AICT2014 : The Tenth Advanced International Conference on Telecommunications

UML-based Modeling Entity Title Architecture (ETArch) Protocols

Diego Alves da Silva,
Natal Vieira de Souza Neto,
Flavio de Oliveira Silva
and Pedro Frosi Rosa

Faculty of Computing
Federal University of Uberlandia
Uberlandia, MG, Brazil
Email: diegoalves@cti.ufu.br,
natal @mestrado.ufu.br,
flavio@facom.ufu.br,
pfrosi@ufu.br

Abstract—The approaches used to model communication proto-
cols suffered several changes in past years. Some of the modeling
languages are not used anymore because of their complexity,
others because of their inherent limitations that were pointed out
over time. Even today an approach that can represent a protocol
in many abstraction levels is welcome. The objective of this article
is to introduce an approach to model a communication protocol
using the Unified Modeling Language (UML). The purpose is to
create models that are able to represent an Internet architecture
in many abstractions levels and different concerns, including
structural level and services definitions. Besides, we propose an
evaluation of the generated model, showing main advantages,
such as representing architectural modeling, and limitations, such
as representing time, non-functional constraints and physical
resources when modeling communication protocols using UML.

Keywords-UML; protocols; architectural modeling

I. INTRODUCTION

The design and development of a real-time communication
protocols must ensure security, reliability and response time
capability. In other words, the protocol must not reach unsafe
or not allowed states, must forecast all possible states and must
comply with time constraints. With the purpose of getting
a high abstraction level of states and message exchanging
between them, and also to allow the validation of the required
properties, different modeling languages were considered for
modeling real-time protocols in past years, i.e., State Machines
[1][2], Petri Nets [3], and LOTOS [4].

The mentioned languages have the same modeling purpose,
they are all focused on modeling behaviour, but with little
focus on the structural and architectural elements, i.e., the
Petri Nets language is fully visual; however it does not have
natively ways of modeling time constraints and architectural
representations. Then, in order to solve issues such as time
constraints, customizations of the language as Time Petri Nets
and Coloured Petri Nets [5] were created. Another modeling

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

Michel dos Santos Soares

Faculty of Computing
Federal University of Sergipe
Sao Cristovao, SE, Brazil
Email: mics.soares@gmail.com

language, the Language of Temporal Ordering Specification
(LOTOS), is tightly algebraic and has a specification with
complex symbology, which may be one of the causes why
the language is not adopted as default language for protocol
modeling [6].

The International Organization for Standardization(ISO)/
Open Systems Interconnection (OSI) reference model for com-
munication has several problems [7][8]. These issues are at the
network layer, mainly related to the Transmission Control Pro-
tocol (TCP)/ Internet Protocol (IP) model. This model basically
consists of five layers: application, transport, network, link and
physical. Each layer is responsible for ensuring a portion of the
service, and does not guarantee that it is sent to the backsheet
to solve this. Much of the services are made in the application
layer, but some could be made in layers over the network core,
such as the transportation and network layers [9]. This paper
presents the modeling of a Future Internet protocol architecture
using the UML modeling language, as well as standards and
an approach to model elements and behaviours in different
abstraction levels.

The reminder of the paper is as follows. In Section 2,
an overview of related works about protocol modeling is
described. In Section 3, the architecture and the services of
the proposed Etarch protocol are presented. In Section 4, the
modeling of services provided by the protocol is described
using the UML modeling language. In Section 5, the modeling
is evaluated and the advantages and limitation are discussed.

II. RELATED WORKS

Finite State Machine (FSM) consists of a mathematical
model of computing. The FSM have an alphabet of input and
output, states, and transitions that connect states. With a finite
number of states, its main feature is determinism. Modeling
communication protocols using State Machines consists of
dividing the system into communicating components, in which

168

AICT2014 : The Tenth Advanced International Conference on Telecommunications

each component is a State Machine. One advantage of this
approach is the possibility of automatic validation of the
model. The main limitations are the low abstraction level
and the problem of the high number of created states to
represent operations between components. Wu and Loui [10]
presented the idea of modeling asynchronous protocols for
communication across unreliable channels using finite-state
machines communicating via an unreliable shared memory.
It is shown that there are robust protocols for deletion and
insertion errors. The state machine and intermediate variables
were applied to solve the problem of difficulty of regulate
the input variables and complex properties that can not be
described in temporal logic and verify the related properties of
the data flow control module, overcoming the incompleteness
of the traditional methods [11].

