
Algorithms for Mapping RDB Schema to RDF for Facilitating Access to Deep Web

Wondu Y. Mallede, Farhi Marir, Vassil T. Vassilev

Knowledge Management Research Centre,

School of Computing, London Metropolitan University, London, U.K

wym0001@my.londonmet.ac.uk, f.marir@londonmet.ac.uk, v.vassilev@londonmet.ac.uk

Abstract— Semantic Web sets the standard for a universal and

interoperable data representation that is not only readable to

the naked eye but also to computers. The use of Uniform

Resource Identifier (URI) and the capability to use description

logic through semantic ontology languages makes semantic

web the favoured framework to represent knowledge.

Semantic Web standards play a vital role in making the

existing relational database, which is locked behind in the

“deep web”, available for computer processing. In order to

map the relational database in its entirety, the methodology

should not only map the data but also the domain specific

knowledge. The algorithms and their implementation

presented in this paper use the meta-data from the data

dictionary to construct the initial semantic repository, while

using domain specific knowledge during in-processing stage.

Keywords-Relational Database Mapping; Domain Specific

Knowledge; Semantic Web; Data Mapping Algorithm

I. INTRODUCTION

The current web experience gives us a fairly abundant

data. Using a few keywords and common search engines, it
usually does not fail to return search results as well. With all
its openness, the web gives anyone a chance to contribute
ideas to be shared by the whole world about any topic. The
web often feels like it is a mile wide, but an inch deep. How
can we build a more integrated, consistent, deep web
experience? [1].

The ANSI-SPARC (American National Standards
Institute, Standards Planning And Requirements Committee)
architecture for databases dictates the separation of the
conceptual level from both external view (users) and
physical level (files). The conceptual level consists of all the
entities, their relationships and constraints that channel the
data back and forth between the external and physical level.
Mapping the conceptual level to semantic Resource
Description Format (RDF) [12] makes the “deep web” re-
surface for semantic interpretation and processing. The
Semantic Framework helps narrow the gap between the
“deep web” and the “surface” web.

Semantic Web is a framework which allows information
to be represented not only structurally using suitable
structural definitions ("data schema"), specific instances of
them ("data") and their use ("access rights"), but also
semantically using a logical model which allows formal
interpretation and sound logical inference about the
information ("knowledge"). Relational data models on the
other hand lack the capability to represent “knowledge” in

spite of their popularity. Since most KR (Knowledge
Representation) mechanisms and the Relational Data Model
are based on symbolic languages, the ability to represent and
utilize knowledge that is imprecise, uncertain, partially true
and approximate is lacking, at least in the base/standard
models [9]. This lack of capability to represent and process
knowledge while it is still in relational model is one of the
challenges in Knowledge Management. This research
focuses on the development and evaluation of algorithms to
map the Relational Database (RDB) schemas to RDF in
Semantic Web to allow access to deep web applications. The
evaluation and validation of the developed mapping
algorithms has been undertaken on a space project
management domain-specific application.

Space program projects involve activities like
observation, human space exploration, space launch and
navigation, operational maintenance, etc. The range of
terminologies, standards, unit measurements, and definitions
will all be referring to the space domain ontology. The
practical evaluation of the developed mapping algorithms
has been undertaken on Oracle database system representing
the space database schema which is composed of six major
relational concepts- Documents, Risks, Non Conformances,
Reviews, Actions, and Projects.

Semantic Web has a data model as part of its architecture
that will be used as a repository to store ‘semantic data’-
RDF. RDF is a format to store data in Semantic Web and
will use RDF Schema (RDFS) [13] and Web Ontology
Language (OWL) [14] to interpret the data. Data in RDF
Schema not only has literals but also a semantic meaning
attached to it. This meaning has different informal
hierarchies and formal taxonomies in its knowledge domain
(space-domain). This leads to the introduction of a
consensually shared view of concepts called Ontologies.
Ontology is a formal, explicit specification of a shared
conceptualisation [10]. The specifications use relations,
functions, constraints, and axioms to conceptualise the
abstract model. 'Formal', in the ontology definition, refers to
the fact that the expressions must be machine readable;
hence, natural language is excluded [6]. RDF was designed
for situations where Web data need to be processed and
exchanged by applications, rather than being displayed for
people. The ability to exchange data between different
applications means that the data may be made available to
applications other than those for which they were originally
intended [11].

Semantic data models and frameworks help organise the
knowledge about specific domain and share amongst
systems. The models help to see the "semantic" from

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

different angles and refine the meaning by working on the
ambiguity while reusing its commonality. When two (or
more!) viewpoints come together in a web of knowledge,
there will typically be overlap, disagreement, and confusion
before synergy, cooperation and collaboration [1].

With Relational data on one side and RDF repository
data on the other, the mapping algorithms have involved
domain specific heuristic formulation to satisfy the accurate
implementation of knowledge transfer. Different reasoning
logic and rules are part of the mapping algorithms.

