
Two-level Architecture for Rule-based Business Process Management

Kanana Ezekiel

Vertiv Co

Accurist House, Baker Street

London, UK

Email: kanana.ezekiel@vertivco.com

Vassil Vassilev, Karim Ouazzane

School of Computing and Digital Media

London Metropolitan University

London, UK

Email: v.vassilev@londonmet.ac.uk,

k.ouazzane@londonmet.ac.uk

Abstract— One of the main challenges in Business Process

Management (BPM) systems is the need to adapt business rules

in real time. A serious obstacle is the lack of adaptable formal

models for managing dynamic business rules. This is, due to

the inadequacy of the models ability to describe the rule

components, meta-rules, relationships and logical

dependencies. To overcome this drawback, this paper presents

a two-level rule-based approach to control BPM systems. The

model accounts for logical representation of rules components

and their relationships in Process-based Systems, as well as a

method for incremental indexing of the business rules. The

incremental indexing mechanism is described as an approach

to control process execution and adaptation of business rules in

real time based on rules propagation. Therefore this model

provides a basis for an efficient and adaptable solution for

managing business rules changes.

Keywords-Business Process Management; Rule-based Systems;

Meta-Rules; Rule Dependencies; Object-orientation.

I. INTRODUCTION

There are several definitions for business rules proposed
in the literature. The most commonly used definitions of
business rules are described [4]. In general, a business rule is
defined as a rule that constrains, controls or structures some
aspect of information, applications and processes in business.
Business rules have been considered from many different
perspectives. For example, business rules can be used by
credit card companies to approve credit card applications. E-
commerce businesses use business rules to understand
customers shopping habits. Banks may use business rules to
analyse data to establish suspicious or fraudulent online
activities. Other applications that use business rules exist in
areas such as insurance, airline, telecom, and manufacturing
industries, etc.

In Business Process Management (BPM) systems, the
behaviour of executing business process workflows is
controlled by various business rules. Transforming and
configuring dynamic and scattered business rules through
process flow routines is very demanding. Typically, the
organizations will have many business rules to enforce in
their business processes. However, the business rules tend to
change frequently. The most challenging task is to propagate
these changes when there are multiple rule dependencies. In
BPM systems, a change to business rules means
reconfiguration of every process and other related rules.
Inefficiency and inconsistency of the business rules are often
unavoidable. The manageability and maintainability of the

business rules is therefore becoming time consuming and a
costly exercise. To address these problems, an adaptive
Business Rules Framework for Workflow Management [1]
has been developed. It is based on modelling of both
business rule components and meta-rules, as well as business
processes, flows and events in a unified manner, accounting
for the structural patterns of description for various objects.
This unified approach allows for the defining of the explicit
and implicit relationships between business rules and
indexing them incrementally, which eliminates the need for
keeping a log of the changes.

This article has six sections to follow. Section II gives an
overview of related work. Section III introduces the two-
level approach for building the architecture of rule-based
systems for BPM. Section IV describes the basic concepts
used to construct the two-level architecture. Section V
describes the current status of implementation of the whole
framework. Section VI presents formal definitions and
illustrates the use of dependency trees to define business
rules relationships. Section VII concludes the article with a
brief description of the next stage of implementation of the
framework.

II. RELATED WORK

In recent years, substantial efforts have been made
towards developing solutions to tackle the ever-growing
problem of business rules adaptation. This section presents
some methodologies and approaches adopted by existing
rule-based systems. The existing commercial Business Rule
Management Systems (BRMSs) integrate rule technology
(rule engine) specifically for rule management. The IBM
BRMS [2],[3] has the greatest business rules capabilities on
the market. IBM BPM includes a customized version of
IBM’s Operational Decision Manager (ODM) tool for its
business rules, which incorporates tools such as Eclipse to
give inexperience programmers the ability to create and
modify rules. The well-known IBM BRMS, WebSphere
ILOG JRules [4], which provides a flexible tool for rule
modelling, is now part of IBM ODM. While IBM BRMS
provides integrated environment with rich and flexible tools
for business rule modelling, there are some notable
limitations in relation to the ability to manage changes to
business rules. There is no straightforward way to change
rules that affect more than one process. Multiple changes to
business processes will need to be applied even for the
simplest business rule changes. This seriously limits the
business agility that business rules are designed to provide.