Another modeling language that has been applied to model
protocols is the Timed Automata [12], which consists in an
approach of State Machine to treat time and clock modeling.
The UPPAAL environment allows modeling and validation of
Timed Automata models [13][14]. One of main properties of
Timed Automata is that, although the set of configurations is in
general infinite, checking reachability properties is decidable.
However, an animation of Timed Automata cannot be deter-
mined, and inclusion checking is undecidable [12], except for
deterministic timed automata. This basically forbids the use of
timed automata as a specification language [15].

Since its introduction in 1962, but mostly after 1985,
Petri Nets, a graphical and mathematical language, has been
widely used to model communication protocols [16]. The
language provides interesting modeling possibilities for real-
time communication protocols, such as directly supporting
modeling of concurrency, resource sharing and asynchronous
events. The absence of compositionality is the main criticism
raised in models created using Petri Nets [17][18]. Therefore,
the level of abstraction is relatively low when comparing
with UML. In addition, ordinary Petri Nets are not able to
model temporal constraints [19]. In order to deal with the
time modeling limitation, time extensions were proposed to
the basic Petri net theory. The modular modeling of real-time
communication protocol can be made using Time Petri Nets
[20]. Another example is the Time Petri Nets model with
Register (TPNR), which allows modeling of communication
time delay [19]. However, this approach has a limited time
structure such as the representation of composition time.

LOTOS allows the creation of many ways of transformation
and validation of communication protocols. There are some
examples of services of protocols implemented in LOTOS
[21][22]. All approaches of LOTOS share the same problem,
namely, the complexity of models. Besides, as the model is
created in the early phases of a project, this property may
difficult the construction of a complete model [23].

The UML [24] is currently widely applied in the software
industry [25]. There are several approaches that use UML
models as base for protocols [26][27][28]. Furthermore, UML
is an extensible language, which makes it possible to create
stereotypes and data types using the language metamodel. The
mechanisms of extensibility allow to customize and extend
UML resources, adding new building blocks, properties and
specifying a new semantic, turning the UML adequate to
specific domains. The Logical Link Control and Adaptation

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

Layer Protocol (L2CAP) for wireless channel with bluetooth
technology was modelled using UML, more specifically using
the Sequence and State diagrams [27].

As was previously described, many modeling languages
were applied to model communication protocols, and each
one with specific characteristics. There are languages with
focus on definitions of algebraic expressions and others on
behavior and states. Therefore, in order to model a real-time
communication protocol, it is necessary to use a modeling
language that is capable of representing a lower abstraction
level of modeling, including algebraic expressions, a model
structure, robust time transformation and an abstract model.
However, from the user point of view, it is also necessary to
use a modeling language that is capable of modeling higher
levels of abstraction, which makes more sense to the end user.
Most commonly used modeling languages for communicating
protocols lacks these characteristics.

III. ETARCH ARCHITECTURE

The Entity Title Architecture [29] (ETArch) is a clean state
network architecture, where naming and addressing schemes
are based on a topology-independent designation that uniquely
identifies an entity, called Title, and on the definition of a
channel that gathers multiple communication entities, called
Workspace. A key component of this architecture is the Do-
main Title Service (DTS), which deals with all control aspects
of the network. The DTS is composed by Domain Title Service
Agents (DTSAs), which maintain information about entities
registered in the domain and the workspaces that they are
subscribed to, aiming to configure the network devices to
implement the workspaces and to allow data to reach every
subscribed entity.

Through ETArch, communications are handled by the
Workspace. Therefore, ETArch inherently allows the integrated
support of multicast and mobility within the Workspace that
can be viewed as a logical bus interconnecting multiple entity
instances (e.g., a service, a sensor, a smartphone, a host, or
even a process). Its behavior is inspired by the multicast tech-
nology, where data is sent once by a source to the workspace,
and all associated entities will receive.

The operation of ETArch, on which a centralized entity is
responsible for the behavior of the forwarding plane, meets
Software-Defined Networking (SDN) concepts [30], imple-
mented in ETArch by the OpenFlow. OpenFlow [31] is an
instantiation of SDN already available in a number of commer-
cial products and used in several research projects. It separates
the data plane from the control plane of the network, allowing
a separate entity (i.e., the OpenFlow Controller) to manage and
control the underlying data plane, configuring the forwarding
table of the switches, via a well-known service-oriented API.
This enables switches to be (re)configured on the fly, enabling
flexible and dynamic network management [32] and allowing
to bring life to the workspace driven communication concept.