Figure 1. Relational to Semantic Mapping Model

The mapping implementation involves RDF, Web
Ontology Languages (RDFS/OWL), RDF query language
(SPARQL) and semantic rule languages on Oracle database
systems. The research project focuses on how to take
advantage of the already existing vast relational data to build
a knowledge base in using Semantic Web Framework. In the
current Semantic architecture RDF is a favoured data
serialization format to represent and manage knowledge. The
ultimate goal of the research is a formal heuristics-based
methodology for mapping relational database to semantic
knowledge base. Section II explores existing approaches on
mapping relational databases to RDF and points out what is
being consistently missed during mapping. Section III
analyses the different levels of ‘knowledge’ with respect to
mapping. Sections IV and V outline the mapping algorithms
and their implementation respectively and finally Section VI
summarises with conclusion and future work.

II. EXISTING APPROACHES

The World Wide Web Consortium (W3C) RDB2RDF
Working Group (WG) has conducted a survey of current
approaches for mapping of relational databases to RDF [8].
The report summarises the different mapping
implementation, query implementation, application domain,
mapping creation, mapping representation and accessibility.

The mapping implementation is either using a static
Extract Transform Load (ETL) or a dynamic on demand
query-driven implementation. The static data warehousing
approach has its own drawback in reflecting the current data.
The queries are run in periodic intervals without
compromising the current performance using mapping rules.
It also gives an opportunity to analyse the data with respect
to validation rules. The dynamic approach, on the other hand,

costs a lot of performance time even though the outcome is a
current reflection of what is in the relational database.

The query implementation follows two paths. The
SPARQL-> RDF or the SPARQL-> SQL-> RDB path.
SPARQL treats each RDF graph as a RDB table with three
columns, ?subject, ?predicate and ?object. Each row
corresponds to one tuple and the query result of SPARQL
constitutes a table of RDF nodes [5].

Automatic mapping of RDB table to RDF class node and
RDB column to RDF predicate leave behind most of the
semantics of the data. Tools like Viruoso RDF View [3]
expanded the above notion to map RDB unique identifier
(primary key) to RDF object and column values as RDF
subject. Even though these automatic mapping tools could be
used as a starting point, there is still a lot to do to analyse,
refine and process the Semantic data.

The survey also suggested the use of pre-existing public
ontology resources such as the National Centre for
Biomedical Ontologies [15] or an automatic domain-specific
mapping tool such as D2RQ [2] that also allows custom user
mapping rules. This approach also helps to reduce the
amount of redundant knowledge. In one of the projects [4]
based on the Royal Commission on the Ancient and
Historical Monuments of Scotland (RCAHMS), 1.5 million
entities of the database are converted into 21 million RDF
triples. Using the domain semantics-driven generation the
size of the RDF dataset is reduced by 2.8 million.

A further “feature-based comparison” between the major
mapping languages (Direct Mapping, eD2R, R2O,
Relational.OWL, Virtuso, D2RQ, Triplify, R2RML, R3M)
based on RDB2RDF WG report [8] also shows the different
features of existing mapping languages [6]. The paper
compares the mapping languages using four categories:
direct mapping, read-only general-purpose mapping, read-
write general-purpose mapping, and special-purpose.

What is being consistently missing from the existing
mapping languages is the lack of “knowledge” consideration,
which is not always explicitly represented and the use of
“rules” and “logic”. This “knowledge” can be derived from
the explicitly represented relational model. It can also be
checked using “application-specific predicates” and/or
executed using “application-specific procedures/functions”.
The deficiencies of the existing mapping languages can be
categorised into the following major levels of “knowledge”.

1. Lack of using all the available “Relational Database

Area Knowledge” and their variant meta-data
combinations.

2. Lack of using “Domain Data Knowledge” like data-
patterns (disjointness, symmetry, transitive chain,
etc.)

3. Lack of using “Application Specific Knowledge” like
“application-specific predicates” and “application-
specific procedures/functions”.

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

4. Lack of using “rules” and “logic” to elicit different
“application-specific predicates” which is the
recommendation of the W3C RDB2RDF WG [11].

III. RELATIONAL DATABASE KNOWLEDGE LEVELS

The mapping algorithms for converting relational
databases into Semantic Web repositories which we have
developed account several different types of knowledge:
related to the relational model itself (relational model
knowledge), related to the data stored in the database
(domain data knowledge), related to the use of data (domain
users knowledge) and knowledge about the database
application (application knowledge). The conversion of the
relational database is performed in three subsequent stages:
pre-processing, during which the semantic repository is
created and structured, in-processing, which incrementally
maps the relational data and post-processing, which modifies
the generated semantic repository to account additional
domain-specific knowledge. After mapping the relational
database to semantic RDF repository, different semantic
rules are also applied to analyse the domain.

