propensity to Trust and Trust in Automation) and for each factor's respective set of questions. Friedman's Test (adjusted for ties) was used at to analyze shifts verbal trust scores (preintroduction, post-introduction and post-drive). Friedman's was selected as the data is ordinal, came from a single group measured at three intervals, and there are no interacting effects between the groups [24], [25]. Statistical analysis and plotting of TiA and verbal trust scores was completed in RStudio [26] using the stats [27], agricolae [28], and ggplot2 [29] packages.

2) Facial Emotion Recognition: Driver facing video footage was processed by a convolutional neural network (CNN) with 3 convolutional layers and two fully connected layers (including the output layer). The CNN was trained for the facial emotion recognition of seven emotions [30], however a reduced set of emotions was selected for analysis: neutral, happy, surprise, and angry [16][20]. Classification performance using this set of emotions was reported 81% accurate by Mathworks MATLAB 2018b [31], which was used to run the network and output the data in text files. The text files were then compiled, cleaned and analyzed in RStudio.

III. QUALITATIVE RESULTS

Participant commentary from the interviews (pre-intro, post-intro, post-drive) and during the test drives was recorded.

This Section includes excerpts from the commentary and participant behaviors recorded. The commentary was transcribed and categorized according to the TiA factors examined by the questionnaire [10], and additionally participant *Driving Style* and *Weather*.

A. Reliability/Competence

Toward the end of the drive, P9 said, "I think the benefits [of ADAS] are clear and undeniable. Every system here is intended to improve safety. I don't think there's any danger posed by the system," and "I was skeptical. Having seen it in action, having felt it under my hands...it is a good thing and I could recommend this kind of system to other people as well. I could talk positively about my experiences on the road. I wouldn't be averse to having this kind of system in my own vehicle."

P4 took back control while in an autobahn construction zone due to discomfort with Steer Assist, stating, "It's keeping us in the lanes but before it was a little bit problematic. It went too far to the right and then it went to the left and then I intervened because I was not sure if it would do it itself."

After the drive, P4 said, "There were a couple of mistakes [with Steer Assist] and it was not too clear to me if it was on or off. I guess that's not the point of the system, that I have to focus more on the [system] than the road. It's not as useful because I have to keep my hands at the wheel anyway." During the course of the test drives the system experienced one malfunction, which occurred during P4's test drive. While driving on a country road, the system drifted the vehicle out of its lane. P4 allowed the vehicle to continue drifting out of lane until half of the vehicle was in the lane of the oncoming traffic before intervening.

B. Understanding/Predictability

After the introduction to the ADAS, P7 stated, "I was curious and skeptical at the beginning but now that I know more about how [the systems] work and what they can do for me, it makes me more confident. I think I may struggle with using them due to a lack of experience. I can trust [assistance] more than a full take-over of my driving."

P7 expressed how unpredictable vehicle behaviors affected feelings of trust, "I felt that I was mostly in control of the system, but not when resuming my settings. I knew I was faster when I last used the feature, so I wanted to use it to accelerate. But sometimes it was much faster than I expected. It was alarmingly fast. I did not trust in the braking after such a strong acceleration."

1) Mental Model: Several participants made comments that revealed changes in their mental model of the system as the drive progressed.

During the test drive, when P5 activated the system, they did not release their foot from the pedal until $\sim\!40$ minutes in to the drive, which automatically caused the distance control system (Distance Pilot) to become passive, leading P5 to become confused about the system's functionality.

P2 said, "I see the lane is not there, so I will not trust [the system.]" and "It is steering but I want to make sure I keep my hands on the wheel because there is no lane marking right there." P6 expressed, "Maybe the [steer assist] is off because it has to "take some information in to analyze the situation," indicating their perception of the system's functionality. P9

stated, "I thought maybe if I moved to the right a little bit, [the system] would start to see a pattern in the lanes. I was trying to show the car what the lane looks like. I thought maybe if you just adjust the position of the car within these lanes that it could find a pattern within it, that it could orient itself."

P8 mentioned a time they adjusted their mental model and hence behavior, "Most times I felt in control. Except for the two times when the car ahead [moved into the adjacent lane and] turned off the road. I thought the system misinterpreted it a bit. I anticipated it the second time, based on the first time, that it could happen, and my anticipation was right."

