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Abstract— Semantic Web sets the standard for a universal and 

interoperable data representation that is not only readable to 

the naked eye but also to computers. The use of Uniform 

Resource Identifier (URI) and the capability to use description 

logic through semantic ontology languages makes semantic 

web the favoured framework to represent knowledge. 

Semantic Web standards play a vital role in making the 

existing relational database, which is locked behind in the 

“deep web”, available for computer processing. In order to 

map the relational database in its entirety, the methodology 

should not only map the data but also the domain specific 

knowledge. The algorithms and their implementation 

presented in this paper use the meta-data from the data 

dictionary to construct the initial semantic repository, while 

using domain specific knowledge during in-processing stage. 

Keywords-Relational Database Mapping; Domain Specific 

Knowledge; Semantic Web; Data Mapping Algorithm 

I. INTRODUCTION 

 
The current web experience gives us a fairly abundant 

data. Using a few keywords and common search engines, it 
usually does not fail to return search results as well. With all 
its openness, the web gives anyone a chance to contribute 
ideas to be shared by the whole world about any topic. The 
web often feels like it is a mile wide, but an inch deep. How 
can we build a more integrated, consistent, deep web 
experience? [1]. 

The ANSI-SPARC (American National Standards 
Institute, Standards Planning And Requirements Committee) 
architecture for databases dictates the separation of the 
conceptual level from both external view (users) and 
physical level (files). The conceptual level consists of all the 
entities, their relationships and constraints that channel the 
data back and forth between the external and physical level. 
Mapping the conceptual level to semantic Resource 
Description Format (RDF) [12] makes the “deep web” re-
surface for semantic interpretation and processing. The 
Semantic Framework helps narrow the gap between the 
“deep web” and the “surface” web. 

Semantic Web is a framework which allows information 
to be represented not only structurally using suitable 
structural definitions ("data schema"), specific instances of 
them ("data") and their use ("access rights"), but also 
semantically using a logical model which allows formal 
interpretation and sound logical inference about the 
information ("knowledge"). Relational data models on the 
other hand lack the capability to represent “knowledge” in 

spite of their popularity. Since most KR (Knowledge 
Representation) mechanisms and the Relational Data Model 
are based on symbolic languages, the ability to represent and 
utilize knowledge that is imprecise, uncertain, partially true 
and approximate is lacking, at least in the base/standard 
models [9]. This lack of capability to represent and process 
knowledge while it is still in relational model is one of the 
challenges in Knowledge Management. This research 
focuses on the development and evaluation of algorithms to 
map the Relational Database (RDB) schemas to RDF in 
Semantic Web to allow access to deep web applications. The 
evaluation and validation of the developed mapping 
algorithms has been undertaken on a space project 
management domain-specific application. 

Space program projects involve activities like 
observation, human space exploration, space launch and 
navigation, operational maintenance, etc. The range of 
terminologies, standards, unit measurements, and definitions 
will all be referring to the space domain ontology. The 
practical evaluation of the developed mapping algorithms 
has been undertaken on  Oracle database system representing 
the space database schema which is composed of six major 
relational concepts- Documents, Risks, Non Conformances, 
Reviews, Actions, and Projects. 

Semantic Web has a data model as part of its architecture 
that will be used as a repository to store ‘semantic data’-
RDF. RDF is a format to store data in Semantic Web and 
will use RDF Schema (RDFS) [13] and Web Ontology 
Language (OWL) [14] to interpret the data. Data in RDF 
Schema not only has literals but also a semantic meaning 
attached to it. This meaning has different informal 
hierarchies and formal taxonomies in its knowledge domain 
(space-domain). This leads to the introduction of a 
consensually shared view of concepts called Ontologies. 
Ontology is a formal, explicit specification of a shared 
conceptualisation [10]. The specifications use relations, 
functions, constraints, and axioms to conceptualise the 
abstract model. 'Formal', in the ontology definition, refers to 
the fact that the expressions must be machine readable; 
hence, natural language is excluded [6]. RDF was designed 
for situations where Web data need to be processed and 
exchanged by applications, rather than being displayed for 
people. The ability to exchange data between different 
applications means that the data may be made available to 
applications other than those for which they were originally 
intended [11]. 

Semantic data models and frameworks help organise the 
knowledge about specific domain and share amongst 
systems. The models help to see the "semantic" from 
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different angles and refine the meaning by working on the 
ambiguity while reusing its commonality. When two (or 
more!) viewpoints come together in a web of knowledge, 
there will typically be overlap, disagreement, and confusion 
before synergy, cooperation and collaboration [1]. 

With Relational data on one side and RDF repository 
data on the other, the mapping algorithms have involved 
domain specific heuristic formulation to satisfy the accurate 
implementation of knowledge transfer. Different reasoning 
logic and rules are part of the mapping algorithms. 