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

There is no separation of the various parts of the business
rules components, i.e., Event, Condition and Action. This
means a change made on the “condition” part of the rule will
require invoking the whole rule. Separating rule components
provides flexibility and increases performance, as only the
part that needs changing is exposed on the business rule
application. Henceforth, various parts of the rule need to be
stored in appropriate structures to facilitate their
management, similar to the existing structures for data in
database systems. Rules are executed one by one in a
procedural manner As a consequence, this creates additional
work when the rules sequences change or when a separate
rule in a particular sequence is changed. This complicates the
ability to perform logical deduction hence its inability to
manage changes to multiple business rule hierarchies [5].

C Language Integrated Production System (CLIPS) is
specifically designed to facilitate the development of
software to model human knowledge or expertise [6]. The
CLIPS expert shell provides a platform where expert
knowledge may be categorized as rules. To supplement its
rules management capability, CLIPS works as an inference
engine that enables it to perform the inference procedure
whereby rules are interpreted to generate various actions as
appropriate [7]. This mechanism employs the embedded pre-
existing rules-based knowledge as “facts” to drive the firing
mechanism of the inference engine and thereby produce a
recommended conclusion to a problem. Even though CLIPS
provide an interactive, text oriented environment for
modelling rules, there is no dedicated knowledge base and,
thus, facts are volatile and are purged from its memory as
soon as its execution is terminated. To overcome this
fundamental limitation, an external rule-base system must be
added for a seamless integration with CLIPS. This adds to
the complexity and cost for managing rules. The problem
becomes worse when rules are scattered and changing.

Java Expert System Shell (JESS) [8][9] is another rule
engine, originated from CLIPS and written entirely using
Java. There is an extension called VISUAL JESS, which
improves the comfort of using the tool. Pitfalls of JESS for
dynamic systems are well documented [10].

Oracle BRMS is a leading Business Rules product,
probably one of the finest products in the market. Oracle
offers a Rule Author, a web-based graphical authoring
environment that enables creation of business rules. In
addition, Oracle provides an embedded business rules engine
to its BPM system. The Oracle BPM application can
add/remove and change the state of business objects in the
working memory, and allows the rule engine to reason and
update processes by triggering events or invoking specific
processes based on the outcome of the rules. Like IBM
BRMS, it faces similar limitations - it remains impossible to
specify the dependencies between the rules based on the
relationships between BPM objects. This causes multiple
changes to be necessary to adjust already configured
processes and update existing business rules even in the case
of a simple rule change.

OpenRules [11], another powerful BRMS for rule-based
application development, provides both complex Business
Rule editor as well as a tool for building user interfaces. It

allows the use of external tools such as MS Excel, Google
Docs, and Eclipse IDE to create a complex, decision support
system. OpenRules has similar limitations like the Oracle
and IBM products. In this case it becomes even more
complicated to deal with multiple changing rules as the rule
management remains a tedious manual task.

JBoss Drools BRMS [12] is a sophisticated open source
BRMS and has a lot of functionalities, which allow users to
write and validate business rules that can then be added to
Java Applications. While Drools distinguishes the structural
elements of the rules syntactically it does not treat them in a
special way semantically. At the same time, the users are free
to define, classify, and modify the rules according to their
specific requirements. Business rule components (i.e., Event,
Condition, Action, etc.) are not defined as objects. This
brings additional complexity in terms of change
management. Furthermore, this work does not address the
aspects of rules relationships and dependencies.

There are only a few proposals in the literature, which
consider the business rules functionality and change [13]-
[15]. Their focus is on rule execution and they do not provide
support for modelling business rules. As a rule, they do not
address how changes of business rules are managed. There is
no clear, well-structured definition of the rule components
and relationships; a common drawback of all industrial rule-
based frameworks. We believe that a more flexible and
efficient approach to manage business rule changes is
required.

The next section outlines the two-level architecture of
rule-based BPM systems, which addresses the above issues.
Presenting a flexible approach for defining rules as objects,
attributes/properties and relationships enabling logic and
object programming power during rule implementation.

