
Seamlessly Enabling the Use of Cloud Resources in Workflows

Michael Gerhards, Volker Sander

Faculty of Medical Engineering & Technomathematics

FH Aachen, University of Applied Sciences

Jülich, Germany

{M.Gerhards|V.Sander}@fh-aachen.de

Adam Belloum

Institute of Informatics

University of Amsterdam

Amsterdam, The Netherlands

A.S.Z.Belloum@uva.nl

Abstract—The hosting of large on-premise computational

resources is common practice. Cloud Computing offers a

promising, alternative infrastructure for using scalable on-

demand off-premise resources. However, outsourcing whole

applications is not a cost optimal solution in some scenarios,

because the already existing on-premise resources are not

considered. A flexible integration of additional resources from

the cloud to compensate a shortage of suitable on-premise

resources is a tradeoff between costs and efficiency. This paper

provides a light-weight approach that focuses on seamlessly

enabling cloud resources for workflow-based applications

without requiring installing a rather complex software stack.

The approach is evaluated by running an example workflow.

Keywords-cloud economics; dynamic resource allocation;

cloud computing; cross-cloud workflows; on-demand computing

model; service oriented architecture; workflow; workflow

orchestration.

I. INTRODUCTION

Refactoring on-premise computational resources to form
a computer center is common practice. However, it is not
reasonable to provide a solution for all requested resource
types in such a center. First of all, the initial purchase costs
are very high. For small and medium enterprises (SME) it is
nearly impossible to bear these costs alone. Even after a
purchase the disadvantages still occur, mainly due to the
operational costs. The hosting company is bound to the
resources for many years, even if the computational power is
no longer required. The old hardware does not benefit from
new technologies, which were developed in the meantime. If
specific resources are used with unbalanced load, there is the
risk of underuse. An overprovisioning is also required for
load peaks which also increase the costs.

Cloud computing offers a promising alternative
infrastructure for using scalable on-demand resources.
Providers such as Amazon allow users to allocate virtualized
computational resources. Of course, those providers allow
for porting the full application. However, this might not be
the most cost-effective solution, because the already existing
on-premise resources are not considered. Therefore, for
many scenarios it appears to be opportune to integrate cloud
resources with easy-scale and dynamic provisioning into the
local environment for the execution of computation intensive
application parts whereas the other application parts are

executed on local available general-purpose computational
resources. An example is a highly parallelized application
which could use a Graphics Processing Unit (GPU) in the
cloud, while the remainder of the program is executed
locally.

This paper will briefly present existing complex software
stacks which combine on-premise resources with cloud
resources. Then it introduces our light-weight approach that
focuses on seamlessly enabling cloud resources for
workflow-based applications without requiring installing a
rather complex software stack. The paper will focus on
workflows because the division of applications into parts is
natively supported. The basic ideas apply to a much broader
application domain.

The paper is organized as follows: The second section
presents the cloud-enabled workflow environment. It
introduces the challenges for such an environment and
provides solutions. The third section evaluates the presented
solutions by describing a run of an example workflow in a
specific workflow management system under the use of
cloud resources. The last section concludes the lessons
learned and provides future work. For simplicity reasons we
omitted to refer to related work in an isolated section. Instead
we provide references when the according context is
discussed.

II. CLOUD-ENABLED WORKFLOW ENVIRONMENT

Many publications deal with cloud computing since it is
the greatest IT hype of the last ten years. Surprisingly the
combination of cloud computing with workflows is little
addressed. "With the emerging of the latest cloud computing
paradigm, the trend for distributed workflow systems is
shifting to cloud computing based workflow systems [1].” In
comparison to the mobile smart domain, approaches like
CloneCloud already exists to dynamically partition
applications between weak devices and clouds [2]. Nephele
is another approach that claims to be “the first data
processing framework to explicitly exploit the dynamical
resource allocation offered by today’s compute clouds for
both, task scheduling and execution [3].” Nephele itself is
focused on performance in full cloud environments but does
not consider available on-premise resources which results in
a lower performance but a cost reduction. A tradeoff between
costs and performance is missing.

108Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Workflows in cloud computing are addressed by several
EU projects. “BREIN takes the e-business concept
developed in recent grid research projects, namely the
concept of so-called "dynamic virtual organizations" towards
a more business-centric model, by enhancing the system with
methods from artificial intelligence, intelligent systems,
semantic web etc. [4].” BREIN can enhance some cloud
features like automatic resource allocation and outsourcing
of resources to third party. The approach presented in this
paper also focuses on resource allocation and outsourcing but
from a more technical sight by combining existing
lightweight technologies. It does not consider collaboration
between companies. The required components of the overall
architecture are similar: A workflow framework with service
broker and registry.

A. Service layers and deployment models

The National Institute of Standards and Technology
(NIST) distinguishes the three service layers: Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS) and four different
deployment models: Private Cloud, Community Cloud,
Public Cloud, and Hybrid Cloud [5]. The cloud-enabled
workflow environment differs dependent of the used service
layer and deployment model. A detailed comparison of the
different service models and deployment models is given in
[6]. The rest of the paper will therefore focus on Public
Cloud IaaS resources to assume the minimum of
requirements. This should not limit the generic aspects of the
proposed solution since other service layers and deployment
models can be used instead with less effort.

B. Security and Governance

This paper assumes that the workflow management
system runs on-premise or in a private cloud and is used only
by users of a single organization. This assumption simplifies
the security handling since the organization is interfacing
with the cloud service providers as a whole. Cross-
organizational environments can be addressed by applying
the concept of virtual organizations [7].

While incurred costs would be billed against the
organization, the actual costs still have to be mapped to cost
units within the organization. Therefore, an AAAA
(Authentication, Authorization, Admission control, and
Accounting) is required. Actually, an AAAAA mechanism is
demanded, i.e. an additional auditing mechanism like
described in Section II.L.

During application runtime off-premise cloud resources
will access on-premise data for calculations. To protect the
data against unauthorized access credentials are required.
These credentials are entered by the user at the start of the
application. If a native support is not guaranteed, the
credentials can be entered during a WS-HumanTask, which
stores credentials in a secured short-lived repository with
limited life time [8]. This procedure is used by our approach.
The integration of tasks is detailed in Section II.F.

To assure authentication and authorization, we extend the
idea of using WS-HumanTask for credentials and propose an
architecture we presented in the context of our publication of

a security framework for our WS-HumanTask
implementation. This publication “presents a generic
framework that supports a pull-based work distribution
strategy in distributed environments with the help of a task
repository that mediates tasks between resources and
workflow instances [9].” It provides an implementation for
Role Based Access Control (RBAC) based authorization. To
provide a certificate repository, we follow the concept of
MyProxy which is an authentication technology from the
grid domain which lets the workflow impersonating the user
[10].

C. Conditions on applications

A condition for executing different parts of the same
application on different premises is an application which is
divisible into parts. Modeling a complex application as
workflow supports its division into simpler individual parts
that are executed as interacting tasks by a workflow
management system that takes care of the individual tasks’
progress and dependencies [11].

The Generic Workflow Execution Service (GWES) is an
open source workflow management system which was
developed by Frauenhofer-Gesellschaft for the management
and the automation of complex workflows in heterogeneous
environments [12]. GWES was originally developed basing
on grid technologies like Globus Toolkit as Grid Workflow
Execution Service (also GWES) and was then adjusted to the
cloud domain. To conclude GWES is a specific workflow
management system with an own workflow description
language.

In contrast, the interoperable approach presented in this
paper bases on an extension for existing arbitrary workflow
management systems by its loosely coupled connection to a
cloud broker to enable the use of additional cloud resources.
By choosing a workflow management system independent
approach the benefit of using the already known system is
given for the end-user.