C. Intention of the Developers

Participants (P1, P3, P5, P7) said that they felt "safe and comfortable" in the vehicle due to the brand. Several mentioned that they would prefer to drive a vehicle from another brand (P1, P8, P9). After an introduction to the system, P9 said, "I wouldn't say I necessarily feel better about [the system]...I think the developers did their best to create a system that doesn't put people in harm. I have faith in them but there are so many variables on the road that I don't feel comfortable putting my full trust in the system."

a) Implicit Information: P9 referenced stories they have heard in the media: "On the news you'll see, in the United States in particular, where people are very excited about automated driving systems, that someone runs into something because they are not paying attention and then ends up in a fatal accident. That puts me on edge about the whole thing. I am not exploding with excitement [to use the system]."

D. Propensity to Trust

In the initial interview, P1 said, "I am like a dinosaur. I don't have a big trust in the system. I feel safe with things I can see." After an introduction to the system, P1 expressed their feelings towards driving: "If I drive, I am concentrated on it and I like it. I would not like a car to do things for me that I could do myself." P7 stated, "I am curious and also suspicious if it really works. I think that I can do better than the automatic calculations of the system. It is making me curious but also cautious."

E. Trust in Automation

P5 expressed a desire to test this system but at each opportunity they intervened and took back control; in the end, stating, "I can't trust the system so fast. You would have to put a wall out of cushions in front of me before I try that" (referring to the Stop&Go Pilot). After the test drive, P5 stated "It's up to me how much I trust the system. If I would drive with such a system for a long time, I would put more trust in it. But now it's a very big contrast in driving for me."

P6 said, "I am not totally trusting but for me a [verbal trust score of] 4 is very high because I normally do not like these systems. But it is very comfortable to me now."

Throughout the test drive P10 was animated and expressive stating at the end, "It is a bit creepy for me...to trust a car. Normally, you trust a driver. I hate to go by airplane. Because you have to trust someone else. A stranger! But here...you have to trust a car...something with no inside, no feelings! It is only a system, a machine, and you have to trust it. The longer you drive it and the more you get familiar

with it...you get a feeling for it and you start to trust the system."

F. Driving Style

During the test drive, P9 reflected on the effect the ADAS might have on driving styles, "I could imagine the system really reducing reckless driving. I don't feel the need to even worry about passing this person. I kind of just feel comfortable letting the car takeover. It kind of takes the pressure off me to take some sort of an action. If driving manual transmission, I would probably be more aggressive right now."

P9 stated they would "feel better" if other cars around them were using ADAS. "There are a lot of really bad drivers. I would know the car is going to adjust to keep them within tolerance limits automatically. I would probably feel better about being in traffic with the person." P10 said, "Maybe I would pay more attention to a car [with ADAS]. Because I know it is new a technology. But you can expect more of what a system would do than a human. A system would work or not work, not be in-between like humans. Maybe these are the cars on the road now that you think, 'Oh that driver drives very correctly."

1) Risk-taking: Shortly after expressing their apprehension at the start ("I am very nervous about what we're going to do today"), P3 engaged in repeated attempts to test the system at high speeds while on the autobahn. P3 intentionally drifted over lane markings several times to see if the Active Lane Keeping system would reorient the vehicle properly in the lane.

20 minutes into drive, P8 "provoked" the system, stating, "Now [the system] steered, because I provoked it. I tried to go straighter than I should have into the turn. If you get the angle of the curve wrong, it's nice that someone assists you with it."

When testing the Stop&Go Pilot, P7 said, "The car will stop? Cautiously, I am trying that. I've got my foot over the pedal. The car...the car completely stopped. It is new and weird. Okay, wow. Now it's going again on its own. If I know this is doing the job for me, I feel comfortable in releasing my foot and not keeping it directly above the pedals." P9 stated, "So it's going to stop completely? That's giving me a little bit of apprehension right now. That feeling, do I let it? Cause that's like twenty years of driving experience inching up towards that bumper."

Several of the participants drove through or attempted to drive through roundabouts in urban settings while the system was active. P4 followed a vehicle in front through the roundabout and out of the second exit. P8 also followed a vehicle into the roundabout but intervened as the system accelerated once the vehicle in front exited. P6, P7, and P10 approached the roundabout with ADAS active but intervened.

P4 was the only participant who activated the ADAS near its top speed at 190 km/h.

a) Hands Off: All participants with the exception of P5 removed their hands from the wheel long enough to trigger the hands-off warning graphic and/or auditory warning tone.