The domain knowledge which is broadly divided as
“relational database area knowledge”, “domain data
knowledge”, “domain users knowledge” and “application-
specific knowledge” is used as a resource to facilitate the
mapping of relational database to semantic RDF.

• Application Specific Knowledge

• Domain Data Knowledge

• Domain Users Knowledge

• Relational Database Area Knowledge

The use of the existing meta-data and knowledge at different
levels as listed above and the formulation of additional
knowledge from the existing knowledge contributes to the
efficient representation of relational databases in Semantic
Web.

A. Relational Database area Knowledge

The relational database area knowledge is used to
identify the tables and columns to be considered in the
mapping as well as the database constraints and data type
restrictions on table columns. The relational database
consists of different relational objects that are grouped into
relational schemas. The tables and columns contain the data
that is going to be mapped. In relational database, constraints
are used to keep the integrity of the data. The constraints
need to be mapped together with the data to maintain the
integrity after mapping.

The database uses data type restrictions to guarantee data
integrity during storing, retrieving and processing operations.
The standard SQL data types are considered during the
database manipulation process. These SQL data types are
also mapped using an equivalent semantic RDF data type.

Figure 2. Relational Database Schema Overview

The relational database consists of database schemas (S)
as a way of grouping relational objects. The database schema
S(T1, T2, …, Tn), where n is the number of relational tables
T is referred as the ‘owner’ of all the database objects under
the schema. The relational data is stored in tables T(A1, A2,
…, Am), where A is the column attribute and m is the
number of column attributes in the table. Each table consists
of different column attributes A1, A2, …, Am, where each
column attribute has its own domain dom(A) and range
ran(A).

The database constraints considered during mapping are
primary key ‘pk’, foreign key ‘fk’, UNIQUE ‘unq’, NOT
NULL ‘nn’, and CHECK ‘ck’ which are represented as
pk(T), fk(T), unq(A), nn(A) and ck(A), respectively.

Each table T is a set of tuples t1, t2, …,tn, where n is the
number of tuples in a table. Each tuple t is a set of values
<v1, v2, …, vn>, where vi is the value corresponding to
column attribute Ai for current tuple 1<=i<=n. Individual
attribute values in a tuple are represented using the attribute
and value pair as t(Ai, vi).

A relationship in relational databases is a situation that
exists between two relational tables indicated by a foreign
key constraint. The relationship between two tables is
commonly referred as binary relationship. A group of binary
relations may form a pattern that involve three (ternary), four
(quaternary) or more tables that are commonly referred as N-
ary relationships.

The tables involved in a relationship are classified as
“strong” or “weak” tables depending on where the foreign
key is placed. A “strong” table is indicated by a primary key
(pk) database constraint using one or more column attributes
while a “weak” table uses a foreign key to refer to the
“strong” table.

Binary relationships are represented using a foreign key
constraint that involve one or many cardinalities each side to
form a one to one, one to many and many to many
relationship.

• One-to-one (1:1)

• One-to-many (1:*)

• Many-to-many (*:*)

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

B. Domain Data Knowledge

Domain Data Knowledge describes how the domain data
is used to represent knowledge in the mapped RDF Schema.
Domain data is not represented explicitly but rather derived
from the existing “relational database area knowledge”.

Data patterns between relationships can be represented as
domain knowledge using semantic web knowledge
representation languages like OWL [14].

N-ary relationships that involve more than two tables
create different patterns of relationships. These patterns are
discovered using the primary and foreign key “relational
database area knowledge” constraints on one or more
columns. Patterns like “chain”, “star”, “triangular” help to
identify more “domain data Knowledge” in addition to the
“relational database area knowledge”.

• Transitive Chain of Relations

• Disjointness

• Symmetries

• Star Relations, etc.

For instance, if there is a pattern where a database
column is used both as a primary key ‘pk’ and a foreign key
‘fk’, then the referencing table is a “subClass” of the
referenced table. This “predicate” uses primary key ‘pk’ and
foreign key ‘fk’ “relational database knowledge” to create a
“subClass” relationship using a symmetric-type pattern on a
column that is being used both as a primary key ‘pk’ and
foreign key ‘fk’.

Referencing Table T, Referenced Table T’,
Column attribute A, primary key pk(T), foreign key fk(T)

Begin

If((A in (fk(T))) AND (A in (pk(T)))) then .

<owl:Class rdf:ID=”T” >
<rdfs:subClassOf rdf:resource="#T’"/>

</owl:Class>

End if .
End .

Figure 3. Domain Data Knowledge "predicate"

C. Application Specific Knowledge

The ‘Space Project Management’ (SPP) domain-specific
knowledge is used as a database schema source for
evaluating the mapping of database application domain
knowledge into semantic web. The domain-specific
knowledge is used to ‘prune’ the semantic data at different
stages of the pre-processing phase. The domain-specific
knowledge is also a source for pattern discovery and
interpretation at different stages of the in-processing and
post-processing phase.

