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Abstract—There is no such thing as an impenetrable system,
although the penetration of systems does get harder from year
to year. The median days that intruders remained undetected on
victim systems dropped from 416 days in 2010 down to 99 in
2016. Perhaps because of that, a new trend in security breaches
is to compromise the forensic trail to allow the intruder to remain
undetected for longer in victim systems and to retain valuable
footholds for as long as possible. This paper proposes an immune
system inspired solution, which uses a more frequent regeneration
of cloud application nodes to ensure that undetected compromised
nodes can be purged. This makes it much harder for intruders to
maintain a presence on victim systems. Basically, the biological
concept of cell-regeneration is combined with the information
systems concept of append-only logs. Evaluation experiments
performed on popular cloud service infrastructures (Amazon Web
Services, Google Compute Engine, Azure and OpenStack) have
shown that between 6 and 40 nodes of elastic container platforms
can be regenerated per hour. Even a large cluster of 400 nodes
could be regenerated in somewhere between 9 and 66 hours.
So, regeneration shows the potential to reduce the foothold of
undetected intruders from months to just hours.

Keywords–cloud computing; node regeneration; container plat-
form; append-only log; forensic trail;

I. INTRODUCTION

Cloud computing has become a great enabler for a variety
of different IT-enabled business and service models. The
ability to deploy new systems rapidly without concern for
forward planning, accessing corporate budgets and the ability
to scale up (or down) on demand has proved particularly
attractive for a continuously rising number of companies and
organizations. Many research studies and programs have been
actively involved in trying to develop systems in a responsible
way to ensure the security and privacy of users. But compliance
with standards, audits and checklists, does not automatically
equals security [1]. Furthermore, there is a fundamental issue
remaining, which presents a serious challenge, and is of great
concern. Once an attacker successfully breaches a cloud system
and becomes an intruder, usually escalating privileges the
longer they are in the system, there is nothing then to prevent
them from deleting or modifying the forensic trail. Preventing
this from happening presents a serious challenge, and in the
light of forthcoming regulation from various countries, and of
particular interest the forthcoming EU General Data Protection
Regulation (GDPR), which has a regime of penalties which
can rise up to the greater of e20 million or 4% of global
turnover. The other challenging aspect of this legislation is
that any security breach must be reported within 72 hours.
While the original idea was to do this “within 72 hours of
the occurrence of a breach”, it has been somewhat watered
down to read “within 72 hours of discovery of a breach”.

We believe this is a backward step, since there will be less
incentive for firms to deal with the real problem, and instead
will perhaps encourage some to delay “discovery” to suit their
own agendas. For cloud users who are breached, particularly
where the intruder deletes or modifies the forensic trail, the
longer the intruder remains in the system, the more difficult it
becomes to be able to properly report the full impact of the
breach, which is also likely to lead to higher levels of fines.

In our recent research [2], we exploited successfully elastic
container platforms and their “designed for failure” capabil-
ities to realize transferability of cloud-native applications at
runtime. By transferability, we mean that a cloud-native appli-
cation can be moved from one (public or private) Infrastructure
as a Service (IaaS) provider infrastructure to another without
any downtime and therefore without being noticed by its users.
These platforms are more and more used as distributed and
elastic runtime environments for cloud-native applicatons [3].

Table I lists some elastic container platforms that gained
a lot of interest in recent years. These platforms can be
understood as a kind of cloud infrastructure unifying middle-
ware for cloud-native applications [4]. These platforms can
be even used to transfer cloud applications between different
cloud service providers at runtime. We think that it should
be possible to make use of the same features to immunize
the forensic trail simply by moving an application within the
same provider infrastructure. To move anything from A to A
makes no sense at first glance. However, let us be paranoid
and aware that with some probability and at a given time, an
attacker will be successful and compromise at least one virtual
machine. In these cases, a transfer from A to A would be an
efficient counter measure – because the intruder immediately
loses any hijacked machine that is moved. To understand that,
the reader must know that our approach does not effectively
move a machine, it regenerates it [2]. So, to move a machine
means to launch a compensating machine unknown to the
intruder and to terminate the former (hi-jacked) machine.
So, whenever an application is moved (basically the hosting
container platform is moved and not the application itself)
all of its virtual machines are regenerated. And this would
effectively eliminate undetected hi-jacked machines, as well
as those which have not been compromised. The biological
analogy of this strategy is called “cell-regeneration” and the
attack on ill cells is coordinated by an immune system. This
paper describes the first ideas for such a kind of immune
system for cloud applications.