III. TWO-LEVEL ARCHITECTURE FOR BPM SYSTEMS

The formal model presented here is based on the
understanding of the actual BPM system as an event-driven
and constantly evolving process, with two functioning levels.
The first level is the Process level, which governs the
execution of business processes, while the second level, the
Rule level, is a meta-level that controls the actual business
rules. Features that are considered on the first level are:
business processes, information and material flows, events,
conditions and actions, which comprise the business domain.
The users may intervene only via events that can trigger
activities prescribed by the business rules. This way we can
model manual, automated and fully-automatic processes as
part of the business workflows. The second level considers
the relationships between rules and dependencies between
them, classifications of the rules, and meta-rules. The
business rules are made up of events, conditions and actions,
or the famous “When <event> If <condition> Then
<action>” structure, whereas process execution level is made
up of processes, steps, flows (material and information
flows), roles, etc. For instance, if some events are observed
during execution of a working process, then the
corresponding business rules, which depend on these events,
are triggered and lead to actions, which in turn perform the

38Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

transition to a new step, which may execute other processes
or amend the parameters of the current process. The model
uses business rules to glue together processes in a business
process workflow. The rule control level provides a level of
abstract “independence” between the two levels, suggesting
that the rules can be changed without affecting the
workflows that have been completed. The rule level controls
the execution of business workflows adding the business
logic to them. The business rules appear at all stages of the
workflow from initiation, to execution, to termination. Based
on the distinct roles they play in the workflow development,
they can be organised in a taxonomic hierarchy: the
Execution rules are divided into Flow and Process rules; the
Flow rules are divided into Sequence, Fork and Join rules;
and, Process rules are classified into Time-based and Non-
Time-based rules.

IV. BASIC CONCEPTS OF THE TWO-LEVEL RULE-BASED

ARCHITECTURE

This section presents basic concepts to support creation of

objects, properties, and, relations for the model and meta-

model. The concepts have been developed in a purely

logical manner.

Figure 1. Example of a Business Rule.

Fig. 1 depicts a typical business rule. From such rule, the
following concepts can be identified:

A. Business Objects

The business objects are the building blocks for
implementing business rules and business processes. The
following types of objects can be distinguished:

• Processes: Building blocks of the business workflows.
Examples: Process1 (Manage Cabinet Space
Availability) and Process2 (Order Cabinet).

• Flows: Capturing data/material and information in and
out the processes. Examples: Cabinet Capacity, Cabinet
Utilization, New Equipment, etc.

• Events: Asynchronously registered situations that
trigger the rules. Example: Filling up the cabinet up to
the max capacity

• Conditions: Synchronously occurring situations.
Example: Sufficient space in the cabinet to mount a new
server

B. Object Properties

Formally described, the business rules and workflows
can be constructed in terms of object characteristics. The
object properties provide information about the
characteristics of the objects. For example, the object
“Process” may have properties such as: process id, name,
status, creation date, etc. From the viewpoint of the
conceptualization of our ontology, object properties can be
classified into one of the following types:

• Identification properties - examples are process id,
name, type, etc.

• Qualitative description properties - these are
categorical or nominal properties, which can be
described qualitatively only - for example status,
deviation, trend, etc.

• Quantitative description properties - these properties
can be described using a fixed value that can be
estimated quantitatively - for example, the number of
closed processes, etc.

In [16], object properties are described as a common
approach to specify characteristics or attributes of a real-
world object instance, which in turn helps to understand how
to interact with the object. By introducing property
characterization for each object, our model can fulfil the
requirements for flexibility and maintainability of the
formulation of business rules to control processes.

C. Business Rules

The structure of business rules is based on the famous
Event-Condition-Action paradigm [17]. Various business
rule classifications exist in the literature [18]. In connection
to BPM systems, the following rule classification were
identified:

• Initiation Rules

Initiation Rules depicts rules that specifically initiate a
process. Depending on the conditions of the rule, a
process can be launched and thus continue execution.
Some Initiation rules are driven by events only, these are
known as Start Event. The business workflows can be
started only by Initiation Rules after a suitable triggering
event. The triggering events can be manually or
automatically invoked.

• Event or Process Rules

Event or Process Rules group rules that are defined
during the execution of a process. An example for such
a rule is the filling up of a container which generates a
warning about reaching the capacity limit.