 

 
Figure 1. Relational to Semantic Mapping Model 

The mapping implementation involves RDF, Web 
Ontology Languages (RDFS/OWL), RDF query language 
(SPARQL) and semantic rule languages on Oracle database 
systems. The research project focuses on how to take 
advantage of the already existing vast relational data to build 
a knowledge base in using Semantic Web Framework. In the 
current Semantic architecture RDF is a favoured data 
serialization format to represent and manage knowledge. The 
ultimate goal of the research is a formal heuristics-based 
methodology for mapping relational database to semantic 
knowledge base. Section II explores existing approaches on 
mapping relational databases to RDF and points out what is 
being consistently missed during mapping. Section III 
analyses the different levels of ‘knowledge’ with respect to 
mapping. Sections IV and V outline the mapping algorithms 
and their implementation respectively and finally Section VI 
summarises with conclusion and future work. 

II. EXISTING APPROACHES 

The World Wide Web Consortium (W3C) RDB2RDF 
Working Group (WG) has conducted a survey of current 
approaches for mapping of relational databases to RDF [8]. 
The report summarises the different mapping 
implementation, query implementation, application domain, 
mapping creation, mapping representation and accessibility.  

The mapping implementation is either using a static 
Extract Transform Load (ETL) or a dynamic on demand 
query-driven implementation. The static data warehousing 
approach has its own drawback in reflecting the current data. 
The queries are run in periodic intervals without 
compromising the current performance using mapping rules. 
It also gives an opportunity to analyse the data with respect 
to validation rules. The dynamic approach, on the other hand, 

costs a lot of performance time even though the outcome is a 
current reflection of what is in the relational database. 

The query implementation follows two paths. The 
SPARQL-> RDF or the SPARQL-> SQL-> RDB path. 
SPARQL treats each RDF graph as a RDB table with three 
columns, ?subject, ?predicate and ?object. Each row 
corresponds to one tuple and the query result of SPARQL 
constitutes a table of RDF nodes [5]. 

Automatic mapping of RDB table to RDF class node and 
RDB column to RDF predicate leave behind most of the 
semantics of the data. Tools like Viruoso RDF View [3] 
expanded the above notion to map RDB unique identifier 
(primary key) to RDF object and column values as RDF 
subject. Even though these automatic mapping tools could be 
used as a starting point, there is still a lot to do to analyse, 
refine and process the Semantic data. 

The survey also suggested the use of pre-existing public 
ontology resources such as the National Centre for 
Biomedical Ontologies [15] or an automatic domain-specific 
mapping tool such as D2RQ [2] that also allows custom user 
mapping rules. This approach also helps to reduce the 
amount of redundant knowledge. In one of the projects [4] 
based on the Royal Commission on the Ancient and 
Historical Monuments of Scotland (RCAHMS), 1.5 million 
entities of the database are converted into 21 million RDF 
triples. Using the domain semantics-driven generation the 
size of the RDF dataset is reduced by 2.8 million. 

A further “feature-based comparison” between the major 
mapping languages (Direct Mapping, eD2R, R2O, 
Relational.OWL, Virtuso, D2RQ, Triplify, R2RML, R3M) 
based on RDB2RDF WG report [8] also shows the different 
features of existing mapping languages [6]. The paper 
compares the mapping languages using four categories: 
direct mapping, read-only general-purpose mapping, read-
write general-purpose mapping, and special-purpose.  

What is being consistently missing from the existing 
mapping languages is the lack of “knowledge” consideration, 
which is not always explicitly represented and the use of 
“rules” and “logic”. This “knowledge” can be derived from 
the explicitly represented relational model. It can also be 
checked using “application-specific predicates” and/or 
executed using “application-specific procedures/functions”. 
The deficiencies of the existing mapping languages can be 
categorised into the following major levels of “knowledge”. 

 
1. Lack of using all the available “Relational Database 

Area Knowledge” and their variant meta-data 
combinations. 
 

2. Lack of using “Domain Data Knowledge” like data-
patterns (disjointness, symmetry, transitive chain, 
etc.) 

 
 

3. Lack of using “Application Specific Knowledge” like 
“application-specific predicates” and “application-
specific procedures/functions”. 
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4. Lack of using “rules” and “logic” to elicit different 
“application-specific predicates” which is the 
recommendation of the W3C RDB2RDF WG [11]. 