Considering the ETArch networking model, the network
itself is composed by several DTSAs that are configured in
the model tree. When a workspace is requested by an entity
that does not have DTS and workspace, it prompts the DTS
higher-level information from that workspace, and the DTS

169

AICT2014 : The Tenth Advanced International Conference on Telecommunications

asks the next level and so on, in a structure similar to the
Domain Name System (DNS) used nowadays [33].

In order to support its concepts, ETArch defines protocols
in the data and control plane. In the control plane, the signaling
approach provides the services related with the life cycle of
entities and workspaces, such as to register an entity at the
Domain Title Service (DTS) or to create a workspace, attach
and detach entities to a given workspace.

The Entity Title Control Protocol (ETCP) is responsible
for the communication between an entity and the Domain
Title Service Agent (DTSA), while the DTS Control Proto-
col (DTSCP) is responsible for the communication between
DTSAs inside the DTS.

A. Main ETCP primitives

e ENTITY_REGISTER: Registers an entity at the DTS.
To be registered an entity must present its title, capa-
bilities and communication requirements. To commu-
nicate the entity must first register itself.

o WORKSPACE_CREATE: Creates a workspace locally
at the DTSA. If the workspace has a public access
after the successful creation, DTSA will advertise the
workspace by inserting an entry at the Workspace
Database.

e WORKSPACE _ATTACH: Attaches an entity to a
workspace. To accomplish the attachment process,
the DTSA will obtain all network elements and
will configure them to extend that workspace. If
the DTSA does have the information about the
workspace, using the DTSCP protocol, it will send
a WORKSPACE_LOOKUP primitive.

e ENTITY_UNREGISTER: Removes an entity from the
DTS.

e WORKSPACE DETACH: Removes an entity from an
existing workspace.

e WORKSPACE DELETE: Deletes a workspace and
performs all clean up necessary at the NE of the
current DTSA.

B. Main DTSCP primitives

e WORKSPACE _LOOKUP: Sent by a DTSA to its
resolvers, i.e., the other DTSAs

o WORKSPACE _ADVERTISE: Inserts, deletes, or up-
dates the Workspace Database, by indicating that a
DTSA is part of the DTSA set of a specific workspace.
The Operation receives the level indicating the vis-
ibility of that workspace. The DTSA stored at the
Workspace Database must be of the same level or can
be a Master DTSA of the level right below.

e DTS MESSAGE: Enables communication between
different DTSAs inside the DTS. If the DTSA source
knows the path to the DTSA destination, this path
will be contained in the message header. Otherwise,
the message will be forwarded to the resolvers, until
one of them knows how to compute the path to the
destination DTSA. If the Master DTSA of the Root

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

Level cannot compute the path to destination, the
message will fail.

IV. CASE STUDY

The modeling of the Etarch architecture protocol using
UML aims to present the structure of the elements, behaviours
and time constraints in a high abstraction level. For this, in this
paper, the Class, Sequence and Composite Structure diagrams
are presented.

The Class Diagram is responsible to define a classifier.
Within this diagram, it is possible to define attributes, methods,
visibility and relationship between one and many classifiers.
The Class diagram is important in protocol modelling to define
the used types, the data structures and the defined elements,
and how they relate to each other. This is also useful for
modeling the behavior of the protocol.

«lses

_ Dtsa - - - == E EntityManager
EL - tltle-I:(Strmg g:] | <use
EL - workspace: String - -
[Ed, - master: Boolean [1] =] Q MoblityManager
E2 - level: Integer [1]
EL - resolvers: String [*] -~ =+ WorkspaceManager
E2 - neighbors: Neighbor [*]| “Use»
2 - switchld: long [1]
E3 - switchPort: short [1] E storage

W

«uses MemoryStorage

EZ - entities: ConcurrentHashMap<String. Entity=> [*]

[Ed, - workspaces: ConcurrentHashMap=5tring, Workspace= [*]
EL - ports: ConcurrentHashMap=Long, Port> [*]

[EL - switches: ConcurrentHashMap<Long. NetworkElement> [*]
EZ - hosts: ConcurrentHashMap=<5tring, Host= [*]

Ex - connections: ConcurrentHashMap<5tring, PairlD= [*]

Figure 1. Class Diagram - Main Elements

Fig. 1 presents some of the most important classes. The
DTSA and Storage classes show the representation of attributes
and the other classes in the diagram are a simple sample
of elements definition. The Millisecond definition is used to
define constraint unit. The elements shown in Fig. 1 are just
a sample of some elements defined during modeling. This
definition aims to show the level of abstraction represented by
the class diagram, which is the representation of attributes and
message definition, not focusing on the internal structure of
the element, which would be modeled using the state-machine
diagram.