• Flow Rules

Flow Rule formally depicts rules that control the flow of
processes. Intermediate processes depend on Flow Rules
(if this is a specific name then capitalize) to progress
from one process to another.

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

• Termination Rules

The business process terminates based on a Termination
Rule, which is triggered by suitable termination event
AFTER the process is finished, or on process execution
control rule DURING the process execution in the case
of emergency. In Fig. 1, Execution Rule was used to
check cabinet space availability. The decision to install
new network switch onto a cabinet depends on such an
execution rule. Some Termination Rules are driven by
events only, hence known as End Event.

Objects are building blocks and they are described in

this section. Object properties, apart from characterizing the
objects quantitatively and qualitatively are also the main
vehicle for analyzing the dependencies between the rules
which apply to them. The more sophisticated the properties,
the more elaborate the dependencies that can be formulated.
To allow the mapping and displaying of identified concepts
into required classes and properties, a concise and intuitive
notation such as EBNF [19] can be used. Although other
notations are possible, EBNF is sufficient for the purpose.
The term "structured" means that all direct or indirect
relations between objects and their properties can be
represented into AND/OR trees. The following is EBNF
notation for Condition concept, based on the use of objects
and their properties.

V. FORMAL DEFINITION OF BUSINESS RULES, RULE

RELATIONSHIPS AND DEPENDENCY TREES

This section briefly presents the formal definition of

relationships between rules. The section also exemplifies

business rules dependency trees to map rule relationships.

A. Business Rules Formal Definitions

Consider a Business Rule set R containing a collection of

rule samples controlling business processes. A Rule set R

has one or more related rules that has been put together to

guide the movement of processes. For instance, R may be

made up of Initiation Rule, Flow Rule, Event or Process

Rules and Termination Rule. Let every Rule in R be

expressed in terms of {Ri,| i= 1,…, n}. Each Rule definition

Ri consists of a collection of Event (E), Condition (C) and

Action (A). We refer to E, C and A to represent sets of

Events, Conditions and Actions respectively, containing

fragments of the Rule R. Now, let E be expressed in terms

of {Ei,| i= 1,…, n}. And C be expressed in terms of {Ci,| i=

1,…, n}. Also A be expressed in terms of {Ai,| i= 1,…, n}. In

this research, we will use notation E1i(R1), C1i(R1) and

A1i(R1) where E1i E1, C1i C1 and A1i A1 to represent

Business Rule basic definition. Note that for simplicity

reasons, if a part of the Business Rule has no importance in

a discussion then it will be omitted. For example, C1i(R1)

and A1i(R1) will represent a Business Rule that contains

Conditions and Actions only.

B. Relations Between Business Rules

The existence of a dependency between two rules

expresses that communication occurs between components

(Event, Condition, and Action) of the Business Rule. For

example, one Business Rule action may trigger conditions

of other Business Rules or condition of one Business rule

may depend on an event of another Business Rule.

Therefore, Business Rules relationships can be described by

analyzing Business Rule components relationships. We

consider the relationship between two rules to be

represented by the symbol . For example, R1

R2 means Rule 1 relates to Rule 2. If one of R1

action activates event for R2, we declare as A1i(R1)

E2j(R2). Business Rules relationships can be analysed and

declared in one of the following possible six ways:

These relationships are defined based on Objects and
Object properties involved in Condition, Event and Action
components of the Rules. Moreover, relationship can be
defined in terms of qualitative and quantitative
characteristics of the object parameters. We examined six
ways (i-vi) of representing rule relationships based on the
partial order relationship. However, it is far simpler and
natural, to apply the tree structure to the model and picture
the relationships between rules. Therefore, tree structure and
patterns to show relationship are introduced in the next
section. Rule patterns are simple enough to represent number
of rule relationships. However, in practice there can be
hundreds, thousands or more rule relationships. In systems
with substantial number of rule relationships, three or more
rule dimensions are needed to clearly depict the relationship
structure. This is one of the areas that need to be explored in
future studies.

C. Business Rules Dependency Tree

In our approach the rule dependencies are defined after
structuring them into dependency trees, which are in the
form of AND-OR graphs corresponding to the mutual co-
existence of the rules. As the name suggests, the
relationships will be of two kinds: AND relationships, which

40Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

group several rules that can be fired simultaneously, and OR
relationships, which group several rules that can be invoked
alternatively. There are variants of AND/OR relationships:
Direct AND Dependency, Direct OR Dependency, Indirect
AND Dependency and Indirect OR Dependency.