The paper will explain these basic and unconventional
thoughts following this outline. To provide some context for
the reader, Section II will explain the general lifecycle of
a cyber attack and will show that two aspects have to be
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addressed to protect the forensic trail. First of all, it is assumed
that every system can be penetrated due to unknown exploits
[5]. Nevertheless, systems can be built which are capable of
being able to regenerate penetrated nodes. That makes it harder
for intruders to maintain a presence on penetrated systems over
a longer time. Section III will summarize some of our recent
research to explain how such systems can be built. However,
even in a short amount of time, the forensic trail can be deleted
or compromised. So, the task is to find a solution to store
the forensic trail in such a way as to make it un-erasable
and un-compromise-able. Section IV will propose a double
logging architecture which exploits messaging systems like
Kafka [6] to realize regenerating append-only logging systems
which are recovering from penetrations. Section V shows some
evaluation results measured from transferability experiments.
These numbers are used to estimate possible regeneration
intervals for systems of different sizes and to compare it with
median dwell times reported by security companies over the
last seven years (see Table II). The advantages and limitations
of this proposal are related to other work in Section VI. We
conclude our considerations in Section VII.

II. THE LIFECYCLE OF CYBER ATTACKS

Figure 1 shows the cyber attack life cycle model, which
is used by the M-Trends reports [7] to report developments
in cyber attacks over the years. According to this model
an attacker passes through different stages to complete their
mission. It starts with initial reconnaissance and compromising
of access means (often using mobile phones or the desktop
PCs of employees, who are generally not security experts).
These steps are very often supported by social engineering
methodologies [8] and phishing attacks [9]. The goal is to
establish a foothold near the system of interest. All these steps
are not covered by this paper, because the proposed technical
solution is not able to harden the weakest point in security -
the human being. We refer to corresponding research like [8]
[9].

The following steps of this model are more interesting for
this paper. According to the cyber attack life cycle model the
attacker’s goal is to escalate privileges to get access to the
target system. Because this leaves trails on the system which
could reveal a security breach, the attacker is motivated to
compromise the forensic trail. According to the M-Trends 2017
report attackers make more and more use of counter-forensic
measures to hide their presence and impair investigations. The
report refers to batch scripts used by financial intruders to
delete pre-fetch entries, clear Microsoft Windows event logs
and securely delete arbitrary files. These batch scripts are run
to hide the execution of malware that was scraping payment
card information from memory. The technique is simple, but
the intruders’ knowledge of forensic artifacts demonstrate
increased sophistication, as well as their intent to persist in
the environment.

TABLE I. SOME POPULAR OPEN SOURCE ELASTIC PLATFORMS

Platform Contributors URL

Kubernetes Cloud Native Found. http://kubernetes.io (initiated by Google)
Swarm Docker https://docker.io
Mesos Apache http://mesos.apache.org/
Nomad Hashicorp https://nomadproject.io/

With a barely detectable foothold, the internal reconnais-
sance of the victim’s network is carried out to allow the lateral
movement to the target system. This is a complex and lengthy
process and may even take weeks. So, infiltrated machines
have worth for attackers and tend to be used for as long as
possible, even after mission completion. Although the numbers
are decreasing, Table II shows how astonishingly long a period
on average an intruder has access to a victim system at the
time of writing this paper. According to this reference model
for cyber attacks two conclusions can be drawn.

(1) An undetected attacker should lose access to com-
promised nodes of the system as fast as possible. The Sec-
tions III and V will propose a solution on how the undetected
days on a system can be reduced from months down to days, or
even hours. Even if undetected days on systems can be reduced
dramatically, it (2) must be still impossible to compromise
the forensic trail. Otherwise intrusions might be short, but
remain undetectable. Section IV will propose a solution on
how to log the forensic trail using append-only logging systems
(which could itself be compromised).