The Composite Structure diagram allows to define a de-
tailed view of a classifier structure, the relationship between
attributes, input and output interfaces and data flow. In the
Etarch architecture, the DTSA is one of the most relevant el-
ements. Therefore, this structure is defined using a Composite
Structure diagram. As an entity can be any device, and this
behaviour is not relevant to architecture behaviour, then this
internal structure will not be modelled.

For the best visualization, the DTSA definition is divided
into three pictures, and then the DTSA is divided into two
modules, the Resource Adapters that consist of flow control,
which are defined as the bases communication protocol. The

170

AICT2014 : The Tenth Advanced International Conference on Telecommunications

Building Block is a composite element responsible of the
service control and data storage of protocol data.

E ResourceAdapters
structure
+ Ethernetinput: Cominterface [1] «flows

5 openFlow |

structure

+ OpenFlowInput: I10Adapto..

+ Pl: Cominterface [1]
+ PI: Cominterface [1]

+ OpenFlowQutput: I0Adap.. .

+ PO: Cominterface [1]
+ PO: ComInterface [1]

eflows | 00" 0000000 O -----
Primitive

} + Qutput: Cominterface [1]

«flgw»
Prifitive

= NEConnector |
structure imilive

+ PO: Comlnterface [1]

+ Wirelessinput: Cominterface [1] + PO: Comlnterface [1]

=

structure

+ Input: I0Adaptor [1]

+ Pl; Comlnterface [1]
+ PI: Cominterface [1]

+ Output: 10Adaptor [1]

+ PO: Cominterface [1]]
+ PO: Cominterface [1]

= PI: Cominterface [;“."0.?"
rimitivel

+ PI: Cominterface [1]

o + Input: Cominterface [1]

Figure 2. Composite Strucuture Diagram - Resource Adaptors

In Fig. 2, we introduce the structure of the element that
represents protocols which standardizes protocol messages
of Etarch. In the architecture, this protocol will be used to
send messages until a responsible element that will treat and
transform the message into architecture ETCP or DTSCP
protocol’s messages. In this case, the responsible element is
called NE Connector.

In Etarch, two protocols are used to standardize the com-
munication: OpenFlow [34] and Media Independent Handover
(MIH) [35]. Requests originating from Ethernet will use Open-
Flow protocol and requests originating from Wireless will use
the MIH standard.

As there is no difference in input and output flow modeling,
a distinction has been made in modeling the data flow in the
elements. The implementation of elements must represent the
concept shown in the modeled structure. As the element shown
in Fig. 2 is responsible to intermediate messages in request
and response, all input services requests to the DTSA must go
through this module.

] service Building Blocks
structure
+ Input: Cominterface [1] + OQutput: Cominterface [1]

+ WorkspaceManager: WorkspaceM...“

|| + Storage: MemoryStor..| |

+ EntityManager: EntityManager [1]

+ MobilityManager: MobilityManager...

Figure 3. Composite Strucuture Diagram - Building Blocks

The module Building Blocks is depicted in Fig. 3. There
are four internal elements in this module. The Workspace
Manager that is accountable for all workspace related oper-
ations, as creation, attachment, detachment and deletion. The
Entity Manager that treats entity requirements, as register and
unregister. The Mobility Manager is responsible for mobility
operations, as handover among others. The Storage is a generic
structure to represent a database, and all the other structures
of the same module to finish operation needs to modify the
database.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

= pTsa
structure
+ BuildingBlocks: Service Building Blocks [1]
structure
> -
| |
| |
i, oo flows J
1 ! . «flown
1
«+ Input: Port [1] i I F‘:'[]
| 1 1 |
i : W :
«flows + ResourceAdaptors: Service Building Blocks [1] 1
————— structure \

+ Output: Port [1]

Figure 4. Composite Strucuture Diagram - DTSA Structure

Fig. 4 represents the relationship in high abstraction level
between models presented in Figs. 2 and 3. The request from
an Entity must follow what is defined in the DTSA structure.
In each module, there are range of behaviours. The most
representative behaviours in this paper are Entity Register,
Workspace Create, Workspace Attach and Workspace Lookup.