The applications used in SPP utilise different concepts
and terminologies in the domain specific knowledge. The
concepts that are used in the domain specific knowledge are

summarised as Documents, Risks, Non Conformances,
Reviews, Actions, and Projects. These concepts have unique
as well as common domain specific knowledge. The unique
domain specific knowledge is used to identify the concept
while the common ones are used to associate and correlate
the different domain specific concepts. The different
concepts and sub-concepts establish domain specific SPP-
Ontology.

Each “concept” has attributes that define and explain the
concept. There are also sub-concepts that are related to the
concept through relationships. Some attributes like “status
type” are used to identify an application specific “status”
within SPP-Ontology.

Both “concepts” and “Relationships” may have further
sub-concepts and sub-relationships represented by a nested
square bracket ([]).

• Attributes- [URI, Definition, Title,

{Status}

• Status Types (sample)- [Register, Acknowledge,

Assign Controller, Reduce, Accept, Resolve, Close]

• Sub-Concepts (sample)- [Domain, Scenario,

Criticality [Likelihood, Severity], Rank, Trail]

• Relationship Types (sample)- [hasDomain,

ofScenario, hasCriticality [hasLikelihood,
hasSeverity], hasRank, hasTrail]

The concept URI attribute is a unique representation of

the particular concept in SPP-Ontology. The “definition” and
“title” attributes have the formal detailed definition and short
descriptive title respectively.

The domain specific knowledge relies on attributes like
“Relationship Type” to determine the semantic relationship
between a “concept” and a “sub-concept” within SPP-
Ontology.

For instance, if the application uses a common
“Document Repository”, an application-specific “predicate”
can be used to check and relate all concepts to point to the
document repository. This “predicate” is executed whenever
the primary key ‘pk’ of “Document” concept is used as a
foreign key ‘fk’ in the rest of the concepts.

IV. RDB-RDF MAPPING ALGORITHMS

Currently, the first phase of creating semantic RDF
Schema ontology is finalised using the mapping procedures
below. The procedures use the three layers of the use case
knowledge- “relational database area knowledge”, “domain
data knowledge” and “application specific knowledge”.
After the data mapping, different levels of RDF inferencing
will be applied to further explore the knowledge base.

1) mapDatabase

The database mapping procedure uses incremental

iterative approach that loops through all tables T and their

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

column attributes A within the schema S. The database
mapping starts by mapping the tables- mapTable().

The tables are mapped into classes C. Corresponding to
each class an RDF Repository C_RDF object is also created.
The structure of the RDF repository is based on a TRIPLE
format (subject, predicate, object).

After mapping the tables, mapColumn() algorithm maps
the columns in each table into property column “hasP” of the
existing class table C. mapColumn() procedure uses
mapDatatype() procedure to return RDF equivalent data
types for each relational attribute.

The different relational database constraints are also
mapped using mapConstraint() procedure. The procedure
maps constraints like primary key ‘pk’, foreign key ‘fk’,
UNIQUE ‘unq’, NOT NULL ‘nn’, and CHECK ‘ck’.

Finally, the algorithm maps the different relationships
among tables and columns. MapRelationship() algorithm
uses the foreign key constraint between tables to find out the
different types of relationship with respect to degree of
relationship, transitive chain of relation, disjointness, etc.

Procedure mapDatabase (S)

Input: Schema S
Begin

mapTable(S) .
mapColumn(S) .
mapConstraint(S) .
mapRelationship(S) .

End .

Figure 4. mapDatabase() Algorithm

2) mapTable

The Semantic Web equivalent of the relational algebra

relations is a Class. During mapping the same name for the
table T is used for the mapped class C. The class name is
used to map subsequent relational columns into semantic
class properties.

The classes in the Semantic Web repository can be
considered repositories of data to hold the relational data
after the mapping. Each Class table C represents the
relational table in semantic web. To represent the class data
in RDF triples (subject, predicate, object), a separate RDF
repository C_RDF is created. In C_RDF the class ID (i.e.,
primary key equivalent of the source table) is used as a
‘subject’ while the rest of the properties are used as
‘predicates’. Each property “value” corresponding to the
class ID is the ‘object’ of the RDF triple.

In addition to the class table C and RDF repository

C_RDF, an OWL class is created using the class table C as
an ID.

Procedure mapTable (S)

Input: Schema S
Output: Class C, RDF Repository C_RDF, OWL Class

Begin

For each table Ti in S loop .

 Create Class Table Ci .

Create RDF Repository Ci_RDF
using Class Table Ci and a TRIPLE type attribute .

 <owl:Class rdf:ID=”Ci” />

End loop .

End .

Figure 5. mapTable() Algorithm

3) mapColumn

The column attributes in the relational database are

mapped as properties in semantic classes. A property in a
class can describe an entity class or a relationship class. Each
property has a set of allowable domain values that could be
shared with one or more properties.