Halfway through the drive, while traveling on the autobahn (160 km/h), P1 crossed their arms. P1 also adjusted the position of their headrest at high speed, stating "See, this is something I would do now, because the system is on" as

they put both arms behind their head and adjusted the headrest.

P4 stated, "You get a warning to put your hands on, but you don't have to do anything, it's just going on its own anyway." P4 discovered a work-around for disabling the hands-off warning; by briefly nudging the steering wheel slightly from side to side they were able to cease the warnings temporarily. P4 continued to workaround these warnings, through a narrow construction zone.

P3 told the hands-off auditory warning to "shut up" and P4 referred to it as "annoying." P4 received the most hands-off warning notifications of all participants (over 45 notifications).

2) Risk-aversion: Participants P1, P2, P5 and P6 did not allow the Stop&Go Pilot to come to a full stop while all other participants did. P2 had the lowest top speed at 130 km/h and possessed the most cautious driving style.

G. Weather

One instance of rain occurred which lasted approximately 15 minutes toward the end of P3's test drive. P3 said, "I like the system. I trust the system. But because of the rain I have not such a safe feeling because I don't know this car and I am driving it for the first time. It's not like you just sit here and feel safe, because it's up to all of the things that can happen around you." At the end of the drive, P3 stated, "If there was no rain, I would give the system a [verbal trust score of] 5 because it worked, and it did what it was supposed to do. Because of the rain, I didn't feel so safe, so I will say 4."

IV. QUANTITATIVE RESULTS

A. Verbal Trust Scores

Participants were asked to give a verbal rating of trust in the vehicle's ADAS on a scale from 1 to 5 (1=low trust, 5=high trust) three times throughout the experiment session: pre-interview, post-introduction, and post-drive.

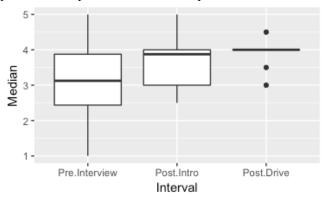


Figure 1. Comparison of median verbal trust scores for all participants at key intervals during the experiment, which were nearly significant at p>0.05.

Verbal trust scores indicated that six of the participants had an increase in trust after receiving an introduction to system (ranging from +0.25 to +1.50 compared to preinterview scores). Three showed no change and one reported a decrease in trust (-0.50). Post-Drive, seven of the participants reported an increase in trust (ranging from +0.50 to +2.50), while one reported no change and two reported a

decrease in trust (-1.0). A non-parametric Friedman test of differences among repeated measures, adjusted for ties was conducted and rendered χ 2(18)=0.07, p>0.05, which was nearly significant (see Figure 1).

B. TiA Questionnaire

The Trust in Automation questionnaire was administered twice during the experiment session: after participants were introduced to the system (pre-drive) and again after the test drive (post-drive). Scored results (see Section II.C.1. *Data Analysis*) from the questionnaire indicated that three participants had a decrease in TiA after the test drive (P1, P5, P4) while all other participants reported an increase of TiA after the test drive (see Table III). All of the participants who reported a decrease in trust after the drive were >30 years of age with ten or more years of driving experience.

TABLE III. TRUST IN AUTOMATION SCORES: PRE-DRIVE VS POST-DRIVE.

Participant	Interval		
	Pre-Drive	Post-Drive	Change in TiA
P9	57.408	82.432	+ 25.024
P8	54.464	72.128	+ 17.664
P10	45.632	61.824	+ 16.192
P7	47.104	63.296	+ 16.192
P2	64.8	75.1	+ 10.3
P3	63.3	72.1	+ 8.8
P6	57.408	61.824	+ 4.416
P1	50	47.8	- 2.2
P5	75.1	63.3	- 11.8
P4	54.5	35.3	- 19.2

By participant, pre-drive and post-drive. An increase in TiA occurred in all participants while a decrease in TiA was observed in P1, P4 and P5.

In one instance, a participant's (P1) verbal trust scores did not align with their self-reported TiA responses. P1 verbally reported a gain in trust post-drive, but in the post-drive questionnaire reported a loss of trust.

