
Adapting a Web Application for Natural Language Processing

to Odd Text Representation Formats

Bart Jongejan

Department of Nordic Studies and Linguistics
University of Copenhagen, Denmark

Email: bartj@hum.ku.dk

Abstract—Users of Natural Language Processing (NLP) are best
helped if that technology has a low threshold. Therefore, there is a
niche for NLP infrastructures that can adapt to the notations used
in scholarly projects, instead of requiring that projects adapt to
the notation prescribed by a particular NLP infrastructure. The
Text Tonsorium is a web application that fits in that niche, because
it is not married to any notation and therefore can integrate
tools that are tailored to the needs and notations of projects.
There are no costs involved related to manually modelling project
specific tools into workflow templates, since the Text Tonsorium
automatically computes those templates.

Keywords–Natural Language Processing; NLP workflows; dig-
ital edition; medieval diplomas.

I. INTRODUCTION

A. Notations, encodings, file formats
Researchers use notations to express their thoughts and

findings in ways that can be understood by their peers. Ex-
amples are Venn diagrams, staff notation (for music), Arabic
numerals, and notations for regular expressions. Incompatible
notations, such as Arabic and Roman numerals, can and do
live alongside each other. That is neither good nor bad, but
just a reality. The use of different notations for the same thing
is sometimes a precondition for progress.

In the computer age, the related concepts of encoding
and file format have also become prominent. For software
to be able to automatically add annotations to a scholarly
document, say, the software has to “understand” the encoding,
the file fomat, as well as the notation of the input. In this
paper, the distinctions between these three concepts are not
important. “Notation” will be used as the generic term for all
the conventions that have to be adhered to in order to make
successful use of software.

B. NLP infrastructures prescribe notation
There is a tendency in Natural Language Processing (NLP)

infrastructure projects to strive for notations that are adhered
to by all who want to use the services of those infrastructures.
The adoption of widely used notations is probably good for a
large number of projects. However, there are also scholarly
projects that decide to use notations that primarily achieve
other goals than the option to use NLP, for example, that it
must be possible to make manual annotations in a visually
attractive way, or that project participants do not have to be
retrained. In addition, adopting the notation prescribed by an
NLP infrastructure has a risk. The project may bet on the
wrong notation by choosing a specific NLP infrastructure:

notations promoted by infrastructures proliferate at the same
rate as projects implementing those infrastructures and can
become obsolete after a short time. Universal notations that can
replace all other notations and that are not only safe to use now,
but also in the foreseeable future, do not exist. Conversely,
not adhering to the notation required by an NLP infrastructure
excludes scholarly projects from the use of that infrastructure.

C. Mapping between notations
When making NLP tools available to a scholarly project

that uses its own notation, there is a need for a technical
mediation between the notation employed in that project and
the notations required by the NLP tools that currently are in the
toolbox. Ideally, the mapping between the notation employed
by the project and the notation used by existing NLP tools
goes both ways, so that results from the NLP infrastructure
appear in the notation employed by the project.

One way to realize a mapping is to let the scholarly project
be responsible for the necessary conversions, so that no adap-
tation of the NLP infrastructure is necessary. This approach
was, for example, adopted in the DK-Clarin project [1]. The
goals of this project were twofold: a repository with many
Danish linguistic resources, and an on-line NLP service for the
Danish language. In order to optimize the usefulness of shared
resources, users of the DK-Clarin repository were requested to
only contribute text resources that complied with a particular
schema, called “TEIP5 DK-CLARIN”, that followed the Text
Encoding Initiative guidelines, version P5 (TEI P5). This
notation was agreed on by the users who participated in the
DK-Clarin project. The expectation was that other users would
also adopt this notation. To nudge users in the right direction,
it was decided that the NLP tools could only be applied to
resources that had been deposited in the repository. The idea
was that the cost of transition from non-conforming notations
to the “TEIP5 DK-CLARIN” notation would be outweighed
by the advantage of being able to use the NLP tools. In that
way, the infrastructure would not have to carry the cost of
conversion of notation, but could turn that over to the users.