III. RELATIONAL DATABASE KNOWLEDGE LEVELS 

The mapping algorithms for converting relational 
databases into Semantic Web repositories which we have 
developed account several different types of knowledge: 
related to the relational model itself (relational model 
knowledge), related to the data stored in the database 
(domain data knowledge), related to the use of data (domain 
users knowledge) and knowledge about the database 
application (application knowledge). The conversion of the 
relational database is performed in three subsequent stages: 
pre-processing, during which the semantic repository is 
created and structured, in-processing, which incrementally 
maps the relational data and post-processing, which modifies 
the generated semantic repository to account additional 
domain-specific knowledge. After mapping the relational 
database to semantic RDF repository, different semantic 
rules are also applied to analyse the domain.  

The domain knowledge which is broadly divided as 
“relational database area knowledge”, “domain data 
knowledge”, “domain users knowledge” and “application-
specific knowledge” is used as a resource to facilitate the 
mapping of relational database to semantic RDF.  

 

• Application Specific Knowledge 

• Domain Data Knowledge 

• Domain Users Knowledge 

• Relational Database Area Knowledge 
 
The use of the existing meta-data and knowledge at different 
levels as listed above and the formulation of additional 
knowledge from the existing knowledge contributes to the 
efficient representation of relational databases in Semantic 
Web. 

A. Relational Database area Knowledge 

The relational database area knowledge is used to 
identify the tables and columns to be considered in the 
mapping as well as the database constraints and data type 
restrictions on table columns. The relational database 
consists of different relational objects that are grouped into 
relational schemas. The tables and columns contain the data 
that is going to be mapped. In relational database, constraints 
are used to keep the integrity of the data. The constraints 
need to be mapped together with the data to maintain the 
integrity after mapping. 

The database uses data type restrictions to guarantee data 
integrity during storing, retrieving and processing operations. 
The standard SQL data types are considered during the 
database manipulation process. These SQL data types are 
also mapped using an equivalent semantic RDF data type. 
 

 
Figure 2. Relational Database Schema Overview 

The relational database consists of database schemas (S) 
as a way of grouping relational objects. The database schema 
S(T1, T2, …, Tn), where n is the number of relational tables 
T is referred as the ‘owner’ of all the database objects under 
the schema. The relational data is stored in tables T(A1, A2, 
…, Am), where A is the column attribute and m is the 
number of column attributes in the table. Each table consists 
of different column attributes A1, A2, …, Am, where each 
column attribute has its own domain dom(A) and range 
ran(A). 

The database constraints considered during mapping are 
primary key ‘pk’, foreign key ‘fk’, UNIQUE ‘unq’, NOT 
NULL ‘nn’, and CHECK ‘ck’ which are represented as 
pk(T), fk(T), unq(A), nn(A) and ck(A), respectively. 

Each table T is a set of tuples t1, t2, …,tn, where n is the 
number of tuples in a table. Each tuple t is a set of values 
<v1, v2, …, vn>, where vi is the value corresponding to 
column attribute Ai for current tuple 1<=i<=n. Individual 
attribute values in a tuple are represented using the attribute 
and value pair as t(Ai, vi). 

A relationship in relational databases is a situation that 
exists between two relational tables indicated by a foreign 
key constraint. The relationship between two tables is 
commonly referred as binary relationship. A group of binary 
relations may form a pattern that involve three (ternary), four 
(quaternary) or more tables that are commonly referred as N-
ary relationships. 

The tables involved in a relationship are classified as 
“strong” or “weak” tables depending on where the foreign 
key is placed. A “strong” table is indicated by a primary key 
(pk) database constraint using one or more column attributes 
while a “weak” table uses a foreign key to refer to the 
“strong” table. 

Binary relationships are represented using a foreign key 
constraint that involve one or many cardinalities each side to 
form a one to one, one to many and many to many 
relationship. 

• One-to-one (1:1) 

• One-to-many (1:*) 

• Many-to-many (*:*) 
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B. Domain Data Knowledge 

Domain Data Knowledge describes how the domain data 
is used to represent knowledge in the mapped RDF Schema. 
Domain data is not represented explicitly but rather derived 
from the existing “relational database area knowledge”.  

Data patterns between relationships can be represented as 
domain knowledge using semantic web knowledge 
representation languages like OWL [14]. 

N-ary relationships that involve more than two tables 
create different patterns of relationships. These patterns are 
discovered using the primary and foreign key “relational 
database area knowledge” constraints on one or more 
columns. Patterns like “chain”, “star”, “triangular” help to 
identify more “domain data Knowledge” in addition to the 
“relational database area knowledge”. 

 

• Transitive Chain of Relations 

• Disjointness 

• Symmetries 

• Star Relations, etc. 
 

For instance, if there is a pattern where a database 
column is used both as a primary key ‘pk’ and a foreign key 
‘fk’, then the referencing table is a “subClass” of the 
referenced table. This “predicate” uses primary key ‘pk’ and 
foreign key ‘fk’ “relational database knowledge” to create a 
“subClass” relationship using a symmetric-type pattern on a 
column that is being used both as a primary key ‘pk’ and 
foreign key ‘fk’.  