AMOS is “a system that combines grid and cloud
technologies in a novel way to support on-demand execution
of e-Science applications [13].” The e-Science applications
handled in this paper are also modeled as workflow and
executed in the cloud. The main idea is the creation of a
“transient grids by automatically installing and configuring
grid middleware on the purchased resources“. In contrast the
approach of this paper provides a light-weight approach that
focuses on seamlessly enabling cloud resources for
workflow-based applications without requiring installing a
rather complex software stack.

“OPTIMIS deliverables will enable clouds to be
composed from multiple services and resources. It will
support service brokerage via interoperability, and is
architecture-independent [14].” It provides “a toolkit for
supporting service provisioning using Cloud eco-systems
consisting of multiple Cloud infrastructures from different
providers with guaranteed Quality of Service (QoS)”. A
direct integration of workflows is not part of the project but
as a future work the usage of OPTIMIS as underlying cloud
infrastructure in combination with the workflow tools of this
paper could be tested.

109Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

D. Resource independent modeling of workflows

The various tasks from a workflow are of different task
types. Most task types like control flow or script tasks are
executed on the workflow management system’s computer.
But service tasks are computation demanding and therefore
executed as service - or other remote procedure call (RPC) -
on suitable hardware resources. The workflow will run in a
Service Oriented Architecture (SOA) in a combination of
services, which are deployed on-premise and in the cloud.
The invocation of the cloud services must be protected
against unauthorized usage using a system like described in
Section II.B. The data flow for large data sets is not
integrated into the workflow but in the service software
directly. Since pushing the data in a web service invocation
message results in bad performance through marshaling the
data, only the data location and an authorization ticket is
send to the service. The service then loads the data using a
third party high performance file transfer mechanism like
GridFTP. The security aspect is handled in Section II.B. This
paper presents how these script tasks can be executed on
enabled cloud resources without workflow modification. If
additional cloud resources are enabled is decided during
runtime.

The concept of considering only physical resources is
gone in the cloud vision of elastic resources, which can be
instantiated on-demand. Therefore, workflows are modeled
independently of specific resources by abstracting service
endpoints as service names. This enables the easy exchange
of an on-premise endpoint with an off-premise endpoint, e.g.,
in the cloud. The binding of workflow tasks to endpoints is
done at runtime by dissolving the service names. The service
registry contains assignments between all service names to
available service endpoints independent if the endpoint is
located on-premise or off-premise in the cloud. In Figure 1
both tasks “T1” and “T2” fetches their endpoints from the
service registry. A so modeled workflow can be executed in
the usual way without disadvantages.

Enterprise service buses (ESB) like Mule or Fiorano are
also able to manage dynamic endpoints independently of the
endpoint location [15]. However, compared to our solution,
ESBs are rather heavyweight software products which
increase the complexity of the architecture. Connectors
between workflows and ESB are application dependent.

This paper provides a light-weight approach that focuses
on seamlessly enabling cloud resources for workflow-based
applications without requiring installing a rather complex
software stack. Such an approach lowers the entry barrier.
This empowers workflow users to benefit from the cloud in
an easy way.

E. Enabling cloud resources using a broker

In cloud economics, resources are frequently provided
following a pay-per-time billing structure. The time is billed
when they are available even when the resources are not
used. Therefore these resources are shut down when idling.
If a shutdown resource is required at the service registry the
resource must first be instantiated. According to the National
Institute of Standardization (NIST) Cloud Computing
Reference Architecture [5], the dynamic allocation of cloud

resources is done by a cloud broker. The cloud broker is “an
entity that manages the use, performance and delivery of
cloud services, and negotiates relationships between cloud
providers and cloud consumers [5].” The cloud broker
publishes endpoints of instantiated cloud resources at the
service registry.

F. Connection between workflow and cloud broker

The connection between workflow management system
and cloud broker can be established at different locations in
the overall workflow environment. Possible locations are
tasks, called functions of tasks, the workflow, and the
workflow management system itself is the source code is
available. The advantages and disadvantages of the different
connection locations are discussed in [1].