D. Structure of the paper
The structure of the remaining part of this paper is as

follows. Section II presents a workflow management system,
the Text Tonsorium (TT), that does not prescribe the use of
any particular notation and therefore can be used in projects
that use their own notation. Section III presents related work.
Section IV presents a use case that illustrates how the TT can
adapt to a project that uses its own notation. This is done step

97Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

by step in four subsections: upload of data, specification of the
desired output, computation and selection of workflows, and
tracking the execution of the selected workflow as it progresses
through its job steps. Section V describes how the Directional
Acyclic Graph (DAG) structure of workflows makes it possible
to handle both common and project specific notations. That
section also describes in a few words how the TT computes
workflows. Section VI gives a short outline of the human
efforts that are needed to integrate a tool. The concluding
remarks and future plans are drawn in Section VII.

II. THE TEXT TONSORIUM

This paper exposes the benefits of an approach that is
almost opposite to the approach that gives users of an NLP
infrastructure the sole responsibility for necessary notation
conversions. Both projects and the NLP infrastructure gain
something by supplementing an existing and evolving NLP
infrastructure with project specific tools for handling project
specific notations. Projects thus have the advantage that the
notation mapping problem is solved by the NLP infrastructure,
while, in the wake of the adaptations for project specific
purposes, the infrastructure may very well be enriched with
tools that are also useful for a general public. Also the quality
of the output from the NLP tools may improve, since the
cooperation between a project and the NLP infrastructure may
produce new or improved linguistic resources with which NLP
tools like Part of Speech taggers and lemmatizers can be
(re-)trained.

A precondition for the viability of this approach is that the
cost of extending the infrastructure with project specific tools
is manageable. Most importantly, the cost per extension should
stay more or less constant. The TT is a workflow manager for
NLP that supports this approach and does so at a cost that is
manageable, because the cost of integration of a new tool does
not depend on the number of already integrated tools.

The cost of integration of a new tool would hardly remain
the same as the number of already integrated tools grows if
existing, preconfigured workflow templates would have to be
copied and manually adapted to new notations, since the num-
ber of such workflow templates very likely also would grow
and the average workflow template would become more com-
plex. The TT eliminates the manual construction of workflow
templates. Instead, it creates workflow templates automatically,
basing its computations on the features of the actual input,
the user’s requirements with respect to the output, and the
metadata of the tools that are registered in the infrastructure.

The TT was built during the DK-Clarin project as the NLP
component of the Clarin.dk [2] infrastructure. Two require-
ments determined the architecture of this component. Both
requirements had the purpose of minimizing the maintenance
effort needed to run the infrastructure, so that it could continue
to be available and growing in times of low funding.

The first requirement was that if a user of the Clarin.dk
infrastructure would like to share a tool with other users, the
registration and integration of that tool had to be done by
the user, and not by the maintainers of the TT. The second
requirement was that the maintainers of the TT should not be
involved in the construction of workflow templates.

The second requirement could have been fulfilled by just
not offering facilities for workflows at all or by offering a
facility that would enable users to construct workflows by

hand. The choice fell on a solution that required a user
interface with only few fields and controls, and a back-
end that computed viable workflow templates automatically,
using the characteristics of the input and the desired output
as the boundary conditions for the computation of workflow
templates.

The possibility to handle other notations than the
“TEIP5 DK-CLARIN” notation was a fortuitous side effect
of this architecture, but it was not a publicly accessible
feature until, in 2017, the NLP component became a web
application [3] independent of the Clarin.dk repository, under
the new name “Text Tonsorium”.

A detailed technical description that explains how the TT
computes workflow templates and why most of the implemen-
tation was done in a domain specific programming language
for Symbolic Mathematics, Bracmat, is in [4]. More about the
user perspective of the TT is in [5]. The TT is open source [6].

III. RELATED WORK

Most NLP workflow management systems require (expert)
users for the construction of workflow templates and either
have elaborate graphical interfaces and tool-profile matching
algorithms to assist the user, or require that the user does some
scripting.