Each participant's TiA response (based on the 5-point Likert scale) was recoded, and a pre-drive median and post-drive median value was given for each participant. A Wilcoxon Signed-Rank Test performed on all participant's pre-drive and post-drive medians indicated that the post-drive TiA median scores were not significantly higher than pre-drive median TiA scores (*Z*=-0.86, p>0.05) (Figure 2, factor: all).

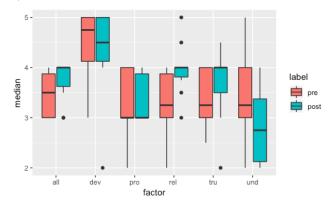


Figure 2. Trust in Automation, pre-drive (pre) & post-drive (post) medians. Shown overall (all) and for each factor (dev=Intention of the

Developers, pro=Propensity to Trust, rel=Reliability/Competence, tru=Trust in Automation, und=Understanding/Predictability).

The factors *Reliability/Competence*, *Understanding/Predictability*, *Intention of the Developers*, *Propensity to Trust*, *Trust in Automation* were also considered individually for analysis. The post-drive median score for *Reliability/Competence* was found to be significantly higher than the pre-drive median score (*Z*=-2.17, p<0.05) (see Figure 2, factor: rel). The pre-drive vs. post-drive median scores for the other factors were not found to be statistically significant at p>0.05.

C. Facial Emotion Recognition + TiA Score

The driver facing camera footage for each participant's test drive was processed by the convolutional neural network for FER. A value ranging from 0 to 1.0 for each emotional state (where each of the four emotions, happy, angry, surprise and neutral share a portion of a 1.0 value) were returned every one tenth of a second for the entirety of the drive. The overall mean values for each emotion were noted separately for each participant. Values were then converted into a percentage, indicating which emotions were most dominant throughout each drive for each participant, respectively. Figure 3 displays the relationship between participant's reported TiA scores and FER scores. The y-axis reflects the change in participants predrive vs. post-drive TiA scores, in order from the greatest gain to the greatest loss in TiA. The x-axis presents the FER score as a percentage, indicating the dominant emotion for each participant's drive. Neutral was the dominant emotion among all participants, however participants displayed differing frequencies of the emotions happy, angry and surprise. Participants with a gain in TiA post-drive tended to display happy whereas participants with a loss in TiA post-drive tended to display *angry* (see Figure 3). Note the distribution of angry among participants and its prevalence in those with a loss in TiA.

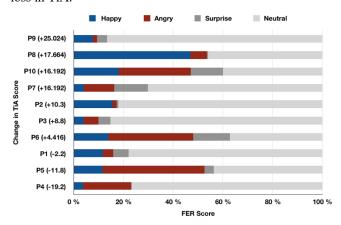


Figure 3. Participant change in TiA Score compared with FER scores (converted to percentage).

According to their TiA scores, participants P9 and P8 reported the greatest gain in trust and (with the exception of *neutral*) displayed *happy* as a dominant emotion. Participants P4 and P5 reported the greatest loss of trust and (with the exception of *neutral*) displayed *angry* as a dominant emotion. A loss of trust was observed in both P4 and P5's verbal trust

scores, which decreased at the same interval (both -1.0 post-drive), while P8 and P9 reported an increase in trust at the same intervals (both +1.25 post-introduction and post-drive).

P7 and P10 reported the same gain in TiA post-drive yet displayed different dominant emotions according to FER. A comparison of the verbal trust scores of P7 and P10 do not reveal the same changes in trust (P7 reported verbally no change in trust post-drive, while P10 reported +1.0 post-drive). Additionally, P10 displayed the dominant emotions as those drivers which had the greatest loss in trust (P4 & P5).

Relative to the other drivers in this study, P4 possessed the most aggressive driving style (e.g., speed, triggering of hands off warning graphic/tone). A contrast to P5, who was the most reluctant to give over control to the system and did not take their hands-off the wheel. However, both P4 and P5's TiA scores revealed the greatest loss of in trust in automation post-drive. This loss of trust is also reflected in their verbal trust scores, as they were the only participants to verbally report a decrease in trust post-drive. Further, P4 and P5's both displayed *angry* as a dominate emotion.

V. DISCUSSION

Nesting automation in safety-critical systems requires careful consideration from an HMI perspective. In order to determine what affect a user's first contact with an ADAS has on their level of trust in the system, an on-road experiment with ten participants with no prior experience with ADAS was conducted. The use of the Trust in Automation questionnaire [14], verbal trust scores, Facial Emotion Recognition, and interviews/observational data, enabled a mixed method analysis of each user's experience. It was hypothesized that participants would report higher levels of trust in ADAS after their first experiential drive, and that FER results would reveal a relationship between a participant's TiA score and the emotions displayed (happy, angry, surprised) during the drive.