To not change the workflow management systems source
code, the cloud broker connection is integrated into the
workflow template itself. The workflow template can be seen
as the source code of the workflow but not of the invoked
services. A preprocessor creates a new extended workflow
template out of the original workflow template. It consists of
all original tasks in the given order but with interposed
administrative tasks to handle the cloud broker connection
for service tasks which should be executed in the cloud. The
preprocessing process is also used to customize the
workflow execution like described in Section II.G and to
feed the provenance service of Section II.L.

The additional administrative tasks are similar to ESB
adapters or cloud connectors. This new extended workflow is
executed instead [16]. In Figure 1 the administrative task
“AT” connects to the cloud broker to enable the cloud
resource before its service is invoked by the service task
“T2”.

G. Identification of cloud tasks

Before the start of the workflow, the scheduler has to
check if enough suitable on-premise resources are available.
To realize this task, a resource description language like the
Job Submission Description Language (JSDL) can be used to
describe the different requirements for each individual task
[17]. If not enough suitable local resources are available
some tasks have to be redirected to cloud resources. Here,
the scheduler must have all information about all constraints
that apply to tasks that might be handled by cloud resources.

The user has the ownership of the data and decides which
individual tasks are allowed for execution on integrated
cloud resources. One possibility to model that is the usage of
JSDL task annotations in the workflow template. This is
similar to MAUI where developers annotate which methods
of an application can be offloaded for remote execution [18].
If annotations are not supported in the workflow modeling
language, another possibility is outsourcing the annotations
to a workflow or task dependent configuration in a separate
file with references to the original workflow template. Figure
1 illustrates the input of the scheduler and the annotation
files together with the original workflow template to the
preprocessor, which forms the extended workflow template.
The administrative tasks of Section II.F are customized
evaluating the annotations described above.

110Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. Cloud-enabled workflow environment. Components with bright

background are the legacy system and components with dark background

are extensions.

All tasks that will stay on-premise for execution are
called local tasks whereas the tasks executed off-premise in
the cloud are called cloud tasks. The cloud tasks get
administrative predecessors and successors to connect to the
cloud broker to enable the cloud resources. So all tasks are
now arranged in one of these two categories. Since cloud
tasks cause administrative overhead, they should only be
used for computation intensive tasks like service tasks.

H. Endpoint selection strategy

At this point the workflow itself is prepared for an
execution across organizational boundaries. The binding of
service tasks to service endpoints is done at runtime by
dissolving the service names at the service registry. Since the
number of idling active cloud resources is kept to a
minimum to avoid costs it is not guaranteed that the service
registry holds an entry for the required service. The decision
making plan to select an endpoint is illustrated in Figure 2
and explained in the following paragraphs.

The simplest case is illustrated in the first two branches:
The service is already available and registered at the service
registry. This is common if it is deployed on on-premise
resources or in the cloud, e.g., from a previous run or as SaaS
solution.

If the required web service is not available at the service
registry, the service broker checks if a suitable underutilized
or idling resource is running which represents the 3

rd
 branch

of Figure 2. The cloud broker re-installs the required
software from a repository on that resource and publishes the
new endpoint at the service registry. The installation process
is described in Section II.I. This procedure is most suitable
for workflows with different cloud tasks that can then be
executed in a pipeline on the same cloud instance. It also
reduces the data movement.

If neither suitable service nor resource is available a new
resource representing the last branch of Figure 2 must be
instantiated.. This process is presented in Section II.J. The
instantiation takes time during provisioning and software
installation which pause the task execution. It also causes
new costs for renting an additional cloud resource.

Independent of the endpoint provisioning variant, the
endpoint is now available and registered at the service
registry. Like illustrated in Figure 1 the service tasks fetches
their endpoints from the service registry and invokes the
service directly. This proceeding is implemented in the
workflow management system in its natural way.

Figure 2. Endpoint selection decision process. Steps with bright

background are optional and depend on the implementation.