 
Referencing Table T, Referenced Table T’,  
Column attribute A, primary key pk(T), foreign key fk(T) 
 
Begin 

If( (A in (fk(T))) AND (A in (pk(T)))) then . 
 

<owl:Class rdf:ID=”T” > 
<rdfs:subClassOf rdf:resource="#T’"/> 

</owl:Class> 
 

End if . 
End . 

Figure 3. Domain Data Knowledge "predicate" 

C. Application Specific Knowledge 

The ‘Space Project Management’ (SPP) domain-specific 
knowledge is used as a database schema source for 
evaluating the mapping of database application domain 
knowledge into semantic web. The domain-specific 
knowledge is used to ‘prune’ the semantic data at different 
stages of the pre-processing phase. The domain-specific 
knowledge is also a source for pattern discovery and 
interpretation at different stages of the in-processing and 
post-processing phase. 

The applications used in SPP utilise different concepts 
and terminologies in the domain specific knowledge. The 
concepts that are used in the domain specific knowledge are 

summarised as Documents, Risks, Non Conformances, 
Reviews, Actions, and Projects. These concepts have unique 
as well as common domain specific knowledge. The unique 
domain specific knowledge is used to identify the concept 
while the common ones are used to associate and correlate 
the different domain specific concepts. The different 
concepts and sub-concepts establish domain specific SPP-
Ontology. 

Each “concept” has attributes that define and explain the 
concept. There are also sub-concepts that are related to the 
concept through relationships. Some attributes like “status 
type” are used to identify an application specific “status” 
within SPP-Ontology. 

Both “concepts” and “Relationships” may have further 
sub-concepts and sub-relationships represented by a nested 
square bracket ([]). 

 
• Attributes-   [URI, Definition, Title,  

{Status} 
 
• Status Types (sample)- [Register, Acknowledge,  

Assign Controller, Reduce, Accept, Resolve, Close] 
 
• Sub-Concepts (sample)- [Domain, Scenario,  

Criticality [Likelihood, Severity], Rank, Trail] 
 
• Relationship Types (sample)- [hasDomain,  

ofScenario, hasCriticality [hasLikelihood,  
hasSeverity], hasRank, hasTrail] 

 
The concept URI attribute is a unique representation of 

the particular concept in SPP-Ontology. The “definition” and 
“title” attributes have the formal detailed definition and short 
descriptive title respectively. 

The domain specific knowledge relies on attributes like 
“Relationship Type” to determine the semantic relationship 
between a “concept” and a “sub-concept” within SPP-
Ontology.  

For instance, if the application uses a common 
“Document Repository”, an application-specific “predicate” 
can be used to check and relate all concepts to point to the 
document repository. This “predicate” is executed whenever 
the primary key ‘pk’ of “Document” concept is used as a 
foreign key ‘fk’ in the rest of the concepts. 
 

IV. RDB-RDF MAPPING ALGORITHMS 

Currently, the first phase of creating semantic RDF 
Schema ontology is finalised using the mapping procedures 
below. The procedures use the three layers of the use case 
knowledge- “relational database area knowledge”, “domain 
data knowledge” and “application specific knowledge”. 
After the data mapping, different levels of RDF inferencing 
will be applied to further explore the knowledge base. 
 

1) mapDatabase 
 
The database mapping procedure uses incremental 

iterative approach that loops through all tables T and their 
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column attributes A within the schema S. The database 
mapping starts by mapping the tables- mapTable().  

The tables are mapped into classes C. Corresponding to 
each class an RDF Repository C_RDF object is also created. 
The structure of the RDF repository is based on a TRIPLE 
format (subject, predicate, object). 

After mapping the tables, mapColumn() algorithm maps 
the columns in each table into property column “hasP” of the 
existing class table C. mapColumn() procedure uses 
mapDatatype() procedure to return RDF equivalent data 
types for each relational attribute. 

The different relational database constraints are also 
mapped using mapConstraint() procedure. The procedure 
maps constraints like primary key ‘pk’, foreign key ‘fk’, 
UNIQUE ‘unq’, NOT NULL ‘nn’, and CHECK ‘ck’. 

Finally, the algorithm maps the different relationships 
among tables and columns. MapRelationship() algorithm 
uses the foreign key constraint between tables to find out the 
different types of relationship with respect to degree of 
relationship, transitive chain of relation, disjointness, etc. 
 
Procedure mapDatabase (S) 

Input: Schema S 
Begin 
 

mapTable(S) . 
mapColumn(S) . 
mapConstraint(S) . 
mapRelationship(S) . 
 

End . 