Weblicht [7] offers NLP workflows that can take a range of
file formats as input but no resources that already have some
structure, such as metadata and manually created annotations
in the text that should not get lost in the NLP workflow. The
exception are resources expressed in the Text Corpus Format
(TCF) [8], which combines several stand-off annotation layers
in a single file. The TCF is the native file format in Weblicht
and is used for all data interchange between the tools.

The Nextflow system [9][10] powers the Dutch Philo-
sophical Integrator of Computational and Corpus Libraries
(PICCL) [11] portal. The Format for Linguistic Annotation
(FoLiA) [12] is the standard notation in PICCL.

Other systems that require the manual construction of
workflow templates are, for example (in alphabetical order):
Galaxy [13], Gate [14], Kathaa [15], Kepler [16], Taverna [17],
TextGrid [18], UIMA [19], and zymake [20].

Curator [21] is a workflow management system with a
limited set of NLP tools. Some of these tools depend on
outputs from other tools, yet manual construction of work-
flow templates is not necessary. Workflows are implicitly and
uniquely defined in Curator because there is exactly one tool
for each type of annotation layer.

Universal Dependencies (UD) is an international effort to
develop parsers for many languages. Software contributions
must conform to the notation defined for the Conference on
Computational Natural Language Learning (CoNLL). [22]

IV. USE CASE: ADD POS TAGS AND LEMMAS TO
TRANSCRIPTIONS OF MEDIEVAL DIPLOMAS

This section shows how the TT adds Part of Speech tags
and lemmas to documents that use a project specific notation.
The project, Script and Text in Space and Time (STST) [23],
has the goal, among other things, to provide dynamic and
interactive digital editions of medieval diplomas.

The TT is in a way similar to software that computes routes
between two addresses on a map. From the user’s perspective,
there are four steps. On the front page, the user is invited to

98Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

upload input for NLP processing. On the second page, the
user specifies the output. On the third page, the user selects a
workflow from a list of possible workflows. On the fourth and
final page, the user can follow the execution of the workflow
as it progresses, and see the outputs.

The enhancements to the TT that were made for the sake
of the STST project will be pointed out as we discuss each of
the four steps.

A. First step: upload data
The front page of the TT is shown in Figure 1. The user

has three options to send input to the TT: by upload of files,
by listing Universal Resource Locators (URLs), and by direct
text entry. These methods can in principle be combined, but
the TT currently assumes that all uploaded sources have the
same language, file type, type of content, etc. The upload starts
when the user presses the Specify the required result button.

Since, in principle, data that is uploaded to the TT could
pass through NLP tools that are monitored by third parties, the
user is asked not to upload sensitive data.

Figure 1. Front page of Text Tonsorium with three input modes.

In this example, the user uploads a single file,
“24.org” [24]. This file contains a header and a table, and
utilizes Org-mode [25], a notation native to the editor of
choice in the STST project, Emacs. The project uses a GitHub
repository as shared work space for this and hundreds of other
transcriptions of diplomas. For the STST project, an extra
benefit of using GitHub is that it has provisions for visualizing
Org-mode files in an attractive way.

B. Second step: specify the desired output
When the input is uploaded, the TT’s first action is to find

out what it is. In this example, the input is uploaded with
the media type “application/x-download”, “application/octet-
stream”, or “text/plain”, depending on the user’s browser. Since
these media types are very general, the file is opened by the
TT and its content analyzed. The TT ascertains, for example,
whether a text file conforms to the aforementioned project’s
notation. About 360 characters of code are dedicated to this
specific analysis. The result of the analysis is shown in the
upper part of the second window, see Figure 2. In the shown
example, the TT was able to fill out all fields. In general, the
TT does not know the language of the input and leaves that
field empty, but in this case the language, Latin, is revealed in
the header section of the uploaded file.

Figure 2. Window where the user specifies the output: lemmas, Org mode.
The input features are set by the Text Tonsorium.

The lower part of the window in Figure 2 is where the
user specifies the goal. The goal, like the input, is specified in
terms of one or more features.