I. Deployment of software on a running machine

The deployment of the web service including its required
container can be done simply by using scripting (SCP / SSH |
PowerShell). Password prompts can be suppressed using
public/private key based authentication. The required keys
are stored by the user in a secure key repository as provided
for file transfer. The workflow is empowered to read these
key using the mechanism described in Section II.B. A more
sophisticated solution in comparison to scripting is to use
cloud agnostic interfaces such as the Open Cloud Computing
Interface (OCCI) or the compute API tool of jclouds
[19][20]. The OCCI Working Group has highlighted the
need for machine-readable Service Level Agreements
(SLAs) associated with the dynamic provisioning of cloud
computing resources.

J. Instantiation process of a new cloud resource

Preconfigured machine images contain only the required
software for immediate use to speed up the instantiation.
Each abstract cloud task uses its own machine image which
is identified evaluating the abstract task’s description in the
workflow template. The cloud instance loads its machine
image from its storage system. After startup, the web service
endpoint is published to the service registry. An alternative is
the use of a generic machine image which only contains the
rudimentary software and is customized at runtime by
additional software installation like described in Section II.I.

The billing period of a public cloud provider would start
now together with the instantiation of the cloud resource
instance.

K. Cloud Provider selection strategy

The flexible enabling of resources of the most suitable
cloud provider for each individual task is an optimization to
form a cross-cloud workflow with intra- and inter-cloud
communications. The selection process can be modeled
similar to the three-phase cross-cloud federation model
described in [21]. In the discovery phase, the cloud broker
collects information about assured properties offered by the

111Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

cloud providers. Each abstract cloud task specifies its
requirements. “Each object is characterized by a set of
properties/attributes; each property is a tuple (name, value),
with name a string of characters and value [22].” In the
match-making phase, the cloud broker compares the cloud
task’s requirements with the cloud providers’ assured
properties. The cloud providers that assure all requirements
of the requesting task are potential task owners. In the
authentication phase, the cloud broker selects the cheapest
potential owner as the current owner for each cloud task.
Matchmaking between requirements and properties was
already handled in the grid domain. A “formal definition of
matchmaking, overview algorithms to evaluate different
matchmaking expressions, and develop a matchmaking
service for an intelligent grid environment” is presented in
[22].

One challenge arises if the workflow execution depends
on large data because the data movement costs and time have
to be considered. In [23], “a Network and Data Location
Aware job scheduling has been proposed for data intensive
jobs. The proposed scheduling algorithm takes into account
network characteristics, disk read speed of data sources, and
data locations of input files, as well as other computational
factors (CPU power, memory, CPU load, etc.) when making
scheduling decisions.”

L. Provenance

The importance of auditing the outcome of computation
processes is a fundamental quality characteristic to many
application domains. The automated tracking and storing of
provenance information during workflow execution could
satisfy this requirement [24]. The required data can be
pushed out of the workflow by the administrative tasks
introduced in Section II.F. Provenance traces enable the
users to see what has happened during the execution of the
workflow. This enables failure analysis and future
optimization. Provenance becomes even more important in
distributed environments because workflow tasks are loosely
bound to computational resources. Using provenance in the
cloud-workflow domain enables the identification of task to
cloud assignments so that it is visible where the cloud task
has been executed and where its data have been stored.

Provenance also shows at which time the cloud instance
was running and therefore causing costs. Based on
provenance traces, statistics can be created showing which
workflows cause which costs, which users cause which
costs, which clouds cause which costs, which users
instantiate which workflows, which clouds execute which
cloud task, etc.. A detailed comparison of two possible
provenance models is done in [25].

III. EVALUATION

The prototype of [26] following the ideas of Section II is
evaluated in this section. First an example workflow was
modeled. Then required software products were chosen and
deployed together with the self-developed cloud broker to
form the cloud-enabled environment illustrated in Figure 1.
Finally the example workflow was executed in the
established testing environment. This evaluation shows how

the lightweight system works basing on an example
workflow. Not all components of the prototype were ready
when this paper was written. Therefore, some are simulated
using a mock like indicated at the corresponding place.