The definition of relevant service behaviour is performed
using Sequence Diagrams. The visualization of parameters
added in the message hampers visualization when the model is
exported to image. Therefore, the name of parameters is added
in the name of message.

Entity

T
l:entity_register_request

|
|

~1
[
: 2wverify_requeriments
i
i
l

[[Requeriments = OK]

4:insert_entity

1
i <
|—)_.|I al; i
l
B - l
|._:J Insert = OK] :
:{t} 5:entity_register_response(OK) :
i— |
L — EE———
[£1l [Insert = ERROR] !
| |
l l
[}]
: 6:entity_register_response{(ERROR) :
| |
| |
1 1
[|
o o —————————————— o ———————]
|
|
|

3:entity_register_response(ERROR)

[[Fequeriments = ERROR]
|
|
i
|
|
|
i

Figure 5. Sequence Diagram -Entity Register

Fig. 5 shows the Sequence Diagram of the entity register
service in DTSA. In this diagram, the communication channel

171

AICT2014 : The Tenth Advanced International Conference on Telecommunications

is abstracted in such a way that when a call goes to the
device DTSA it passes through the flow structure described
in the Resource Adaptors. The UML used resources are Time
Constraint and Combined Fragment of the “alt” type. The
predicates among guards mean the result of called operation.

5 Entity 5 DTsA

l:workspace _create_request :

1

2:insert_workspace |

|
|
T
|
|
|
T
|
[insent = ERROR]
|
!
|
|
|
|

3:workspace_create_response(ERROR)

T

|

|

|

|

|

]

|

|
e e e b
[£] [inseft = OK]
|

: 4:send_flow_mod
|
|

] [fl¢w_mod = ERROR]
|

S:rollback

|
|
1,
: 6:workspace create_response(ERROR)

[
o o b o o = —————— —— e ————

[[flpw_mod = OK]
|

i
i
i

i

| 7:send_advertise | ;
i
i
1
i
|
i
T
i

|
:{‘t‘} {0..6000}

8:workspace create_response(OK)

Figure 6. Sequence Diagram - Workspace Create

Fig. 6 represents the flow of workspace creation. In order
to execute this operation, Resource Adaptors elements as
Building Blocks elements are used. When a workspace is
created, its basic information will be saved in storage.

Fig. 7 and Fig. 8 are related. The Workspace Lookup is
a sub-process of Workspace Attach. The reference of this
diagram is not presented in the figures to improve presentation,
but the reference is already in a tool level. In this operation,
the time constraints of Workspace Lookup must be taken into
account in Workspace Attach. Workspace Lookup has two time
constraints, in the search for the next DTSA level the time
constraint is essential to the search operation ends.

By proposing an approach of communication protocols
modeling, it is important to analyse related works, in particular
such one based on state machine. Changes in the modeling
language could be tracked by using a mapping function to
translate it into a state machine diagram.

This paper presents the first step of a work that aims
to create a formalizable scope of UML, UML profiles and
enabling enhance the modeling of communication protocols,
i.e., it aims to define a set of elements that we can apply trans-
formation rules to a validatable method, or even create such
a method. Certainly, it will be necessary to use resources of
models transformation between different modeling languages.
The Sequence Diagrams, despite of being a little explored
approach in this context, are visually more representatives
than others modeling techniques. For a formal validation of

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

5 Entity S DTsa
]
—1

T
r
: 2:find_workspace
i
T
i
i

|;

i
3:workspace_lookup_resquest !

!

I

|

i

1

|

I

I

I

l

I

)

|

1

1

i

1:workspace attach_request

[tfound = ERRORI 1139 407 100003

4:workspace_attach_response(timeout)

['] [found = OK]

Zag |
(EM] [requer‘ments = MISSING]

5:check_requeriments

7:attach_entity 1 ;

I

Elalf i

i I

I I

= | [inqer‘[= ERROR] L

(= 8:workspace attach responselerror) |

[[insart = OK] =Y
I

! 9:send_flow_maod :Zl

El aﬂ'

[[flow_mod = ERROR]
i

\ 1l:rollback
t 10:workspace_attach_respenselerror)

L]

#il {06000} 12:workspace_attach_response{ok)

Figure 7. Sequence Diagram - Workspace Attach

Sequence Diagrams, we envisage the use of approaches such
as transformation into Petri Nets [36].