Currently seven features can be specified, and that number
can change in the future. Originally, there were only three
features, namely those for language, file format and type of
content. Later came presentation (indicating whether or not
a result was sorted, and if yes, alphabetically or according
to frequency), appearance (whether a result was “noisy”,
“human readable” or just “clean and concise”), historical
period (“classical”, “medieval”, “early modern”, “late modern”
and “contemporary”), and ambiguity (“unambiguous”, “am-
biguous”, or “pruned, but not necessarily unambiguous”).

Some feature values can subsume other values as well. For
example, the type of content called “lemmas” also includes the
combination “segments, lemmas”, which means that sentence
structure of the input is still intact in the output.

The user is advised to leave some fields empty in the
goal specification. A very detailed specification decreases the
chances that any workflow can fulfil the goal. A good strategy
is always to specify the language (this can also be done in the
input) and the type of content, and perhaps also the format.

More expert users of the TT can optionally specify a tool
that the workflow has to contain. If the output fields are empty,
then the output specifications of the selected tool are taken as
the goal, and the selected tool will be the last in the workflow.
If some of the output fields are also filled out, then the selected
tool can be anywhere in the workflow.

In this example the user specifies that the output must
have lemmas and that it must have the Org-mode file format.
Because the Show workflows for similar goals field is checked,
the TT will also try to fulfil goals that offer Part of Speech
tags besides lemmas, and a few other goals.

C. Third step: workflow templates are computed and user
selects one

When the user presses the next step button on the output
specification page, the TT starts to compute workflow tem-
plates that, given the current input, lead to the goal specified
by the user. If no workflow template exists that can fulfil the
goal with the tools that are currently integrated, then the TT

99Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 3. The three workflows that lead to the user’s goal. The user has already chosen the third workflow. The “Orgmode converter” tool is explained.

will quickly tell the user that. On the other hand, if there are
workflows, then the best ones will be listed.

The list can be quite long. If that is the case, the user
is perhaps able to see that the list in part is populated by
workflows that are meant for the wrong historical period, or
that deliver ambiguous output, or that have other undesirable
common features. She can then go back to the output specifi-
cation window and specify the output in more detail by leaving
fewer fields empty. In that way, it is often possible to reduce
the presented list to such a degree that the user gets a well
organized overview over the possibilities.

Quite often the user will see workflows that are the same
apart from different styles of some feature values. For example,
the content type called “tags” has several tag styles, such as
“Universal” and “Penn Treebank” (provided that the language
is English). Another example are the two different styles of the
“html” value of the format feature, one style saying that the
body uses the traditional h, p, table, br, etc. elements, and
another style that does not involve these elements. The latter
style is hard to process in an NLP workflow, but defines the
text layout to an extremely high degree, as in a PDF document.
Normally style values are kept out of sight of the user. Styles
are hard to specify for non-specialist users and would add a
lot of unintelligable clutter to the user interface.

In this example, the TT lists three workflows, see Figure 3.
The first workflow does not involve a Part of Speech tagger,
so the user can discard it. The second and third workflows are
very similar. The only difference is the Part of Speech tagger.
The second workflow involves a Brill POS-tagger, while the
third workflow involves the Lapos POS-tagger.

Common to all three workflows and specifically imple-
mented to meet the special needs in the STST project are
the tools “Diplom fetch corrected text”, “Normalize dipl” and
“Orgmode converter”. These three tools handle Org mode files
that have the internal organization used in the project. The
tools “vujiLoX” and “TEI P5 anno to Org-mode” were also
created for the sake of this project but are of a general nature.
The “vujiLoX” tool lowercases all characters in the input and
also converts all v to u and all j to i. This tool prepares Latin
texts for the lemmatiser. The “TEI P5 anno to Org-mode” tool
combines two stand-off annotations into a single two-column

table in Org-mode notation. These two tools show that the
TT’s involvement in a project not only helps the project but
can also be useful for users outside that project.

D. Fourth step: execution of the selected workflow and viewing
the output

Once the user has selected a workflow and pressed the next
step button, the TT will execute the selected workflow for all
the inputs that the user has uploaded.

Figure 4. The third workflow halfway being executed.