III. FROM TRANSFERABLE TO REGENERATE-ABLE
CLOUD APPLICATIONS

Our recent research dealt with the question of how to
design cloud-native applications that are transferable between
different cloud service providers to reduce vendor lock-in
situations. One aspect that can be learned from this is that there
is no common understanding of what a cloud-native application
really is. A kind of software that is ”intentionally designed
for the cloud” is an often heard but vacuous phrase. However,
noteworthy similarities exist between various view points on
cloud-native applications (CNA) [3]. A common approach
is to define maturity levels in order to categorize different
kinds of cloud applications. Table III shows a maturity model
proposed by the Open Data Center Alliance. And common
motivations for CNA architectures are fault isolation, fault
tolerance, and automatic recovery to improve safety, and to
enable horizontal (instead of vertical) application scalability
[10]. Fehling et al. [11] proposed the IDEAL model for CNAs.
A CNA should strive for an isolated state, is distributed,
provides elasticity in a horizontal scaling way, and should be
operated on automated deployment machinery. Finally, its
components should be loosely coupled.

Balalaie et al. [13] stress that these properties are addressed
by cloud-specific architecture and infrastructure approaches
like Microservices [14], API-based collaboration, adaption
of cloud-focused patterns [11], and self-service elastic plat-
forms that are used to deploy and operate these microser-
vices via self-contained deployment units (containers). These
platforms provide additional operational capabilities on top of
IaaS infrastructures like automated and on-demand scaling of

TABLE II. UNDETECTED DAYS ON VICTIM SYSTEMS [7]

Year External notification Internal discovery Median

2010 - - 416
2011 - - ?
2012 - - 243
2013 - - 229
2014 - - 205
2015 320 56 146
2016 107 80 99
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Figure 1. The cyber attack life cycle model. Adapted from the cyber attack lifecycle used by the M-Trends reports, see Table II

Figure 2. The execution loop and synchronized security group concept

application instances, application health management, dynamic
routing and load balancing as well as aggregation of logs and
metrics [3]. Some open source examples of such kinds of
elastic platforms are listed in Table I.

If the reader understands the commonality that cloud-native
applications are operated (more and more often) on elastic
– often container-based – platforms, it is an obvious idea
to delegate the responsibility for the forensic trail to these
platforms. Furthermore, our recent research shows that the
operation of these elastic container platforms and the design
of applications running on-top should be handled as two
completely different engineering problems. This often solves
several issues in modern cloud-native application engineering
[15]. And that is not just true for the transferability problem
but might be an option for the forensic trail as well. These
kinds of platforms are an essential part of the immune system

of modern cloud-native applications.
Furthermore, self-service elastic platforms (see Table I)

are really ”bulletproofed” [10]. Apache Mesos [16] has been
successfully operated for years by companies like Twitter
or Netflix to consolidate hundreds of thousands of com-
pute nodes. Peinl and Holzschuher [17] provide an excellent
overview for interested readers. Elastic container platforms are
designed for failure and provide self-healing capabilities via
auto-placement, auto-restart, auto-replication and auto-scaling
features. They will identify lost containers (for whatever
reasons, e.g., process failure or node unavailability) and will
restart containers and place them on remaining nodes. These
features are absolutely necessary to operate large-scale dis-
tributed systems in a resilient way. However, these exact same
features can be used intentionally to realize transferability
requirements or to purge “compromised nodes”.
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In recent research [2] [15] we demonstrated a software
prototype that provides the control process shown in Figure 2.
This process relies on an intended state ρ and a current state σ
of a container cluster (attached nodes, existing security groups.
If no multi-cloud settings are considered, security groups can
be ignored almost completely. This is done by this paper for
simplicity reasons. If the intended state differs from the current
state (ρ 6= σ), necessary adaption actions are deduced (creation
and attachment/detachment of nodes, creation and termination
of security groups) and processed by an execution pipeline
fully automatically (see Figure 3) to reach the intended state
ρ, so that ρ = σ′ where σ′ is the current state in time after σ.