Still in the perspective of model transformation, the ap-
proach of behavior modeling of communication protocols
through Sequence Diagrams services can use synchronization
techniques between Sequence Diagrams and other diagrams
[371[38].

The modeling of ETArch Protocol, by UML language,
follows two ways, being the first one structural modeling,
by involving the use of Class and Composite Structure di-
agrams. The second, through the Sequence diagrams, thus,
the necessary elements are: lifeLines, synchronous and asyn-
chronous messages, combined fragments (alt and loop), time
and duration observation. Through these elements there are two
approaches for transforming models in Petri Nets, in [36] is
possible to transform messages, lifelines and combined frag-
ments, however, an approach for modeling observation time
and duration is not displayed. Ribeiro and Fern [39] introduced
and explained an approach that supports the transformation
selected elements in Coloured Petri Nets.

V. CONCLUSION

This work has shown the modeling of a DTSCP and ETCP
communication protocols using the UML language. The UML
language has many resources to model components structure,
which helps describing the high level of an architectural view.
However, the language does not provide a formal definition to
communication channel. Therefore, behaviour modeling can

172

AICT2014 : The Tenth Advanced International Conference on Telecommunications

DTSA

1:workspace_lookup_request(level)

]
|
|
-1
|

2:query_on_db
i

3:calculate_path |

|
|
|
|
|
Ealt :
h

i

|
4:workspace_lookup_response(path) |
|
|
I
|

[[foupd = ERROR]

|
|
| L] loop, i
|
|

[z [found == ERROR]

|

|

|

|

['I“—‘
[= :l
: nextLevel = level + 1; __""-\:]
|

|

|

|

|

t

|

|

I
|
5:workspace_looku p_rhquest{nextLevel}

B

] [foptnd = OK]
b3 {0..1000}
6:workspace_lookup_response(path)

P]

I S,
[£][folind = ERROR]

I~ F
, T:workspace_lookup_response(timeout)

1{1001..10000}

|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ky i
!]
|
|
|
|
|
|
1
|
|
|
|
|
|
|
]

Figure 8. Sequence Diagram - Workspace Lookup

not represent bandwidth constraints, such as limitation can
change the behaviour of time constraints.

The time constraints of UML allow the definition of
different types for minimum and maximum time, however, it
does not allow the creation of relationship between units of
measure. The use of combined fragments is limited in static
values in predicates.

A limitation of the UML language to define communication
protocols is related to definitions of scenarios, because to do
this it is necessary to deal with more than one flow definition.
In one hand, this possibility is an advantage, but on the other
hand its possible definition of data flow is not coincident. For
example, in the definition of the Composite Structure Diagram,
the data flow is from attribute A to B, and in the Sequence
Diagram it is possible to define a message from B to A,
injuring the previous definition.

Many ideas can be explored for future work. According to
the resources used in this work, it is possible to think about
automatic transformation of sequence diagrams to Petri Nets
[39] [36] with the purpose of providing formal verification of
models. In [36], the great advantage is the use of transfor-
mation to a simple Petri Net. However, this transformation is
not enough to present the architectural structure defined in the
element that is performing the actions. It is necessary a method
to transform and attach all related diagrams, and to do this we

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

must define a data flow validation. Therefore, it is possible
to model the Etarch protocol services using UML language
and the model is able to represent behaviour, time constraints
and an abstract architecture of involved elements. The main
disadvantage is that it is not possible to validate the complete
model, taking into account all structures.

REFERENCES

[1] “Information Processing Systems - Open Systems Interconnection-
"ESTELLE- A Formal Description Technique Based on tan Extended
State Transition Model,” 1988.

[2] G. von Bochmann, “Finite State Description of Communication Proto-
cols,” Computer Networks, vol. 2, 1978, pp. 361-372.

[3] S. Simonak, S. Hudak, and S. Korecko, “Protocol Specification and
Verification Using Process Algebra and Petri Nets,” in Computational
Intelligence, Modelling and Simulation, 2009. CSSim ’09. International
Conference on, 2009, pp. 110-114.