The columns are broadly divided as “key columns” that

are used to identify an occurrence of a relation and “simple
columns” that only describe a relation. During mapping
columns into properties, the following column types are used
as criteria to choose the appropriate representation in the
semantic web.

Column types

• Candidate Key (CK): minimal set of attributes that

uniquely identifies each occurrence of an entity
type.

• Primary Key (PK): candidate key selected to
uniquely identify each occurrence of an entity type.

• Foreign Key (FK): referencing a primary key (PK)
in another relation

• Simple Column (SC): a non-candidate key that
describes an entity type.

The column attributes of a table is denoted as T(A1, A2, …,
An)
T(A1, A2, …, An) = {PK, {CK1, CK2,…, CKx}, {FK1,
FK2, …, FKy}, {SC1, SC2, …, SCz}}

Where x, y, z is a whole number.
When the cardinality of x is greater than 1, candidate keys
(CK) are treated as composite keys.

The column attributes in the relational database are

mapped to corresponding class properties. The constraint
type associated with the attribute determines the cardinality.
Each column attribute A is mapped to property P prefixed by
the word “has” as “hasP”.

Procedure mapColumn (S)

Input: Schema S, Table T, Column attribute A

Output: Property P, OWL:DatatypeProperty

Begin

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

 For each table Ti in S loop .

For each Column Aj in Ti loop .

 get mapped Class Table Ci of Ti.

 set Aj as Property Column hasAj

.
 get_&xsd;type_equivalent (Aj) .

 <owl:DatatypeProperty rdf:ID=”hasAj”>
 <rdfs:domain rdf:resource=”#Ci” />
 <rdfs:range rdf:resource

=”&xsd;type_equivalent” />
 </owl:DatatypeProperty>
 End loop .

 End loop .
End .

Figure 6. mapColumn() Algorithm

4) mapConstraint

mapConstraint() algorithm maps relational database

constraints into their equivalent semantic web representation.
The algorithm reads both table level as well as column level
constraints. For primary key pk(T) constraints, it creates
“InverseFunctionalProperty” and “maxCardinality” OWL
properties. For foreign key fk(T) constraints, it creates
“ObjectProperty” OWL property. If a foreign key column is
also part of the primary key pk(T) constraints, then the
referencing table (T) is set as a “subClass” of the referenced
table (T’).

For UNIQUE ‘unq(A)’, NOT NULL ‘nn(A)’, and
CHECK ‘ck(A)’ database constraints, the algorithm creates
equivalent and “InverseFunctionalProperty”,
“minCardinality”, and “hasValue” OWL property
restrictions respectively.

If the column attribute is a primary key pk(T) of the
table, the maximum cardinality of the property car(P) is set
to one. If the column attribute has a unique constraint
unq(A), the maximum cardinality of the property car(P) is set
to one. On the other hand if the property has a NOT NULL
constraint nn(A), the minimum cardinality of the property
car(hasP) is set to one.

mapConstraint() procedure maps column attribute(s) A
using the table T and its constraints (primary key, foreign
key, UNIQUE, NOT NULL, CHECK) to a semantic
property P and OWL cardinality properties.

Procedure mapConstraint (S)

Input: Schema S, Table T, Referenced Table T’, Column
attribute A, primary key pk(T), foreign key fk(T),
UNIQUE unq(A), NOT NULL nn(A), and CHECK
ck(A)
Output: RDFS subClassOf, Property P, OWL cardinality
properties

Begin
For each table Ti in S loop .
 For Column Aj in Ti loop .

 get mapped Class Table Ci of Ti.

 If (Aj in (pk(Ti))) then .

<owl:InverseFunctionalProperty rdf:resource=”# hasAj ”/>

/* set maximum car(hasAj) to 1 . */
<rdfs:subClassOf>

<owl:Restriction>
<owl:maxCardinality

rdf:datatype=”&xsd:nonNegativeInteger”>1
</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

 Else
 if (Aj in (fk(Ti))) then .

If (Aj in (pk(T’i))) then .
<rdfs:subClassOf rdf:resource="#C’"/>

End if .
 <owl: ObjectProperty rdf:ID=”hasA”>
 <rdfs:domain rdf:resource=”#C” />
 <rdfs:range rdf:resource=”#C’” />

</owl: ObjectProperty >
 Else
 if (unq(Aj)) then .

 <owl:InverseFunctionalProperty rdf:resource=”# hasAj ”/>

 Else
 if (nn(Aj) and (!pk(Aj)) then .

 /*set minimum car(hasAj) to 1 .*/
<owl:Restriction>

<owl:minCardinality
rdf:datatype=”&xsd:nonNegativeInteger”>1
</owl:minCardinality>

</owl:Restriction>

 Else
 if (ck(Aj)) then .