With this kind of control process, a cluster can be simply
resized by changing the intended state of the cluster (adding
σ = N 7→ σ′ = N+ i or decreasing σ = N 7→ σ′ = N− i the
intended amount of nodes). If the cluster is shrinking and nodes
have to be terminated, affected containers will be rescheduled
to other available nodes. Migrations between different cloud
service providers become possible as well. Let us assume a
cluster with N nodes provided by Amazon Web Services (AWS)
that shall be transferred to Google Compute Engine (GCE). So,
the starting current state would be σ = (N, 0). If we want to
move from AWS to GCE we can transfer an elastic container
platform in the following way. In a first step, we simply add the
amount of nodes provisioned by AWS to the clusters intended
state ρ = (N,N) – but on GCE’s side, so we get σ′ = (N,N)
after a cycle of the control process. In a second step, we shut
down all nodes provided by AWS by removing them from the
intended state ρ = (0, N) and get σ′′ = (0, N) after another
cycle. The cluster will observe node failures and trigger its
self-healing features to reschedule lost containers accordingly.
From an inner point of view of the platform, rescheduling
operations are tasked due to node failures. From an outside
point of view, it looks like (and in fact is) a migration from
one provider to another provider at run-time. This should make
the general idea clear – and the reader is referred to [2] [15]
for more details.

It is essential to understand that a node is migrated by
adding a new node to the cluster and delete the former
node. Therefore, the intruder looses access to every migrated
node, because this instance is terminated and replaced by a
complete new node instantiated from a virtual machine image.
This is mainly done to keep things simple for the above
mentioned control process. A migration is no ”live-migration”
and keeps no user-related state on the affected machine during

TABLE III. CLOUD APPLICATION MATURITY MODEL [12]

Level Maturity Criteria

3 Cloud - A CNA can migrate across infrastructure providers at
native runtime and without interruption of service.

- A CNA can automatically scale out/in based on stimuli.

2 Cloud - The application state is isolated in a minimum of services.
resilient - The application is unaffected by dependent service failures.

- The application is infrastructure agnostic.

1 Cloud - The application is composed of loosely coupled services.
friendly - Application services are discoverable by name (not by IP).

- Application components are designed using cloud patterns.
- Application compute and storage are separated.

0 Cloud - The application runs on virtualized infrastructure.
ready - The application can be instantiated from image or script.

or after migration. The container platform will detect container
unavailabilities due to node failures and will reschedule lost
containers on other nodes. This is all handled by the container
platform. For an intruder, the only way to keep a foothold
in the system would be to inject malicious code into a virtual
machine or container image that is used to launch nodes for the
container platform or container on the platform. However, that
is a completely different kind of attack, which is not covered
by this paper.

The downside of this approach is,that this will only work
for level 2 (cloud resilient) or level 3 (cloud native) applica-
tions (see Table III) which by design, can tolerate dependent
service failures (due to node failures and container reschedul-
ing) which may occur for a limited amount of time. However,
for that kind of level 2 or level 3 application, we can use
the same control process to regenerate nodes of the container
cluster. The reader shall consider a cluster with σ = N nodes.
If we want to regenerate one node, we change the intended
state to ρ = N +1 nodes which will add one new node to the
cluster (σ′ = N + 1). And in a second step, we will decrease
the intended size of the cluster to ρ′ = N again, which has
the effect that one node of the cluster is terminated (σ′′ = N ).
So, we regenerated one node simply by adding one node and
deleting one node. We could even regenerate the complete
cluster by changing the cluster size in the following way:
σ = N 7→ σ′ = 2N 7→ σ′′ = N . But, this would consume
more resources because the cluster would double its size for a
limited amount of time. A more resource efficient way would
be to regenerate the cluster in N steps: σ = N 7→ σ′ =
N + 1 7→ σ′′ = N 7→ ... 7→ σ2N−1 = N + 1 7→ σ2N = N .

Whenever such a regeneration is triggered, all (even unde-
tected) hijacked machines would be terminated and replaced
by other machines, but the applications running on-top of this
platform would be unaffected. For an attacker, this means
losing their foothold in the system completely. Imagine if this
were to be done once a day or even more frequently? The
question is whether it is possible to do it with these frequencies
and this paper will return to this question in Section V.

IV. PROPOSAL OF AN IMMUNE SYSTEM ARCHITECTURE

Section III showed that it is possible for level 2 or level
3 cloud-native applications to be operated on a permanently
regenerating platform that makes it hard for an intruder to
maintain a foothold in the system. Yet the forensic trail can
be deleted or compromised in only a short amount of time.
So, there is the need to store the forensic trail in a way to be
undeleteable and uncompromiseable. One obvious solution is
to store the logs not on the same system but to consolidate
them in an external logging system or an external logging
service. Such logging services are becoming more and more
widespread and the term Logging-as-a -Service (LaaS) has
been established. Furthermore, research has been carried out
to enable secure LaaS, even in untrusted environments [18].
So, from a regulatory point of view it would be sufficient to
log into an external logging service and to make this service
provider responsible to fulfill the criteria through service level
agreements.