The output of a tool can be viewed as soon as the tool
finishes. The user can reload the page where the workflow
unfolds or wait for the automatic page refresh that comes every
10 seconds, see Figure 4.

When all processes in a workflow have been executed, all
results can be downloaded in a single zip file. The results
can be downloaded again, but after a few days, they are
deleted from the server. The output of the workflow is, in this
example, the input file enriched with values in columns that
were originally empty, see Figure 5.

V. THE STRUCTURE AND COMPUTATION OF WORKFLOWS
IN THE TEXT TONSORIUM

The TT follows the dataflow programming paradigm,
which means that a workflow template computed by the TT
has the layout of a DAG (See Figure 6) and that NLP tools
in mutually independent paths of the graph can be executed at
the same time. For example, in Figure 4, the “CST-lemmatiser”

100Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 5. Part of the output in Org-mode. Columns 3, 4 and 6 contain
results from three tools. All other content is copied from the input.

Figure 6. Topological ordering of the third workflow. The black nodes are
the currently running steps in Figure 4.

and the “Sentence extractor” are both being executed. These
two tools are marked with black filled circles in Figure 6.

The TT computes DAGs by dynamic programming, fol-
lowed by a pruning step. It starts by fulfilling the user’s
goal by the output specifications of some tool. It then defines
the specifications of that tool’s input(s) as the new goal(s).
The process is repeated until all goals are satisfied by the
specifications of the user’s input. Any DAG that leads from the
user input to an intermediate goal is memoized, saving both

memory and time if the same intermediate goal is needed to
satisfy the needs of another tool in the completed workflow
template. After a complete DAG is found, the TT backtracks
and does an exhaustive search for alternative DAGS, using
different tools or the same tools with different settings. The
number of found DAGs, which can run in the thousands,
is afterwards reduced by excluding those DAGs that have
characteristics that users very likely would regard as erroneous,
such as multiple occurrences of a particular tool that have
different parameter settings for no good reason.

Before presenting the pruned list of workflow template
candidates for the user, the TT suppresses details that are not
essential for seeing the differences between the candidates. For
example, in Figure 3, information about the language, which
is Latin in all three workflows, is not shown.

Before a workflow is executed, the corresponding workflow
template is instantiated with the actual input provided by the
user, and expressed as a list of job steps. Each step comprises
the URL of the tool to run, the specification of the necessary
input(s) (user provided input or output from other steps), and
the actual values of the input and output parameters. Each time
new output becomes available, the TT activates job steps for
which all required inputs are available.

A huge advantage of DAG-structured workflows is that
they can involve both tools that are aware of special notations
and tools that are not. Though not impossible, this is hard to
achieve with workflows that have a strictly linear structure, as
is the case with workflows that use TCF, CoNLL, FoLiA, or
other notations that accumulate annotations while traversing a
sequence of tools.

The DAG structure has the additional quality that processes
in different branches can be executed synchronously.

VI. INTEGRATION OF TOOLS

There are some limitations as to which types of tool can be
integrated in the TT. The tool must run from the command line
and may not require any user interaction while running. Also,
all parameters to the tool must either be fixed or take values
from a nominal scale [26]. This makes it hard or impossible
to integrate, for example, Deep Learning scripts that require
that the user experiments with several settings of real-valued
parameters.

If a candidate tool fulfils these requirements, the TT offers
an easy way of embedding it in an ecosystem of already
existing tools.

Once a tool is integrated, users of the TT can see that the
new tool is taken into consideration when the TT computes
workflow templates.

Integration of a new tool starts in the administrative page
of the TT. The registration form is in two parts. One part
stores name, description, creator, etc., and, most importantly,
the URL where the webservice that wraps around the tool
can be found. The second part specifies the input and output
profile(s) of the tool in terms of features and feature value
subspecifications.

After the registration of a new tool, the TT can create a
PHP script for the new web service that is already tailored to
the new command line tool to be integrated. This PHP script
parses the HTTP parameters that the TT will set when the
tool is called and fetches all the input files from the TT server
that the tool needs. To wrap the script around the tool, the

101Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

programmer must look for the pieces of PHP code marked
“TODO” and follow the instructions. Dummy code is present
that makes it possible to test that the script is callable over
HTTP.