<rdfs:subClassOf>
<owl:Restriction>
 <owl:onProperty rdf:resource=”#hasAj” />
 <owl:hasValue rdf:datatype="&xsd;string" > v(Aj)

</owl:hasValue>
</owl:Restriction>
</rdfs:subClassOf>

 End if .
 End loop .
End loop .
End .

Figure 7. mapConstraint() Algorithm

5) mapRelationship

A relationship between tables is identified by a foreign

key. MapRelationship() calls a series of sub-procedures to
identify the type of relationship between the two tables and

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

discover any patterns with the rest of the tables in the
schema.

Procedure mapRelationship (S)

Input: Table T, Column attribute A, foreign key fk(T)
Output: Class C, Property P

Begin
For each table Ti in S loop .

 For each column Aj in Ti loop .
 If (Aj = fk(Ti)) then
 CheckRelationship(Ti, T’i)
 CheckTransitiveChain(Ti, T’i) .
 CheckDisjointness(Ti, T’i)

 where T’i is referenced table by Ti
End if .

End loop .
End loop .

End .

Figure 8. mapRelationship() Algorithm

6) Check Relationship

CheckRelationship algorithm uses the referencing table T

and the referenced table T’ to determine whether to create a
separate class to represent the relationship or only add a
property column to the existing class.

If the foreign key fk(T) is referring to a primary key
pk(T’) and the foreign key has a NOT NULL constraint, then
a new relationship class is created using the two tables (T,
T’). An additional “subClass” parameter is also passed to
create a “subClass” axiom between the “Class” equivalents
of the tables T and T’.

If the above criterion is not satisfied, the foreign key
fk(T) would have been added as a property to the referring
table equivalent class C using the mapColumn() procedure
above.

Procedure CheckRelationship(T, T’)

Input: Table T, primary key pk(T), foreign key
fk(T),NOT NULL nn(T)

Begin
If (fk(T) = pk(T’) and (fk(T) = nn(fk(T))) then .

 CreateRelationship(T,T’, subClass) .

End if .

End .

Figure 9. CheckRelationship() Algorithm

7) Check Transitive Chain

Transitive Chain of relations is tested using the foreign

key/primary key column attributes between three relational
tables.

For any relational tables T1, T2, T3 in Schema S, if there
is a foreign key relationship between T1 and T2 and if there
is also a foreign key relationship between T2 and T3, then
there is a transitive chain between T1 and T3.

The algorithm uses the referenced table’s (T’) columns to
find further foreign key relationship to the rest of the tables.
If another relationship other than the one between T and T’ is
found, a new relationship class is created using the two
tables (T, Ti). An additional “Transitive” parameter is also
used to create a “transitive” axiom between the “Class”
equivalents of the starting table T and the new third table Ti.

Procedure CheckTransitiveChain(T, T’)

Input: Table T, Column attribute A, primary key pk(T),
foreign key fk(T)

Begin

For each column Ai in T’ loop .
 If (Ai in fk(T’)) then .
 For each table Ti in S loop .
 If ((Ai in pk(Ti)) and (Ti != T)) then .

 createRelationship(T, Ti, Transitive) .

 End if .
 End loop .
 End if .
End loop .

End .

Figure 10. CheckTransitiveChain() Algorithm

8) Check Disjointness

Disjointness is a relationship between two “SubType”

tables that share a common “SuperType” but has no
relationship between each other.

The foreign key/primary key column attributes between
the tables is used to determine the disjunction between
tables.

For any relational tables T1, T2, T3 in Schema S, if there
is a foreign key relationship between T1 and T2 and there is
also a foreign key relationship between T2 and T3 but there
is no relationship between T1 and T3, then there is a
disjointness between T1 and T3.

The algorithm uses the referenced table’s (T’) columns to
find further foreign key relationship to other tables. If
another relationship other than the one between T and T’ is
found and there is no foreign key relationship between the
new table Ti and the starting table T, then a “disjointWith”
axiom is created between the starting table T and the new
table Ti.

Note that a group of disjoint relationships create a “Star”

relation with the “SuperClass” in the middle and the disjoint
classes as a branch.

Procedure CheckDisjointness(T, T’)

Input: Table T, Column attribute A, primary key pk(T),
foreign key fk(T)

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Output: RDFS subClassOf, OWL Class, disjointWith
Begin

For each column Ai in T’ loop .
 If (Ai in fk(T’)) then .
 For each table Ti in S loop .
 If ((Ai in pk(Ti)) and (Ti != T)) then .
 if ((ALL) fk(Ti) NOT in

(ALL) pk (T)) then .

 <owl:Class rdf:ID="Ti">

 <rdfs:subClassOf rdf:resource="#T"/>

 <owl:disjointWith rdf:resource=" #T "/>
 </owl:Class>

 End if .
 End loop .
 End if .
End loop .

End .