The scored results of the TiA questionnaire revealed that, trust in automation increased after the test drive in a majority of the participants. A comparison of pre- vs. post-drive median TiA scores however, did not reveal a statistically significant difference in trust in automation (p>0.05).

The significant rise in factor *Reliability/Competence* (p<0.05, Figure 2) after the drive indicates that based on their experience driving with the ADAS, participants believe that the system performed in a way that reliably assisted them in achieving their goals [5]. Additionally, participants made comments corresponding to the underlying factors of trust in automation, for example, P1 referred to themself as a "dinosaur" regarding their approach to technology, which may be interpreted as an indicator of their *Propensity to Trust*. Reviewing P1's median TiA score for the factor *Propensity to Trust* reveals a low score (pre-drive: 3, post-drive: 2). P9 mentioned their, "faith in the developers" during the experiment session. P9's median TiA score for the factor *Intention of the Developers* was high (pre-drive: 5, post-drive: 5).

Perhaps inherent trust in the established Mercedes brand had an effect on the initial scores, but it is not clear what effect it might have had on the scores post-drive. As noted, a system malfunction occurred during the later part of P4's test drive. One can assume that this was weighed as a factor in their reported feelings of trust in the system. Additionally, it is plausible that the *Hawthorne Effect* [19] may have occurred in the instance where a participant (P1) reported a increase in trust verbally post-drive, but a decrease in trust on the questionnaire post-drive.

Participants with a gain in Trust in Automation post-drive tended to display *happy* more frequently in their FER score while those with a loss in TiA post-drive tended to display *angry* more frequently (Figure 3). This finding is of interest, as self-reported feelings of trust in automation and emotional states appear to follow a similar pattern. This gives validity to the combination of TiA, verbal trust score and FER data, suggesting that this approach may be able to identify a specific persona, who may be less trusting and therefore less accepting of ADAS. However, due to some discrepancies (see Section IV.C.), additional research is needed to determine if a relationship between trust in automation and emotions captured via FER can be replicated.

The driving behaviors of the participants demonstrated a willingness to take risks with the system, for example: using Stop&Go Pilot, hands-off events, and attempting to use the system in complex scenarios such as construction zones, roundabouts, and urban settings. This is aligned with the definition of trust by Mayer et al. [9]. Based on the results of this study however, displaying a willingness to take risks with the system alone is not a reliable indicator of trust as the participant who took the most risks with the system (P4) reported the greatest loss of trust post-drive.

Referring back to the LCoT framework by Ekman et al. [11], the Learning Phase events, Control Transition 1, Automated Mode and Control Transition 2 (handover scenarios) do not list *Mental Model* as a trust-affecting factor. This is contradicted by the observations in this study. For example, during the test drive, while thinking aloud, participants stated their beliefs about how the system would behave prior to engaging in Control Transition 1. While in Automated Mode participants stated their expectations of the system's behavior. When the system behaved in way that was not aligned with their expectations, participants engaged in Control Transition 2. Participants then stated why they took back control, and based on their learning from the scenario, adjusted their mental model to adapt their future interaction with the system (see Section B.1). Participants who more easily developed an accurate mental model aligned with the functionality of the system handed control over to the system more easily whereas those whose mental model was not well aligned with the system had a difficult time handing over control to the vehicle. For example, P5 was reluctant to release their foot from the accelerator for an extended period of time, indicating they possessed a poor mental model of the system's functionality. After several Transitions, P5 made adjustments to their mental model and their interaction became more fluid. In contrast to P9, who gained an understanding of the system functionality quickly, expressed a desire to work with the system by showing "the car what the lane(s) looks like." P9's accurate model of the system (that the vehicle is tracking the lane markings) allowed for them to place more trust in the system. This suggests that during the Learning Phase, both Automated Mode and Control Transition events are impacted by the trust-affecting factor Mental Model.

This study confirms Ekman et al.'s [12] conclusion that a mixed methods approach is required to understand trust in automation. Results also suggest that the finding by Gold et al.'s [13] simulator study ("driving experience increased self-reported trust in automation") does in fact carry over to the on-road context of use. A method for correlating FER data and TiA scores is presented which may be explored in future studies.