Figure 2. AND/OR Tree.

The AND/OR tree on Fig. 2 combines all relationship

patterns:

• Precedence based dependencies

• Level based dependencies

• Path (Chain) based dependencies

• Node based dependencies

• Indirect node based dependencies

The dependency trees make it easier to understand the
relationship between rules. The dependencies will be used in
construction of the algorithm for real-time inference within
BPM system. Structuring of the rules into dependency trees
would also allow implementing of more efficient algorithms
for searching the rules. Different patterns of inclusion of the
rules in the trees will provide additional information to
control the flow of execution as the business processes
progress. In addition, we can use the trees to analyse the
process behaviour in real time.

VI. PROTOTYPE IMPLEMENTATION

The implementation of the model presented here is

currently underway using the open source Rule

Management System DROOLS [20]. Since it is still work-

in-progress, only preliminary developments are presented.

DROOLS rule system comes from the area of knowledge

representation. The knowledge representation arena is

concerned with formally representation of knowledgebase

and reasoning. In DROOLS, a rule has two-parts

represented using first order logic. The structure of a rule is

usually WHEN-THEN that is IF-THEN providing logic

statements. This means we can infer conclusions from rule

facts stored in the knowledgebase. DROOLS rule system is

also perfect for rule adaptation and forward chaining. In

DROOLS, the implementation of business rules is carried

out using three main components: firstly, the rule class (drl)

containing the actual rules, second, the fact class (pojo)

containing the data affected by the rule, and third, the tester

class (main), which calls both data and rules for execution.

To manage the rules and processes, our architecture

implements Event, Condition, Action, Process and Flow

(Information and Material) as separate fact classes. In

addition, Initiation Rule, Event Rule, Flow Rule and

Termination Rule are implemented as subclasses of the rule

class which is instantiated in the main or tester class to

allow runtime modification of the rules. This supports the

reusability and allows adaptation of the rules and their

components in the case of changes, as well as the definition

of meta-rules using information associated with rule

relationships. Fig. 3 illustrates the implementation of the

Condition class using DROOLS.

Figure 3. Condition class using our approach in DROOLS.

41Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

Condition class defines object related configurations
such as object properties and methods. Its methods include
getConditionProperty, setConditionProperty etc. as
shown in Fig. 3. In a Rule class, we simply create an
instance of a Condition class. This automatically inherits
the default properties and methods of the Condition class.
The other concepts of the ontology are implemented in a
similar way.

VII. CONCLUSION AND FUTURE WORK

The paper presented a two-level architecture of BPM
system, which supports efficient solution for adaptation of
business rules, thanks to the incremental indexing of the
rules and the formalisation of structural patterns of
dependencies between them. This architecture supports BPM
professionals and academics with adequate means for
modelling of both business process workflows and business
rules. In addition, it is the basis for a seamless integration of
an efficient algorithm for adaptation of the business
workflows to the changing conditions.

A prototype of the above model is being implemented in
DROOLS using object-oriented (OO) technology. In this
approach both the business workflow processes and business
rule components are implemented as objects. Two of the
fundamental features of OO technology, the encapsulation
and the inheritance, are used conveniently for implementing
the architecture following a bottom-up strategy. This
approach allows the build up of the indexing mechanism in
an incremental manner. The plan, on the next stage, is to
complete the implementation of two separate inference
engines on top of the model: a forward chaining inference
algorithm, which account the logics of business process
workflows and controls their execution, and a backward
chaining inference engine, which propagates the changes and
adapts the rules in real-time. Work has already begun on a
series of algorithms, which account for the relationships and
the dependencies between the rules. Our focus here will be in
exploring the structural patterns of the rule relationships and
the influence on the inference on Rule level.
The architecture presented here has wide potential for

applying BPM systems in many areas, such as
manufacturing, chemical process control, healthcare and
anywhere, where the business processes can be described in
terms of operational workflows. The big advantage of this
architecture is the ability to modify the business rules logics
without interrupting the business workflows. Moreover, by
adding some meta-rules it could become possible to test the
production rules and achieve consistency.
Other issues, which may be beneficial to explore further

involve the relationships between different components of
the model, i.e., relationships between rules and user roles,
relationships between processes and business data,
relationships between processes and workflows, etc.