[4] O. Ganea, F. Pop, C. Dobre, and V. Cristea, “Specification and Val-
idation of a Real-Time Simple Parallel Kernel for Dependable Dis-
tributed Systems,” in Emerging Intelligent Data and Web Technologies
(EIDWT), 2012 Third International Conference on, 2012, pp. 320-325.

[5] J. Liu, X. Ye, and J. Li, “CP-Nets Based Methodology for Integrating
Functional Verification and Performance Analysis of Network Proto-
col,” in 11th ACIS International Conference on Software Engineering
Artificial Intelligence Networking and Parallel/Distributed Computing
(SNPD), June 2010, pp. 41-46.

[6] M. Yusufu and G. Yusufu, “Comparative Study of Formal Specifications
through a Case Study,” in International Conference on Information
Science and Technology (ICIST), March 2012, pp. 318-321.

[7]1 S.-S. Park and N. Shiratori, “Distributed Systems Management Based
On OSI Environment: Problems, Solutions, and Their Evaluation,” in
IEEE 13th Annual International Phoenix Conference on Computers and
Communications, 1994, pp. 384-.

[8] J. Day and H. Zimmermann, “The OSI Reference Model,” Proceedings
of the IEEE, vol. 71, no. 12, Dec 1983, pp. 1334-1340.

[9] E.D.S. Santos, E. S. F. Pereira, J. H. de Souza Pereira, L. C. Theodoro,
P. F. Rosa, and S. T. Kofuji, “Meeting Services and Networks in the
Future Internet,” in Future Internet Assembly, ser. Lecture Notes in
Computer Science, J. Domingue, A. Galis, A. Gavras, T. Zahariadis,
D. Lambert, F. Cleary, P. Daras, S. Krco, H. Muller, M.-S. Li, H. Schaf-
fers, V. Lotz, E. Alvarez, B. Stiller, S. Karnouskos, S. Avessta, and
M. Nilsson, Eds., vol. 6656. Springer, 2011, pp. 339-350.

[10] M. Wu and M. Loui, “Modeling Robust Asynchronous Communication
Protocols with Finite-State Machines,” IEEE Transactions on Commu-
nications, vol. 41, no. 3, 1993, pp. 492-500.

[11] W. Hua, X. Li, Y. Guan, Z. Shi, L. Dong, and J. Zhang, “Formal
Verification for SpaceWire Communication Protocol Based on Envi-
ronment State Machine,” in 8th International Conference on Wireless
Communications, Networking and Mobile Computing (WiCOM), Sept
2012, pp. 1-4.

[12] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994, pp. 183-235.

[13] X. Wu, H. Ling, and Y. Dong, “On Modeling and Verifying of Appli-
cation Protocols of TTCAN in Flight-Control System with UPPAAL,”
in International Conference on Embedded Software and Systems, 2009,
pp. 572-577.

[14] O. Al-Bataineh, T. French, and T. Woodings, “Formal Modeling and
Analysis of a Distributed Transaction Protocol in UPPAAL,” in 19th
International Symposium on Temporal Representation and Reasoning
(TIME), 2012, pp. 65-72.

[15] C. Baier, N. Bertrand, P. Bouyer, and T. Brihaye, “When Are Timed
Automata Determinizable?” in Automata, Languages and Programming,
ser. Lecture Notes in Computer Science, S. Albers, A. Marchetti-
Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas, Eds. Springer
Berlin Heidelberg, 2009, vol. 5556, pp. 43-54.

[16] K. Saleh, “Synthesis of Communications Protocols: An Annotated
Bibliography,” SIGCOMM Comput. Commun. Rev., vol. 26, 1996, pp.
40-59.

173

AICT2014 : The Tenth Advanced International Conference on Telecommunications

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(37]

Copyright (c) IARIA, 2014.

N. A. Anisimov and M. Koutny, “On Compositionality and Petri nets
in Protocol Engineering,” in PSTYV, ser. IFIP Conference Proceedings,
P. Dembinski and M. Sredniawa, Eds., vol. 38. Chapman & Hall,
1995, pp. 71-86.

C. Lakos, J. Lamp, C. Keen, and B. Marriott, “Modelling Network
Protocols with Object Petri Nets,” in Proc. of Workshop on Petri Nets
Applied to Protocols. Springer-Verlag, 1995, pp. 31-42.