VI. LIMITATIONS

Studies in simulators and on closed courses allow for significant control over research conditions, whereas studies on public roads leave much open to chance. Each participant was exposed to a variety of different scenarios at varying frequencies and intervals throughout the drive, with unplanned events such as rain or a system malfunction occurring simply by chance. While this study provides insight into the development of trust in ADAS on-road, one should be cautious in generalizing the results of this study, understanding that the it is specific to the design of Mercedes-Benz ADAS.

VII. CONCLUSION AND FUTURE WORK

An enhanced understanding of the exchange between the user and the system on-road and the resulting effects on trust, will aid in the design of safer, more efficient automated systems. Further analysis of driver emotional response and/or behavioral cues in correlation with specific driving events and vehicle behaviors (i.e., hands-off, overtaking a vehicle) are of interest due to the relationship between emotion and TiA scores observed in this study. FER accuracy could also be improved by means of data augmentation or by training the network on a more robust dataset. Analysis with an emotion recognition method specifically for driver speech may also be insightful, especially with the movement towards voice user interfaces in-vehicle. The finding that all participants who reported a decrease in trust after the drive came from a similar demographic (>30 years of age, ten or more years of driving experience) warrants further investigation.

The findings presented here support future research of trust in semi-autonomous vehicles and other applications of human-automation interaction. More research is needed to improve the understanding of the development of trust in automation, in order to aid the user in their acceptance of this safety-critical technology. Tackling issues of trust in ADAS today lays the groundwork for the acceptance of higher levels of autonomy in the future, eventually leading to fewer deaths, less injury, disability and a safer more enjoyable on-road experience for all.

ACKNOWLEDGMENTS

Thank you to Herbrand Mercedes-Benz and Mr. Sven Ingenpaß for the generous loan of the vehicle for this project. To the administration and staff of Hochschule Rhein-Waal University of Applied Sciences for their support and to the university staff who participated in this study, thank you. Special thanks to Dr. Claudio Abels for assisting with logistics, Dr. André Frank Krause for his assistance on the CNN for FER, Ms. Sabine Lauderbach for her knowledge of statistics, and to Mr. Mario Laugks and Ms. Hale Kadak for their attention to detail.

REFERENCES

- [1] Society of Automotive Engineers (SAE) International, "Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles: J3016 201806," 2018.
- [2] NHTSA, "National Highway Traffic Safety Administration Preliminary Statement of Policy Concerning Automated Vehicles," Natl. Highw. Traffic Saf. Adm., p. 14, 2013.
- [3] World Health Organization, "Global status report on road safety 2018," World Health Organization, 2019. [Online]. Available:

 https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/. [retrieved: May, 2019].
- [4] C. Kerry and J. Karsten, "Gauging investment in self-driving cars," *The Brookings Institution*, 2017. [Online]. Available: https://www.brookings.edu/research/gauging-investment-in-self-driving-cars/. [retrieved: May, 2019].
- [5] J. Lee and K. See, "Trust in Automation: Designing for Appropriate Reliance," *Hum. Factors J. Hum. Factors Ergon. Soc.*, vol. 46, no. 1, pp. 50–80, 2004.
- [6] N. Hutchins and L. Hook, "Technology Acceptance Model for Safety Critical Autonomous Transportation Systems," 2017 IEEE/AIAA 36th Digit. Avion. Syst. Conf., pp. 1–5, 2017.
- [7] C. Rödel, S. Stadler, A. Meschtscherjakov, and M. Tscheligi, "Towards Autonomous Cars: The Effect of Autonomy Levels on Acceptance and User Experience," Proc. 6th Int. Conf. Automot. User Interfaces Interact. Veh. Appl., pp. 1–8, 2014.
- [8] M. Nees, "Acceptance of Self-driving Cars: An Examination of Idealized versus Realistic Portrayals with a Self- driving Car Acceptance Scale," *Proceedings Human* Factors Ergonomics Society Annual Meeting, vol. 60, no. 1, pp. 1449–1453, 2016. doi: 10.1177/1541931213601332.
- [9] R. Mayer, J. Davis, and D. Schoorman, "An Integrative Model of Organizational Trust," 1995. The Academy of Management Review, Vol. 20, No. 3 (Jul., 1995), pp. 709-734
- [10] M. Körber, "Theoretical considerations and development of a questionnaire to measure trust in automation," in 20th Triennial Congress of the IEA, 2018.
- [11] F. Ekman, M. Johansson, and J. Sochor, "Creating Appropriate Trust for Autonomous Vehicle Systems: A Framework for Human-Machine Interaction Design," 95th Annu. Meet. Transp. Res. Board, pp. 1–7, 2017.
- [12] F. Ekman and M. Johansson, "Understanding Trust in an AV-context: A Mixed Method Approach," *Proc. 6th Humanist Conf.*, no. June, pp. 13–14, 2018.
- [13] C. Gold, M. Körber, C. Hohenberger, D. Lechner, and K. Bengler, "Trust in Automation Before and After the Experience of Take-over Scenarios in a Highly Automated Vehicle," *Procedia Manuf.*, vol. 3, no. November, pp. 3025–3032, 2015.
- [14] M. Körber, E. Baseler, and K. Bengler, "Introduction matters: Manipulating trust in automation and reliance in