One advantage of combining on- and off-premise
resources is a cost reduction attributable to the performance.
Since cost structures vary they are not considered in this
evaluation.

A. Example Workflow

The example BPMN 2.0 workflow illustrated in Figure 3
is taken from [26] where additional information like the
source code is given. It solves a linear equation system. To
not repeat previous work, only the minimum required
information to understand this paper is given here.

The workflow consists of two script tasks, two service
tasks, two parallel gateways, and the start as well as the end.
The arrows indicate the task dependencies and the data flow
which define the execution order of the tasks. A task can
only start its execution after its predecessor has finished its
own execution. The two script tasks are executed on the local
computer. The two service tasks are executed on high-
performance computation resources which can be on-
premise or off-premise, e.g., in the cloud. The two parallel
gateways split and merge the service tasks “Gauss” and
“LuDecomposition”. That means that they can be executed
independent of each other in an arbitrary order with no
dependencies between them or even in parallel on different
computers.

B. Used Software

The open-source flexible Business Process management
(BPM) Suite jBPM of the JBoss community was used to
evaluate the approach by running the example workflow of
Figure 3. It provides an application server, a workflow
engine to run workflows, an Eclipse Integrated Development
Environment (IDE) with a Business Process Model and
Notation 2.0 (BPMN 2.0) conform editor as plugin to model
workflows, a data base to persist workflow runs, and a WS-
HumanTask implementation to integrate human interactions
into workflows in a standard conform way [8].

OpenNebula is an open-source software toolkit that
enables the creation of Private, Public, and Hybrid Clouds
[27]. This evaluation uses OpenNebula for local tests to
simulate a Public Cloud provider on local resources to avoid
expenses.

Figure 3. The example workflow consists of two script tasks, two service
tasks, and two parallel gateways.

112Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

RESERVOIR is a FP7 project which bases on
OpenNebula. “RESERVOIR’s open-source approach
supports the definition of open standards for Cloud
computing in order to break the lock-in imposed by vendors
today and allowing any organization to build its own local or
public cloud infrastructure [28].” It allows building “on-
demand infrastructure services, reducing investment and
operational costs, increasing energy efficiency and elasticity
while ensuring security and Quality of Service” (QoS).
Future versions of our prototype could replace OpenNebula
with RESERVOIR to get access to a more advanced toolkit
and to integrate public cloud infrastructure resources in a
standard conform way.

The clients for the equation solver web services are
created by Java API for XML Web Services (JAX-WS)
using the Java interface, the web service endpoint, and the
web service description language (WSDL) file.

The software implementation to extend workflows is
presented in [16]. The cloud service broker was self-
developed following the prototype described in [26].

C. Workflow run

Before the instantiation of the workflow, the
preprocessor requests the workflow template, the workflow
annotations, and the information about available resources of
the scheduler. The workflow annotations allow both service
tasks to be executed off-premise. The scheduler was
configured to indicate only enough available resources for
one of the service tasks, the “LuDecomposition”. That means
that the “Gauss” task must be executed in the cloud which
resources will be enabled during workflow runtime. The
preprocessor then inserts the two administrative tasks
“create” and “destroy” as predecessor and successor of the
“Gauss” script task into the workflow template as only
communication points between workflow and cloud broker.
This new modified workflow template is then forwarded to
the workflow management system for execution. The first
script task reads the input data and forwards it to both service
tasks. The “LuDecomposition” service task requests its
service endpoint from the service registry. Since the endpoint
is available on on-premise resources, the execution behavior
of this service task is not influenced by the new
architecture’s components. The merge control flow task
stops the execution branch until the “Gauss” service task
finishes execution. The administrative “create” task connects
to the cloud broker and forwards the execution requirements
of its assigned “Gauss” service task. The cloud broker
performs the decision making algorithm described in Section
II.H. Suppose neither a service nor a computer is available.
So the cloud broker selects the best cloud provider,
instantiates a resource, and deploys the software. In this
example only the private OpenNebula cloud was available
and therefore chosen. The cloud broker requests the endpoint
of the cloud resource and publishes it at the service registry.
Now the “create” administrative task finishes execution. The
“Gauss” service task first requests the endpoint from the
service registry to invoke the service. The service task does
not know that it is executed off-premise because of the
design decision to abstract endpoints with service names,