Figure 4. mapDatabase() Algorithm 

2) mapTable 
 
The Semantic Web equivalent of the relational algebra 

relations is a Class. During mapping the same name for the 
table T is used for the mapped class C. The class name is 
used to map subsequent relational columns into semantic 
class properties.  

The classes in the Semantic Web repository can be 
considered repositories of data to hold the relational data 
after the mapping. Each Class table C represents the 
relational table in semantic web. To represent the class data 
in RDF triples (subject, predicate, object), a separate RDF 
repository C_RDF is created. In C_RDF the class ID (i.e., 
primary key equivalent of the source table) is used as a 
‘subject’ while the rest of the properties are used as 
‘predicates’. Each property “value” corresponding to the 
class ID is the ‘object’ of the RDF triple. 

 
In addition to the class table C and RDF repository 

C_RDF, an OWL class is created using the class table C as 
an ID. 

 
Procedure mapTable (S) 

Input: Schema S 
Output: Class C, RDF Repository C_RDF, OWL Class 

Begin 

For each table Ti in S loop . 
 
 Create Class Table Ci . 
 

Create RDF Repository Ci_RDF  
using Class Table Ci and  a TRIPLE type attribute . 

 
 <owl:Class rdf:ID=”Ci” /> 
 
End loop .  

End . 

Figure 5. mapTable() Algorithm 

3) mapColumn 
 
The column attributes in the relational database are 

mapped as properties in semantic classes. A property in a 
class can describe an entity class or a relationship class. Each 
property has a set of allowable domain values that could be 
shared with one or more properties. 

 
The columns are broadly divided as “key columns” that 

are used to identify an occurrence of a relation and “simple 
columns” that only describe a relation. During mapping 
columns into properties, the following column types are used 
as criteria to choose the appropriate representation in the 
semantic web. 

 
Column types 
 
• Candidate Key (CK): minimal set of attributes that 

uniquely identifies each occurrence of an entity 
type. 

• Primary Key (PK): candidate key selected to 
uniquely identify each occurrence of an entity type. 

• Foreign Key (FK): referencing a primary key (PK) 
in another relation 

• Simple Column (SC): a non-candidate key that 
describes an entity type. 

 
The column attributes of a table is denoted as T(A1, A2, …, 
An) 
T(A1, A2, …, An) = {PK, {CK1, CK2,…, CKx}, {FK1, 
FK2, …, FKy}, {SC1, SC2, …, SCz}} 

Where x, y, z is a whole number. 
When the cardinality of x is greater than 1, candidate keys 
(CK) are treated as composite keys. 

 
The column attributes in the relational database are 

mapped to corresponding class properties. The constraint 
type associated with the attribute determines the cardinality. 
Each column attribute A is mapped to property P prefixed by 
the word “has” as “hasP”. 

 
Procedure mapColumn (S) 

Input: Schema S, Table T, Column attribute A 
 
Output: Property P, OWL:DatatypeProperty 

Begin 
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   For each table Ti in S loop . 
 
For each Column Aj in Ti loop . 
   
  get mapped Class Table Ci of Ti. 
  
   set Aj as Property Column hasAj 

. 
   get_&xsd;type_equivalent (Aj) . 
 
  <owl:DatatypeProperty rdf:ID=”hasAj”> 
  <rdfs:domain rdf:resource=”#Ci” /> 
  <rdfs:range rdf:resource  

=”&xsd;type_equivalent” /> 
  </owl:DatatypeProperty> 
 End loop . 

  End loop . 
End . 

Figure 6. mapColumn() Algorithm 

4) mapConstraint 
 
mapConstraint() algorithm maps relational database 

constraints into their equivalent semantic web representation. 
The algorithm reads both table level as well as column level 
constraints. For primary key pk(T) constraints, it creates 
“InverseFunctionalProperty” and “maxCardinality” OWL 
properties. For foreign key fk(T) constraints, it creates 
“ObjectProperty” OWL property. If a foreign key column is 
also part of the primary key pk(T) constraints, then the 
referencing table (T) is set as a “subClass” of the referenced 
table (T’). 

For UNIQUE ‘unq(A)’, NOT NULL ‘nn(A)’, and 
CHECK ‘ck(A)’ database constraints, the algorithm creates 
equivalent and “InverseFunctionalProperty”, 
“minCardinality”, and “hasValue” OWL property 
restrictions respectively. 

If the column attribute is a primary key pk(T) of the 
table, the maximum cardinality of the property car(P) is set 
to one. If the column attribute has a unique constraint 
unq(A), the maximum cardinality of the property car(P) is set 
to one. On the other hand if the property has a NOT NULL 
constraint nn(A), the minimum cardinality of the property 
car(hasP) is set to one. 

mapConstraint() procedure maps column attribute(s) A 
using the table T and its constraints (primary key, foreign 
key, UNIQUE, NOT NULL, CHECK) to a semantic 
property P and OWL cardinality properties. 