There might be regulatory constraints (e.g., data privacy)
that prohibit to make use of external logging services. In these
cases, we have to consolidate our logs by ourselves. The canon-
ical way to do this in modern cloud engineering is to make
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Figure 3. Execution pipeline (explained in details here: [15])

use of logging stacks like the ELK stack (https//elastic.io)
or Heapster (https://github.com/kubernetes/heapster) or to use
distributed streaming platforms like Kafka [6]. These stacks are
composed of three basic tiers. Nodes are instrumented with
metric and log shippers on tier 1 (the nodes of the payload
system according to Figure 4). These shippers send their data
to distributed and horizontal scalable timeseries databases or
streaming platforms (that can be operated on elastic platforms
according to Figure 4). And a visualization and analytical
component on tier 3 is responsible to visualize timeseries or
streams and perform analytics on log data. These analytical
and visualizing components can be run on the same hardware
like the timeseries database/streaming platform or somewhere
else.

This paper proposes to do the same. However, is has to be
considered that the logging system might be compromised as
well. And that is why this paper proposes to log and analyze
the logging system by a second logging system and vice
versa. In fact there are three systems. The payload system,
a logging system A which logs the payload system and a
second logging system B which logs the logging system A.
The logging system A logs and supervises logging system B as
well, to avoid an unsupervised system. All three systems are
operated on regenerating elastic container platforms as shown
in Section III that make it hard for an intruder to maintain
a foothold in any of these three systems. Logging systems
A and B have not just the responsibility to log but also to
detect anomalies in the supervised systems. If they detect
anomalies they trigger a node regeneration. Such anomalies
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Figure 4. An Immune System Architecture based on a Double Logging System
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Figure 5. Differences in infrastructure specific regeneration durations [15]

could be detected automatically by approaches described by
[19]. And it might be interesting for the reader that there
are even approaches making use of bioinformatics tools to
detect outliers in log data [20] which is aligned to some degree
with our biology analogy throughout this paper. This anomaly
detection must not be perfect, it would be sufficient to rate a
node just vaguely as suspect (and not as precisely hostile). A
false positive would result only in an unnecessary regeneration
of one node. However, if there are too many suspects identified,
then too many nodes would be attacked unnecessarily by the
immune system to be regenerated, thus the system would
become ”hot” due to a lot of regenerations. The reader might
know this health state as ”fever” from their own experiences. A
medical scientist might even want to talk about an autoimmune
disease.

V. EVALUATION RESULTS

The execution pipeline presented in Figure 3 was evaluated
by operating and transferring two elastic platforms (Swarm

Mode of Docker 17.06 and Kubernetes 1.7) across four public
and private cloud infrastructures. All experiments were re-
peated 10 times. The platforms operated a reference ”sock-
shop” application being one of the most complete reference
applications for microservices architecture research [21]. Table
IV lists the machine types that show a high similarity across
different providers. These machine types have been selected
according to [22]. The OpenStack m1.large and m1.medium
are research institute specific machine types that have been
intentionally defined to show maximum similarities with the
other mentioned machine types.

Although the evaluation of [2] [15] was not done to investi-
gate the current use case, it is possible to use some of the data
to estimate reasonable regeneration cycles of elastic container
platforms. First of all, the evaluation demonstrated that most
time is spent on the IaaS level (creation and termination of
nodes and security groups) and not on the elastic platform
level (joining, draining nodes). The measured differences on
infrastructures provided by different providers is shown in
Figure 5. For the current use case the reader can ignore the
times to create and delete for a security group (because that is a
one time action). However, there will be many node creations
and node terminations. According to our execution pipeline
shown in Figure 3 a node creation (σ = N 7→ σ′ = N + 1)

TABLE IV. USED MACHINE TYPES AND REGIONS

Provider Region Master type Worker type

AWS eu-west-1 m4.xlarge m4.large
GCE europe-west1 n1-standard-4 n1-standard-2
Azure europewest Standard A3 Standard A2
OpenStack own datacenter m1.large m1.medium