- automated driving," *Appl. Ergon.*, vol. 66, no. January, pp. 18–31, 2018.
- [15] J. Jian, A. Bisantz, and C. Drury, "Foundations for an Empirically Determined Scale of Trust in Automated Systems," Int. J. Cogn. Found. an Empirically Determ. Scale Trust Autom. Syst., no. January 2015, pp. 37–41, 2000.
- [16] Affectiva Inc., "Affectiva Automotive AI: Metrics in Affectiva Automotive AI," 2018. [Online]. Available: https://www.affectiva.com/product/affectiva-automotive-ai/. [retrieved: May, 2019].
- [17] B. Ko, "A Brief Review of Facial Emotion Recognition Based on Visual Information," Sensors, vol. 18, no. 2, p. 401, 2018.
- [18] T.-K. Tews, M. Oehl, F. W. Siebert, R. Höger, and H. Faasch, "Emotional Human-Machine Interaction: Cues from Facial Expressions," Springer, Berlin, Heidelberg, 2011, pp. 641–650.
- [19] L. Bortolotti and M. Mameli, "Decpetion in Psychology: Moral Costs and Benefits of Unsought Self-Knowledge," Account. Res., vol. 13, no. 3, pp. 1–20, 2006.
- [20] F. Eyben et al., "Emotion on the Road—Necessity, Acceptance, and Feasibility of Affective Computing in the Car," Adv. Human-Computer Interact., pp. 1–17, Jul. 2010.
- [21] Daimler AG, "Active safety: Intelligent Drive: Assistance in all driving situations," *Daimler Global Media Site*, 2019.

 [Online]. Available: https://media.daimler.com/marsMediaSite/en/instance/ko/Active-safety-Intelligent-Drive-Assistance-in-all-driving-situations.xhtml?oid=10001778. [retrieved: May, 2019].
- [22] J. Brooke, "SUS A quick and dirty usability scale," Usability Eval. Ind., vol. 189, no. 194, pp. 4–7, 1996.
- [23] Lund Research Ltd, "Wilcoxon Signed Rank Test in SPSS Statistics," *Laerd Statistics*, 2018. [Online]. Available: https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php. [retrieved: May, 2019].
- [24] M. Berenson, D. Levine, and T. Krehbiel, *Basic Business Statistics: Concepts and Applications*, New Jersey. Upper Saddle River: Prentice Hall, 2012.
- [25] Statistics How To, "Friedman's Test / Two Way Analysis of Variance by Ranks," Statistics How To, 2014. [Online]. Available: http://www.statisticshowto.com/friedmanstest/. [retrieved: May, 2019].
- [26] RStudio, "RStudio: Integrated development environment for R." Boston, MA, 2018.
- [27] R Core Team, "R: A language and environment for statistical computing." R Foundation for Statistical Computing, Vienna, Austria, 2018.
- [28] Felipe de Mendiburu, "agricolae: Statistical Procedures for Agricultural Research." R package version 1.2-8, 2017.
- [29] H. Wickham, "ggplot2: Elegant Graphics for Data Analysis." Springer-Verlag, New York, 2016. ISBN: 978-0-387-98141-3.
- [30] I. J. Goodfellow *et al.*, "Challenges in Representation Learning: A report on three machine learning contests."
- [31] MathWorks Inc., "MATLAB." 2018.