 
Procedure mapConstraint (S) 

Input: Schema S, Table T, Referenced Table T’, Column 
attribute A, primary key pk(T), foreign key fk(T), 
UNIQUE unq(A), NOT NULL nn(A), and CHECK 
ck(A) 
Output: RDFS subClassOf, Property P, OWL cardinality  
properties 

Begin 
For each table Ti in S loop . 
 For Column Aj in Ti loop . 

   
  get mapped Class Table Ci of Ti. 

  
  If (Aj in (pk(Ti))) then . 

 
<owl:InverseFunctionalProperty rdf:resource=”# hasAj ”/> 

 
/* set maximum car(hasAj) to 1 . */ 
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:maxCardinality  

rdf:datatype=”&xsd:nonNegativeInteger”>1 
</owl:maxCardinality> 

</owl:Restriction> 
</rdfs:subClassOf> 

 
  Else  
  if (Aj in (fk(Ti))) then . 

If (Aj in (pk(T’i))) then . 
<rdfs:subClassOf rdf:resource="#C’"/> 

End if . 
 <owl: ObjectProperty rdf:ID=”hasA”> 
 <rdfs:domain rdf:resource=”#C” /> 
 <rdfs:range rdf:resource=”#C’” /> 

</owl: ObjectProperty > 
  Else  
  if (unq(Aj)) then . 

 
   <owl:InverseFunctionalProperty rdf:resource=”# hasAj ”/>  

 
  Else  
  if (nn(Aj) and (!pk(Aj)) then . 

 /*set minimum car(hasAj) to 1 .*/ 
<owl:Restriction> 

<owl:minCardinality 
rdf:datatype=”&xsd:nonNegativeInteger”>1 
</owl:minCardinality> 

</owl:Restriction> 
 

  Else  
  if (ck(Aj)) then . 

<rdfs:subClassOf> 
<owl:Restriction> 
 <owl:onProperty rdf:resource=”#hasAj” /> 
 <owl:hasValue rdf:datatype="&xsd;string" > v(Aj)  

</owl:hasValue> 
</owl:Restriction> 
</rdfs:subClassOf> 

  End if . 
 End loop . 
End loop . 
End . 

Figure 7. mapConstraint() Algorithm 

5) mapRelationship 
 
A relationship between tables is identified by a foreign 

key. MapRelationship() calls a series of sub-procedures to 
identify the type of relationship between the two tables and 
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discover any patterns with the rest of the tables in the 
schema. 
 
Procedure mapRelationship (S) 

Input: Table T, Column attribute A, foreign key fk(T) 
Output: Class C, Property P 

Begin 
For each table Ti in S loop . 
  
 For each column Aj in Ti loop . 
  If (Aj = fk(Ti)) then 
   CheckRelationship(Ti, T’i) 
   CheckTransitiveChain(Ti, T’i) . 
   CheckDisjointness(Ti, T’i) 
     

 where T’i is referenced table by Ti 
End if . 

End loop . 
End loop . 

End . 

Figure 8. mapRelationship() Algorithm 

6) Check Relationship 
 
CheckRelationship algorithm uses the referencing table T 

and the referenced table T’ to determine whether to create a 
separate class to represent the relationship or only add a 
property column to the existing class. 

If the foreign key fk(T) is referring to a primary key 
pk(T’) and the foreign key has a NOT NULL constraint, then 
a new relationship class is created using the two tables (T, 
T’). An additional “subClass” parameter is also passed to 
create a “subClass” axiom between the “Class” equivalents 
of the tables T and T’. 

If the above criterion is not satisfied, the foreign key 
fk(T) would have been added as a property to the referring 
table equivalent class C using the mapColumn() procedure 
above. 

 
Procedure CheckRelationship(T, T’) 

Input: Table T, primary key pk(T), foreign key  
fk(T),NOT NULL nn(T) 
 

Begin 
If (fk(T) = pk(T’) and (fk(T) = nn(fk(T))) then . 
  
 CreateRelationship(T,T’, subClass) . 
 
End if . 

End . 

Figure 9. CheckRelationship() Algorithm 

7) Check Transitive Chain 
 
Transitive Chain of relations is tested using the foreign 

key/primary key column attributes between three relational 
tables. 

For any relational tables T1, T2, T3 in Schema S, if there 
is a foreign key relationship between T1 and T2 and if there 
is also a foreign key relationship between T2 and T3, then 
there is a transitive chain between T1 and T3. 