Figure 11. CheckDisjointness() Algorithm

9) Create Relationship

CreateRelationship algorithm is used to create a new

relationship class table to represent the relationship between
the referencing table T and the referenced table T’. If there is
a foreign key in table T that references to a primary key in
table T’, a new class table is created using a class symbol C
and the name of the referencing and referenced tables
respectively separated by an underscore as “C_T_T’ ”.

The primary keys of both tables are added as property
columns to the new class by adding “has” as a prefix as
“hasP” and “hasP’ ”.

In addition to the semantic class, a repository is also
created to represent the class table data in RDF triples
(subject, predicate, object). The RDF repository reads the
class table data and presents it in RDF triples. It is named
using the class table names suffixed by “RDF” as
“C_T_T’_RDF”.

Procedure CreateRelationship(T, T’, TYPE)

Output: RDFS subClassOf, OWL Class, ObjectProperty
Begin

If (fk(T) = pk(T’)) then .

 create Class C _T_T’.
 set pk(T) as Property hasP of Class C_T_T’ .
 set pk(T’) as Property hasP’ of Class C_T_T’ .

 create RDF Repository C_T_T’_RDF
 using Class Table C_T_T’ and a TRIPLE

type attribute .

 get mapped Class Table C of T .
 get mapped Class Table C’ of T’.

 If (TYPE = ‘subClass’) then
 <owl:Class rdf:ID="C">
 <rdfs:subClassOf

rdf:resource="#C’" />
 </owl:Class>

 Else
 if (TYPE = ‘Transitive’) then

 <owl:ObjectProperty rdf:ID=”pk(T)”>
 <rdf:type rdf:resource

=”owl;TransitiveProperty”/>
 <rdfs:domain rdf:resource=”#C” />
 <rdfs:range rdf:resource=”#C’” />
 </owl:ObjectProperty>

 End if .

End .

Figure 12. CreateRelationship() Algorithm

V. IMPLEMENTATION

The implementation of the algorithms is based on the Space
Project Management scenario. An interactive Java
application is used to execute the mapping procedures and
the resulting Semantic Web repository loaded in Protégé (a
free open-source Java tool providing an extensible
architecture for the creation of customized knowledge-based
applications) OWL editor is shown on the figure below.

Figure 13. RDF Schema view (Protége)

The Ontology diagram modeled above is also serialisable
using OWL file format as in Figure 14 below.

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Figure 14- RDF Schema Overview (OWL file excerpt)

The mapping test between the Relational Database
Schema (Figure 2) and RDF Schema (Figure 13 & Figure
14) is evaluated using meta-data search comparisons as
shown by the sample screenshots in Figure 15 & Figure 16
below.

Figure 15. Relational Database Schema search result

Figure 16. RDF Triples search result

We have compared our attempt to some of the existing
approaches (Direct Mapping, eD2R, R2O, Relational.OWL,
Virtuso, D2RQ, Triplify, R2RML, R3M). We used the
comparison criteria specified in the seminal paper [6]. The
results of this comparison can be summarized as shown in
Table I and Table II.

TABLE I. RDB-TO-RDF MAPPING LANGUAGES COMPARISON

LEGEND [6]

Legend Description

F1 Logical Table to Class

F2 M:N Relationships

F3 Project Attributes

F4 Select Conditions

F5 User-dened Instance URIs

F6 Literal to URI

F7 Vocabulary Reuse

F8 Transformation Functions

F9 Datatypes

F10 Named Graphs

F11 Blank Nodes

F12 Integrity Constraints

F13 Static Metadata

F14 One Table to n Classes

F15 Write Support

F16 Data Patterns

F17 Data Control Languages (DCL)

TABLE II. SUMMARY TABLE OF RDB-TO-RDF MAPPING LANGAGE

COMPARISON [6] WITH RD2SW

 F1 F2 F3 F4 F5 F6 F7 F8 F9

Direct Mapping (�) � � � � � � � �

eD2R � � � � � � � � �

R2O � � � � � � � � �

Relational.OWL (�) � � � � � � � �

Virtuoso � � � � � � � � �

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

D2RQ � � � � � � � � �

Triplify � � � � � � � � �

R2RML � � � � � � � � �

R3M (�) � � (�) � � � � �

RD2SW ���� ���� ���� ���� ���� ���� ���� ���� ����

 F10 F11 F12 F13 F14 F15 F16 F17

Direct Mapping � � � � � �

eD2R � � (�) � � �

R2O � � (�) � (�) �

Relational.OWL � � (�) � � �

Virtuoso � � (�) � � �

D2RQ � � (�) � � �

Triplify � � (�) � � �

R2RML � � (�) � � �

R3M � � � � � �

RD2SW ���� ���� ���� ���� ���� ���� ���� ����

VI. CONCLUSION AND FUTURE WORK

In the current implementation, the mapping procedure
reads the database directly, starting with the data dictionary
and then the data. The developed algorithms use a
configuration file to choose a relational database driver and
access the database dictionary to map into an RDF format. It
involves formulation of heuristics that formally define the
mapping. The domain specific heuristics have helped harvest
the Ontology of the Space Project Management Database.
This domain specific heuristics was implemented using an
incremental algorithm to extend the domain ontology
repository. The formulated heuristics and domain ontology
repository have been implemented and tested on a prototype
Space Project Management semantic tool as a proof-of-
concept to the research. This heuristic-based methodology
can be applied and measured on other relational data with
different domain ontology.