which are replaced during runtime. After the service returns
the result to the workflow, the administrative task “destroy”
notifies the cloud broker, that the service is no longer
needed. The cloud broker terminates the cloud resource
because no future cloud requests are predicted. Now all
execution braches finished and the merge task starts the final
script task which compares both results on the local
computer.

IV. CONCLUSION AND FUTURE WORK

This paper presented a general concept for the hybrid
execution of workflows by enabling Cloud resources to
compensate a shortage of on-premise resources. The
proposed prototype has the advantage that it neither depends
on a particular workflow management system nor on a
particular workflow description language. It follows the
approach of automatically modifying workflow templates to
incorporate the steps for dynamically enable the appropriate
off-premise resources in a flexible manner. The cloud broker
automatically selects the most suitable cloud resource to
guarantee the fulfillment of all task requirements. The end
users’ interfaces are not changed so that workflows can be
used the same way as before.

Next steps of work will be an analysis of an according
selection metric for the cloud broker to select the most
suitable cloud service provider. The incurred costs of a
partial off-premise execution will be compared with the costs
of a full off-premise execution to calculate a costs reduction
ratio and a cost-performance tradeoff. The time overhead for
migrating tasks across cloud and organizational boundaries
has to be measured for different providers and set it into
relation with the avoided costs. Additionally, in the
meantime developed technologies will be analyzed for a
possible integration to benefit from related work.

ACKNOWLEDGMENT

This work was carried out in the context of HiX4AGWS
[29]. HiX4AGWS is supported of the Federal Ministry of
Education and Research in Germany. Grant No.: 17N3409.

REFERENCES

[1] X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen,
and Y. Yang, “The Design of Cloud Workflow Systems,”
SpringerBriefs in Computer Science, November 2011

[2] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic Execution between Mobile Device and
Cloud,” Proceedings of the sixth conference on Computer
systems (EuroSys11), pp. 301-314, April 2011

[3] D. Warnecke and O. Kao, “Nephele: Efficient Parallel Data
Processing in the Cloud,” Proceedings of the 2nd Workshop
on Many-Task Computing on Grids and Supercomputers
(MTAGS09), pp. 8:1-8:10, November 2009

[4] Business objective driven REilable and Intelligent grids for
real busiNess (BREIN) FP7 project http://www.eu-brein.com/
[retrieved: March, 2013]

[5] P. Mell and T. Grance, National Institute of Standards and
Technology (NIST), “The NIST Definition of Cloud
Computing”, Special Publication 800-145, September 2011

[6] M. Gerhards, V. Sander, and A. Belloum, “About the flexible
Migration of Workflow Tasks to Clouds: Combining on- and
off-premise Executions of Applications,” Proceedings of the

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Third International Conference on Cloud Computing, GRIDs,
and Virtualization (CLOUD COMPUTING 2012), pp. 82-87,
July 2012

[7] I. Foster and C. Kesselman, The Grid 2, ISBN 1-55860-933-4

[8] Web Service HumanTask V1.1 Committee Specification,
August 2010, http://docs.oasis-open.org/bpel4people/ws-
humantask-1.1.pdf form [retrieved: March, 2013]

[9] M. Gerhards, S. Skorupa, V. Sander, P. Pfeiffer, and A.
Belloum, “Towards a Security Framework for a WS-
HumanTask Processor,” 7th International Conference on
Network and Service Management (CNSM 2011), pp. 1-5,
October 2011