The algorithm uses the referenced table’s (T’) columns to 
find further foreign key relationship to the rest of the tables. 
If another relationship other than the one between T and T’ is 
found, a new relationship class is created using the two 
tables (T, Ti). An additional “Transitive” parameter is also 
used to create a “transitive” axiom between the “Class” 
equivalents of the starting table T and the new third table Ti. 
 
Procedure CheckTransitiveChain(T, T’) 

Input: Table T, Column attribute A, primary key pk(T),  
foreign key fk(T)  

Begin 
 
For each column Ai in T’ loop . 
 If (Ai in fk(T’)) then . 
 For each table Ti in S loop . 
  If ((Ai in pk(Ti)) and (Ti != T)) then . 
     

  createRelationship(T, Ti, Transitive) . 
    
  End if . 
 End loop . 
 End if . 
End loop . 

End . 

Figure 10. CheckTransitiveChain() Algorithm 

8) Check Disjointness 
 
Disjointness is a relationship between two “SubType” 

tables that share a common “SuperType” but has no 
relationship between each other. 

The foreign key/primary key column attributes between 
the tables is used to determine the disjunction between 
tables. 

For any relational tables T1, T2, T3 in Schema S, if there 
is a foreign key relationship between T1 and T2 and there is 
also a foreign key relationship between T2 and T3 but there 
is no relationship between T1 and T3, then there is a 
disjointness between T1 and T3. 

The algorithm uses the referenced table’s (T’) columns to 
find further foreign key relationship to other tables. If 
another relationship other than the one between T and T’ is 
found and there is no foreign key relationship between the 
new table Ti and the starting table T, then a “disjointWith” 
axiom is created between the starting table T and the new 
table Ti. 

 
Note that a group of disjoint relationships create a “Star” 

relation with the “SuperClass” in the middle and the disjoint 
classes as a branch. 
 
Procedure CheckDisjointness(T, T’) 

Input: Table T, Column attribute A, primary key pk(T),  
foreign key fk(T) 
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Output: RDFS subClassOf, OWL Class, disjointWith 
Begin 

 
For each column Ai in T’ loop . 
 If (Ai in fk(T’)) then . 
  For each table Ti in S loop . 
  If ((Ai in pk(Ti)) and (Ti != T)) then . 
   if ((ALL) fk(Ti) NOT in  

(ALL) pk (T)) then . 
      

  <owl:Class rdf:ID="Ti"> 
      

  <rdfs:subClassOf rdf:resource="#T"/> 
      

  <owl:disjointWith rdf:resource=" #T "/> 
  </owl:Class> 

 
  End if . 
  End loop . 
 End if . 
End loop . 
 

End . 

Figure 11. CheckDisjointness() Algorithm 

9) Create Relationship 
 
CreateRelationship algorithm is used to create a new 

relationship class table to represent the relationship between 
the referencing table T and the referenced table T’. If there is 
a foreign key in table T that references to a primary key in 
table T’, a new class table is created using a class symbol C 
and the name of the referencing and referenced tables 
respectively separated by an underscore as “C_T_T’ ”. 

The primary keys of both tables are added as property 
columns to the new class by adding “has” as a prefix as 
“hasP” and “hasP’ ”. 

In addition to the semantic class, a repository is also 
created to represent the class table data in RDF triples 
(subject, predicate, object). The RDF repository reads the 
class table data and presents it in RDF triples. It is named 
using the class table names suffixed by “RDF” as 
“C_T_T’_RDF”. 
 
Procedure CreateRelationship(T, T’, TYPE) 

Output: RDFS subClassOf, OWL Class, ObjectProperty  
Begin 

If (fk(T) = pk(T’)) then . 
 
 create Class C _T_T’. 
 set pk(T) as Property hasP of Class C_T_T’ . 
 set pk(T’) as Property hasP’ of Class C_T_T’ . 
 
 create RDF Repository C_T_T’_RDF  
  using Class Table C_T_T’ and a TRIPLE  

type attribute .  
 

  get mapped Class Table C of T . 
  get mapped Class Table C’ of T’. 

 
 If (TYPE = ‘subClass’) then 
  <owl:Class rdf:ID="C"> 
   <rdfs:subClassOf  

rdf:resource="#C’" /> 
  </owl:Class> 
   
 Else 
 if (TYPE = ‘Transitive’) then 
 
  <owl:ObjectProperty rdf:ID=”pk(T)”> 
  <rdf:type rdf:resource  

=”owl;TransitiveProperty”/> 
  <rdfs:domain rdf:resource=”#C” /> 
  <rdfs:range rdf:resource=”#C’” /> 
  </owl:ObjectProperty> 
  
 End if . 
 

End . 

Figure 12. CreateRelationship() Algorithm 

V. IMPLEMENTATION 

The implementation of the algorithms is based on the Space 
Project Management scenario. An interactive Java 
application is used to execute the mapping procedures and 
the resulting Semantic Web repository loaded in Protégé (a 
free open-source Java tool providing an extensible 
architecture for the creation of customized knowledge-based 
applications) OWL editor is shown on the figure below. 
 