VII. CONCLUSION AND FUTURE WORK
Three features of an NLP infrastructure are key to being

adaptable to scholarly projects that have chosen a notation
that is unknown to the NLP infrastructure. The first feature
is that it must be cheap to create workflow templates, so that
many different projects, each with their own traditions and
requirements, can be served at affordable cost. The second
feature is that the NLP infrastructure must not impose a
notation on projects that want to use the NLP tools, but rather
should open up for “odd” notations. The third feature is that the
workflow templates should be composable of tools that require
varying notations, so that tools that are tailored to specific
projects can cooperate with tools that use different notations.

The TT fulfils these three requirements. (1) The cost of
integration of new tools is not influenced by the tools that
are already integrated, since workflow templates containing
many steps are automatically created at no cost. (2) The TT
can handle a wide variety of notations in input and in output.
(3) The workflow templates that the TT produces are directed
acyclic graphs. That makes it straightforward to pass notation
around tools that cannot handle it. In the example given in this
paper, all the layout and content in the input is reproduced in
the output, which is hard to achieve in linear pipelines of NLP
tools.

In the future, we want to speed up processing of large
amounts of documents by exporting TT’s automatically com-
puted workflow templates to faster workflow execution plat-
forms. We also want to improve the user interface by providing
much more context sensitive guidance.

REFERENCES
[1] L. Offersgaard, B. Jongejan, and B. Maegaard, “How Danish

users tried to answer the unaskable during implementation of
clarin.dk,” Nov. 2011, [retrieved: April, 2019]. [Online]. Available:
https://cst.dk/dighumlab/publications/dkclarin SDH nov2011.pdf

[2] “Clarin.dk,” https://clarin.dk/, [retrieved: April, 2019].
[3] “Text tonsorium,” https://cst.dk/WMS/, 2017, [retrieved: April, 2019].
[4] B. Jongejan, “Implementation of a workflow management system

for non-expert users,” in Proceedings of the Workshop on Language
Technology Resources and Tools for Digital Humanities (LT4DH).
Osaka, Japan: The COLING 2016 Organizing Committee, December
2016, pp. 101–108, [retrieved: April, 2019]. [Online]. Available:
http://aclweb.org/anthology/W16-4014

[5] ——, “Workflow management in CLARIN-DK,” in Proceedings of the
workshop on Nordic language research infrastructure at NODALIDA
2013; May 22-24; 2013; Oslo; Norway. NEALT Proceedings Series 20,
no. 89. Linköping University Electronic Press; Linköpings universitet,
2013, pp. 11–20.

[6] “Text tonsorium (source code repository),” https://github.com/kuhumcst/
DK-ClarinTools, 2017, [retrieved: April, 2019].

[7] E. W. Hinrichs, M. Hinrichs, and T. Zastrow, “Weblicht: Web-based
LRT services for German,” in ACL 2010, Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics,
July 11-16, 2010, Uppsala, Sweden, System Demonstrations. The
Association for Computer Linguistics, 2010, pp. 25–29, [retrieved:
April, 2019]. [Online]. Available: http://www.aclweb.org/anthology/
P10-4005

[8] U. Heid, H. Schmid, K. Eckart, and E. Hinrichs, “A corpus repre-
sentation format for linguistic web services: The D-SPIN text corpus
format and its relationship with iso standards,” in Proceedings of the
7th International Conference on Language Resources and Evaluation,
2010, pp. 494–499.

[9] “Nextflow,” https://www.nextflow.io/, [retrieved: April, 2019].
[10] P. Di Tommaso et al., “Nextflow enables reproducible computational

workflows,” Nature Biotechnology, vol. 35, Apr 2017, pp. 316–319,
[retrieved: April, 2019]. [Online]. Available: https://doi.org/10.1038/
nbt.3820

[11] “PICCL: Philosophical integrator of computational and corpus
libraries,” https://github.com/LanguageMachines/PICCL, [retrieved:
April, 2019].