Currently, we used set of heuristics for accounting the
different types of relational model knowledge (constraints,
data types), domain specific knowledge (simple data patterns
like transitive chain and disjointness) and application
specific knowledge (predicates). In the future we plan to
extend the algorithm so that it also accounts other types of
domain specific knowledge like complex data-patterns, user
domain knowledge (individual and group users, access rights
and profiles) and application domain knowledge (i.e.,
triggers and transactions). We also plan to implement a
parser for SQL DDL, used to create the database. It will be
still necessary to connect to the database in order to elicitate
and convert the data stored in it, but this will eliminate the
need for using the data dictionary and thus, it will reduce the
database dependency.

The process of mapping Relational Databases to
Semantic Web (RD2SW) using domain specific knowledge
involves most of the current - Semantic Web Layer
components- RDF, RDF schema, query languages, rules,
logic, etc. Following the Semantic Web standards set by

World Wide Web Consortium will ultimately help us
represent ‘web resources’ in a standardized, unambiguous,
interoperable and above all Linked-Data format as the next
efficient phase of representing knowledge in the 21st
century.

ACKNOWLEDGMENT

The authors acknowledge the sponsorship of this PhD
research work by the London Metropolitan University Vice
Chancellor’s fund. Implementation and evaluation is
conducted in collaboration with Sapienza Consulting [16] a
leading software provider for space mission and project
support.

REFERENCES

[1] D. Allemang and J. Hendler, Semantic Web for the Working

Ontologist: Effective Modeling in RDFS and OWL. Morgan
Kaufmann Publishers, CA, 2008

[2] C. Bizer and R. Cyganiak., “D2RQ Lessons Learned” Position paper
for the W3C Workshop on RDF Access to Relational Databases,
Cambridge, MA, USA, October 2007, pp. 25-26.

[3] C. Blakeley, “RDF Views of SQL Data (Declarative SQL Schema to
RDF Mapping)” OpenLink Software, 2007.

[4] K. Byrne, “Having Triplets Holding Cultural Data as RDF”
Proceedings of the ECDL 2008 Workshop on Information Access to
Cultural Heritage, Aarhus, Denmark, September 2008.

[5] R. Cyganiak, “A relational algebra for SPARQL” Digital Media
Systems Laboratory HP Laboratories Bristol. HPL-2005-170, 2005.

[6] M. Hert, G. Reif, and H. Gall, “A comparison of RDB-to-RDF
mapping languages” In Proceedings of the 7th International
Conference on Semantic Systems, Graz, Austria, ACM, 2011, pp. 25-
32.

[7] S. Staab and R. Studer, Handbook on Ontologies. Springer Berlin:
2009.

[8] S.S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau, S. Auer,
J. Sequeda, and A. Ezzat, “A Survey of Current Approaches for
Mapping of Relational Databases to RDF” W3C RDB2RDF XG
Incubator Report: W3C, 2009.

[9] A. Sheth, C. Ramakrishnan,and C. Thomas, “Semantics for the
Semantic Web: The Implicit, the Formal and the Powerful” Int’l
Journal on Semantic Web & Information Systems, 2005, pp. 1-18.

[10] R. Studer,V. R. Benjamins, and D. Fensel, “Data and Knowledge
Engineering” Knowledge engineering: Principles and methods, 1998,
pp.161-197.

[11] E. Marx, P. Salas, K. Breitman, and J. Viterbo, “RDB2RDF: A
relational to RDF plug-in for Eclipse” Published online in Wiley
Online Library (wileyonlinelibrary.com), 2012 [retrieved: December,
2012].

[12] F. Manola, E. Miller, and B. McBride, “RDF Primer” W3C
Recommendation, Feb. 2004.

[13] R.V. Guha and B. McBride, “RDF Vocabulary Description Language
1.0: RDF Schema” W3C Recommendation, Feb. 2004.

[14] D.L. McGuinness and Frank Van Harmelen, "OWL web ontology
language overview." W3C recommendation, Feb 2004.

[15] NCBO BioPortal, The National Center for Biomedical Ontology,
[retrieved: December, 2012] from http://bioportal.bioontology.org

[16] Sapienza Consulting, About Sapienza, [retrieved: December, 2012]
from http://www.sapienzaconsulting.com

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