 
Figure 13. RDF Schema view (Protége) 

The Ontology diagram modeled above is also serialisable 
using OWL file format as in Figure 14 below. 
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Figure 14- RDF Schema Overview (OWL file excerpt) 

The mapping test between the Relational Database 
Schema (Figure 2) and RDF Schema (Figure 13 & Figure 
14) is evaluated using meta-data search comparisons as 
shown by the sample screenshots in Figure 15 & Figure 16 
below. 
 

 
Figure 15. Relational Database Schema search result 

 
Figure 16. RDF Triples search result 

We have compared our attempt to some of the existing 
approaches (Direct Mapping, eD2R, R2O, Relational.OWL, 
Virtuso, D2RQ, Triplify, R2RML, R3M). We used the 
comparison criteria specified in the seminal paper [6]. The 
results of this comparison can be summarized as shown in 
Table I and Table II.  

TABLE I.  RDB-TO-RDF MAPPING LANGUAGES COMPARISON 

LEGEND [6] 

Legend Description 

F1 Logical Table to Class 

F2 M:N Relationships 

F3 Project Attributes 

F4 Select Conditions 

F5 User-dened Instance URIs 

F6 Literal to URI 

F7 Vocabulary Reuse 

F8 Transformation Functions 

F9 Datatypes 

F10 Named Graphs 

F11 Blank Nodes 

F12 Integrity Constraints 

F13 Static Metadata 

F14 One Table to n Classes 

F15 Write Support 

F16 Data Patterns 

F17 Data Control Languages (DCL) 

 

TABLE II.  SUMMARY TABLE OF RDB-TO-RDF MAPPING LANGAGE 

COMPARISON [6] WITH RD2SW 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

Direct Mapping (�) � � � � � � � � 

eD2R � � � � � � � � � 

R2O � � � � � � � � � 

Relational.OWL (�) � � � � � � � � 

Virtuoso � � � � � � � � � 
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D2RQ � � � � � � � � � 

Triplify � � � � � � � � � 

R2RML � � � � � � � � � 

R3M (�) � � (�) � � � � � 

RD2SW ���� ���� ���� ���� ���� ���� ���� ���� ���� 

 

 F10 F11 F12 F13 F14 F15 F16 F17 

Direct Mapping � � � � � �   

eD2R � � (�) � � �   

R2O � � (�) � (�) �   

Relational.OWL � � (�) � � �   

Virtuoso � � (�) � � �   

D2RQ � � (�) � � �   

Triplify � � (�) � � �   

R2RML � � (�) � � �   

R3M � � � � � �   

RD2SW ���� ���� ���� ���� ���� ���� ���� ���� 

 

VI. CONCLUSION AND FUTURE WORK  

In the current implementation, the mapping procedure 
reads the database directly, starting with the data dictionary 
and then the data. The developed algorithms use a 
configuration file to choose a relational database driver and 
access the database dictionary to map into an RDF format. It 
involves formulation of heuristics that formally define the 
mapping. The domain specific heuristics have helped harvest 
the Ontology of the Space Project Management Database. 
This domain specific heuristics was implemented using an 
incremental algorithm to extend the domain ontology 
repository. The formulated heuristics and domain ontology 
repository have been implemented and tested on a prototype 
Space Project Management semantic tool as a proof-of-
concept to the research. This heuristic-based methodology 
can be applied and measured on other relational data with 
different domain ontology. 

Currently, we used set of heuristics for accounting the 
different types of relational model knowledge (constraints, 
data types), domain specific knowledge (simple data patterns 
like transitive chain and disjointness) and application 
specific knowledge (predicates). In the future we plan to 
extend the algorithm so that it also accounts other types of 
domain specific knowledge like complex data-patterns, user 
domain knowledge (individual and group users, access rights 
and profiles) and application domain knowledge (i.e., 
triggers and transactions). We also plan to implement a 
parser for SQL DDL, used to create the database. It will be 
still necessary to connect to the database in order to elicitate 
and convert the data stored in it, but this will eliminate the 
need for using the data dictionary and thus, it will reduce the 
database dependency. 

The process of mapping Relational Databases to 
Semantic Web (RD2SW) using domain specific knowledge 
involves most of the current - Semantic Web Layer 
components- RDF, RDF schema, query languages, rules, 
logic, etc. Following the Semantic Web standards set by 

World Wide Web Consortium will ultimately help us 
represent ‘web resources’ in a standardized, unambiguous, 
interoperable and above all Linked-Data format as the next 
efficient phase of representing knowledge in the 21st 
century. 
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