K. El-Fakih, H. Yamaguchi, G. v. Bochmann, and T. Higashino,
“Protocol Re-synthesis Based on Extended Petri Nets,” 2000.

A. Masri, T. Bourdeaud’huy, and A. Toguyeni, “Network Protocol
Modeling: A Time Petri Net Modular Approach,” in 16th International
Conference on Software, Telecommunications and Computer Networks,
2008, pp. 274-278.

C. Kant, T. Higashino, and G. V. Bochmann, “Deriving Protocol
Specifications from Service Specifications Written in LOTOS,” Distrib.
Comput., vol. 10, no. 1, 1996, pp. 29-47.

M. Kapus-Kolar, “Comments on Deriving Protocol Specifications from
Service Specifications Written in LOTOS,” Distributed Computing,
vol. 12, 1999, pp. 175-177.

T. Bolognesi and E. Brinksma, “Introduction to the ISO Specification
Language LOTOS,” Comput. Netw. ISDN Syst., vol. 14, no. 1, 1987,
pp. 25-59.

G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, (Addison-Wesley Object Technology Series), A.-
W. Professional, Ed. Addison-Wesley Professional, 2005.

C. Lange and M. Chaudron, “An Empirical Assessment of Com-
pleteness in UML Designs,” in Proc. Conf. Empirical Assessment in
Software Engineering, 2004, pp. 111-121.

M. Jaragh and 1. Saleh, “Protocols Modeling using the Unified Modeling
Language,” in Proceedings of IEEE Region 10 International Conference
on Electrical and Electronic Technology, vol. 1, 2001, pp. 69-73.

K. Sekaran, “Development of a Link Layer Protocol using UML,” in In-
ternational Conference on Computer Networks and Mobile Computing,
2001, pp. 309-315.

A. Bagnato, A. Sadovykh, E. Brosse, and T. E. Vos, “The OMG
UML Testing Profile in Use—An Industrial Case Study for the Future
Internet Testing,” 15th European Conference on Software Maintenance
and Reengineering, vol. 15, 2013, pp. 457-460.

F. de Oliveira Silva, M. Goncalves, J. de Souza Pereira, R. Pasquini,
P. Rosa, and S. Kofuji, “On the Analysis of Multicast Traffic Over the
Entity Title Architecture,” in 18th IEEE International Conference on
Networks (ICON), 2012, pp. 30-35.

Open Networking Foundation, “Software-Defined Networking:
The New Norm for Networks,” 2012. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, 2008, pp. 69-74, ACM ID: 1355746.

H. Kim and N. Feamster, “Improving Network Management with Soft-
ware Defined Networking,” IEEE Communications Magazine, vol. 51,
no. 2, 2013, pp. 114-119.

S. T. K. Flavio Oliveira Silva, Joao Henrique. S. Pereira and P. F. Rosa,
“Domain Title Service for Future Internet Networks,” in SBRC WPEIF,
2011.

B. Sonkoly, A. Gulyas, F. Nemeth, J. Czentye, K. Kurucz, B. Novak, and
G. Vaszkun, “On QoS Support to Ofelia and OpenFlow,” in European
Workshop on Software Defined Networking (EWSDN), 2012, pp. 109—
113.

D. Griffith, R. Rouil, and N. Golmie, “Performance Metrics for IEEE
802.21 Media Independent Handover (MIH) Signaling,” Wirel. Pers.
Commun., vol. 52, no. 3, 2010, pp. 537-567.

M. S. Soares and J. Vrancken, “A Metamodeling Approach to Trans-
form UML 2.0 Sequence Diagrams to Petri Nets,” in Proceedings of
the IASTED International Conference on Software Engineering, 2008,
pp. 159-164.

J. Whittle and J. Schumann, “Generating statechart designs from
scenarios,” in Software Engineering, 2000. Proceedings of the 2000
International Conference on, 2000, pp. 314-323.

ISBN: 978-1-61208-360-5

[38]

(391

R. Grgnmo and B. Mgller-Pedersen, “From sequence diagrams to state
machines by graph transformation,” in Proceedings of the Third Inter-
national Conference on Theory and Practice of Model Transformations,
ser. ICMT’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 93-107.

O. R. Ribeiro and J. M. Fern, “Some Rules to Transform Sequence
Diagrams into Coloured Petri Nets,” in In 7th Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools, 2006, pp.
237-256.

174