[12] M. van Gompel and M. Reynaert, “FoLiA: A practical XML
format for linguistic annotation - a descriptive and comparative
study,” Computational Linguistics in the Netherlands Journal, vol. 3,
2013, pp. 63–81, [retrieved: April, 2019]. [Online]. Available:
https://www.clinjournal.org/clinj/article/view/26/22

[13] B. Giardine et al., “Galaxy: A platform for interactive large-scale
genome analysis,” Genome Res, vol. 15, 2005, pp. 1451–1455,
[retrieved: April, 2019]. [Online]. Available: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC1240089/

[14] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, “GATE: An
architecture for development of robust hlt applications,” in Proceedings
of the 40th Annual Meeting on Association for Computational
Linguistics, ser. ACL ’02. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2002, pp. 168–175, [retrieved: April, 2019].
[Online]. Available: https://doi.org/10.3115/1073083.1073112

[15] S. P. Mohanty, N. J. Wani, M. Srivastava, and D. M. Sharma,
“Kathaa: A visual programming framework for NLP applications,” in
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Demonstrations.
San Diego, California: Association for Computational Linguistics,
June 2016, pp. 92–96, [retrieved: April, 2019]. [Online]. Available:
http://www.aclweb.org/anthology/N16-3019

[16] A. Goyal et al., “Natural language processing using Kepler workflow
system: First steps,” Procedia Computer Science, vol. 80, 2016, pp. 712
– 721, international Conference on Computational Science 2016, ICCS
2016, 6-8 June 2016, San Diego, California, USA.

[17] K. Wolstencroft et al., “The Taverna workflow suite: designing and
executing workflows of web services on the desktop, web or in the
cloud,” Nucleic Acids Research, vol. 41, 2013, pp. W557–W561.

[18] H. Neuroth, F. Lohmeier, and K. M. Smith, “TextGrid - virtual
research environment for the humanities,” IJDC, vol. 6, no. 2,
2011, pp. 222–231, [retrieved: April, 2019]. [Online]. Available:
http://dx.doi.org/10.2218/ijdc.v6i2.198

[19] D. Ferrucci and A. Lally, “Building an Example Application with
the Unstructured Information Management Architecture,” IBM Syst.
J., vol. 43, no. 3, Jul. 2004, pp. 455–475, [retrieved: April, 2019].
[Online]. Available: http://dx.doi.org/10.1147/sj.433.0455

[20] E. Breck, “zymake: A computational workflow system for machine
learning and natural language processing,” in Software Engineering,
Testing, and Quality Assurance for Natural Language Processing.
Columbus, Ohio: Association for Computational Linguistics, June
2008, pp. 5–13, [retrieved: April, 2019]. [Online]. Available:
https://www.aclweb.org/anthology/W08-0503

[21] J. Clarke, V. Srikumar, M. Sammons, and D. Roth, “An NLP curator
(or: How I learned to stop worrying and love NLP pipelines),”
in Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC’12), pp. 3276–3282, [retrieved: April,
2019]. [Online]. Available: http://lrec-conf.org/proceedings/lrec2012/
pdf/664 Paper.pdf

[22] “Universal Dependencies,” http://universaldependencies.org/, [retrieved:
April, 2019].

[23] “Script and text in space and time,” https://humanities.ku.dk/research/
digital-humanities/projects/writing-and-texts-in-time-and-space/,
[retrieved: April, 2019].

[24] “Diploma 24.org,” https://github.com/Clara-Kloster/Guldkorpus/blob/
master/transcriptions/org/working/24.org, 2018, [retrieved: April, 2019].

[25] C. Dominik, The Org-Mode 7 Reference Manual: Organize Your Life
with GNU Emacs. UK: Network Theory, 2010, with contributions
by David O’Toole, Bastien Guerry, Philip Rooke, Dan Davison, Eric
Schulte, and Thomas Dye.

[26] S. S. Stevens, “On the Theory of Scales of Measurement,” Science, vol.
103, Jun. 1946, pp. 677–680.

102Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