ACKNOWLEDGMENT

The work reported here has been partially sponsored by
Vertiv Co, formerly Emerson Network Power.

REFERENCES

 [1] K. Ezekiel, V. Vassilev, and K. Ouazzane, “Adaptive Business
Rules Framework for Workflow Management”, to appear.

 [2] S. D. Hendrick, K. E. Hendrick, Business Value of Business

Rules Management Systems, IDC #231195, 2012.

 [3] A. Macdonald, The value of IBM WebSphere ILOG BRMS,

2010, IBM. [Online]. Available from: https://www01.ibm.com
/software/integration/business-rule-management/jrules-family/

retrieved: 12.2017.

 [4] J. Boyer, H. Mili, Agile Business Rule Development: Process,

Architecture, and JRules Examples, Springer Science and

Business Media 1, 2011, ISBN: 9783642190407.

 [5] P. Haley, Confessions of a production rule vendor, 2013.
[Online]. Available from: http://haleyai.com/wordpress/ 2013/

06/22/confessions-of-a-production-rule-vendor-part-1/

retrieved: 12.2017.

 [6] J. C. Giarratano, CLIPS User’s Guide, 2003. [Online].
Available from:http://www.ghg.net/clips/download/documen-

tation /usrguide.pdf; retrieved: 12.2017.

 [7] J. Giarratano, G. Riley, Expert Systems: Principles and
Programming, Course Technology, 2004, ISBN: 0534384471.

 [8] E. Friedman-Hill, Jess in Action: Java Rule-Based Systems,

Manning Publications, 2003, ISBN: 1930110898.
 [9] A. Grissa-Touzi, A, H. Ounally, and A. Boulila, “VISUAL

JESS: An expandable visual generator of oriented object expert

systems”, Engineering and Technology, pp. 108–111, 2005.

[10] R. Thirumalainambi, “Pitfalls of JESS for Dynamic Systems”,

Art. Intelligence and Pattern Recognition, pp. 491-494, 2007.

[11] J. Feldman, Creating, Testing, and Executing Decision Models

with OpenRules, 2011. [Online]. Available from:
http://slideplayer.com; retrieved: 12.2017.

[12] M. Salatino, M. De Maio, and E. Aliverti, Mastering JBoss

Drools, Packt Publishing, 2016, ISBN: 1783288620.
[13] Lijun, Introducing a rule-based architecture for workflow

systems in retail supply chain management. MSc Thesis,

University of Borås School of Business and IT, Sweden, 2012.

[14] F. Rosenberg, C. Nagl, and S. Dustdar, “Applying Distributed
Business Rules – The VIDRE Approach”, IEEE Int. Conf. on

Services in Computing, Chicago, IL, USA, pp. 471–478, 2006.

[15] M. Thirumaran et al., “Business rule management framework
for enterprise web services”, Int.J. Web Service Computing,

Vol.1, No.2, pp. 15-29, 2010.

[16] Y. Sun, B. Liefeng, and D. Fox, “Learning to Identify New

Objects”, IEEE Int. Conf. on Robotics and Automation, Hong

Kong, pp. 3165 – 3172, 2014.

[17] F. Bry, M. Eckert, P.-L. Patranjan, and I. Romanenko,

“Realizing Business Processes with ECA Rules: Benefits,

Challenges, Limits”, Int. Workshop on Principles and Practice

of Semantic Web Reasoning, Springer, pp. 48-62, 2006.

[18] P. Jayaweera, M. Petit, “Classifying Business Rules to Guide
the Systematic Alignment of a Business Value Model to

Business Motivation”, Proc. Int. Workshop on Business/IT

Alignment and Interoperability, Collection CEUR,
Amsterdam, Vol, 456, 2009.

[19] International Organization for Standardization, Information

technology. Syntactic metalanguage. Extended BNF, ISO/IEC

14977:1996, pp. 1-22, 1996.

42Copyright (c) IARIA, 2018. ISBN: 978-1-61208-614-9

BUSTECH 2018 : The Eighth International Conference on Business Intelligence and Technology