[10] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V.
Welch, R. Ananthakrishnan, B. Baker, M. Goode, and K.
Keahey, "Identity Federation and Attribute-based
Authorization through the Globus Toolkit, Shibboleth,
Gridshib, and MyProxy," 5th Annual PKI R&D Workshop,
April 2006

[11] J. Yu and R. Buyya, “A Taxonomy of Workflow Management
Systems for Grid Computing,” Journal of Grid Computing,
Vol. 3, Issue 3-4, pp. 171-200, September 2005

[12] Generic Workflow Execution Service (GWES)
http://www.gridworkflow.org/kwfgrid/gwes/docs/ [retrieved:
March, 2013]

[13] R. Strijkers, W. Toorop, A. van Hoof, P. Grosso, A. Belloum,
D. Vasuining, C. de Laat, and R. Meijer, “AMOS: Using the
Cloud for On-Demand Execution of e-Science Applications,”
Sixth International Conference on e-Science (e-Science), pp.
331–338, December 2010

[14] OPTIMIS FP7 project http://www.optimis-project.eu/
[retrieved: March, 2013]

[15] R. Woolley, “Enterprise Servcie Bus (ESB) Product
Evaluation Comparisons”, October 2006

[16] M. Gerhards, A. Belloum, F. Berretz, V. Sander, and S.
Skorupa, “A History-tracing XML-based Provenance
Framework for Workflows”. The 5th Workshop on
Workflows in Support of Large-Scale Science (WORKS),
New Orleans, pp. 1-10, November 2010

[17] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
S. McGough, D. Pulsipher, and A. Savva, Job Submission
Description Language (JSDL) Specification, Version 1.0, 7
November 2005

[18] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A Survey of
Mobile Cloud Computing: Architecture”, Applications, and

Approaches, Wireless Communications and Mobile
Computing, Oktober 2011, DOI: 10.1002/wcm.1203

[19] Open Grid Forum (OFG), Open Cloud Computing Interface
(OCCI), June 2011

[20] jclouds
http://www.jclouds.org/documentation/gettingstarted/what-is-
jclouds/ [retrieved: March, 2013]

[21] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to
Enhance Cloud Architectures to Enable Cross-Federation”,
3rd International Conference on Cloud Computing (CLOUD),
pp. 337-345, 2010

[22] X. Bai, H. Yu, Y. Ji, and D. Marinescu, “Resource Matching
and a Matchmaiking Service for an Intelligent Grid”, World
Academy of Science, Engineering and Technology 1, pp. 666-
669, 2005

[23] S. Kumar and N. Kumar, “Network and Data Location Aware
Job Scheduling in Grid: Improvement to GridWay
Metascheduler”, International Journal of Grid and Distributed
Computing, Vol. 5, No. 1, pp. 87-100, March 2012

[24] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science”, SIGMOD RECORD, vol. 34, pp.
31-36, 2005

[25] M. Gerhards, V. Sander, T. Matzerath, A. Belloum, D.
Vasunin, A. Benabdelkader, “Provenance Opportunities for
WS-VLAM: An Exploration of an e-Science and an e-
Business Approach”, The 6th Workshop on Workflows in
Support of Large-Scale Science (WORKS), pp. 57-66,
November 2011

[26] M. Gerhards, M. Jagodzinska, V. Sander, and A. Belloum,
“Realizing the flexible Integration of Cloud Resources into
Workflows”, Systemics and Informatics World Network
(ISSN 2044-7272), Special Issue on Cloud Computing and
Services, Dezember 2012 (in-press)

[27] OpenNebula Enterprise Cloud and Datacenter Virtualization
http://www.opennebula.org [retrieved: March, 2013]

[28] RESERVOIR (Resources and Services Virtualization without
Barriers FP7 project http://www.reservoir-fp7.eu/ [retrieved:
March, 2013]

[29] History-tracing XML for an Actor-driven Grid-enabled
Workflow System (HiX4AGWS), http://www.fh-
aachen.de/en/research/projekt-hixforagws/ [retrieved: March,
2013]

114Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