TABLE V. DURATIONS TO REGENERATE A NODE (median values)

Provider Creation Adj. Secgroup Joining Term. Total

AWS 70 s 1 s 7 s 2 s 81 s
GCE 100 s 8 s 9 s 50 s 175 s
Azure 380 s 17 s 7 s 180 s 600 s
OpenStack 110 s 2 s 7 s 5 s 126 s
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involves the durations to create a node (request of the virtual
machine including all installation and configuration steps for
the elastic container platform), to adjust of security group the
cluster is operated in and to join the new node into the cluster.
The shutdown of a node (σ = N 7→ σ′ = N − 1) involves the
termination of the node (this includes the platform draining
and deregistering of the node and the request to terminate
the virtual machine) and the necessary adjustment of the
security group. So, for a complete regeneration of a node
(σ = N 7→ σ′ = N +1 7→ σ′′ = N ) we have to add the times
to create, to join, to terminate the node and to add two times
the adjustment of the security group the cluster is operated in.
Table V lists these values per infrastructure.

So, even on the “slowest” infrastructure Azure, a node
can be regenerated in about 10 minutes. That means one can
regenerate six nodes every hour or up to 144 nodes a day
or a cluster of 432 nodes every 72h (which is the reporting
time requested by the EU GDPR). If the reader compares a
72h regeneration time of a more than 400 node cluster (most
systems are not so large) with the median value of 99 days
that attackers were present on a victim system in 2016 (see
Table II) the benefit of the proposed approach should become
obvious.

Obviously there are some open questions and drawbacks
regarding this proposal that should be tackled by ongoing
research. For example, what would be the penalty of additional
load on the cloud infrastructure? What would be the degra-
dation in application performance caused by frequent VMs
re-generation? An educated guess would be to expect 1/n
behavior. At one point in time only one node of a n node
cluster is affected. So, the performance degradation would be
much more severe for small clusters and hardly observable for
larger clusters. However, this has been not investigated so far.

VI. RELATED WORK

To the best of the author’s knowledge, there are cur-
rently no approach making intentional use of virtual machine
regeneration for security purposes [23]. A literature search
using Google Scholar and the Semantic Web did not turn up
any noteworthy papers in this field. However, the proposed
approach stands on the shoulders of giants and is derived
from multi-cloud scenarios and their increased requirements on
security. And there are several promising approaches dealing
with multi-cloud scenarios. So, all of them should show
comparable opportunities but come along with a lot of inner
complexity. A container based approach seems to handle this
kind of complexity better. There are some good survey papers
on this [24] [25] [26] [27].

To make the execution pipeline work seamlessly, an effi-
cient and pragmatic deployment description format is needed.
The current format is based on JSON and shows similar-
ities with other kind of deployment description languages
like TOSCA or CloudML [28]. Nonetheless, the proposed
approach is focused on a more container-centric approach and
separates the platform and application level which enables a
high-frequency regeneration of hosting virtual machines. This
is hardly realizable with TOSCA and comparable approaches
without accepting downtimes in regeneration cycles.

Duncan and Whittington emphasize the requirement to beef
up the need to use the humble audit trail on all cloud systems
to improve the ability to retain some level of forensic trail.

They propose to use an immutable database for this purpose,
which they suggested to be kept in a remote location from
the main cloud system [29] [30]. Further research deals with
append-only data structures on untrusted servers [31]. Other
approaches propose building a secure and reliable file synchro-
nization service using multiple cloud synchronization services
as untrusted storage providers [32]. Further approaches focus
on the integrity of logs and ensure their integrity by hash-
chain schemes and proofs of past logs published periodically
by the cloud providers [18]. The question remains, whether
these approaches are scalable enough to provide robust logging
means for the forensic trail of up to thousands of nodes.
Messaging solutions like Kafka [6] or logging stacks like the
ELK-Stack are bullet-proofed technologies for consolidating
logs but assume to be operated in a trusted environment which
ends in a kind of double logging architecture. So, the above
mentioned research approaches show the potential to simplify
the double logging architecture and should be considered in
ongoing research. The same is true for anomaly detection
approaches in log data [19] [20].

Taken all together, the proposed approach leverages more
up-to-date container technologies with the intent to be more
“pragmatic”. On the downside, it might be only applicable for
container-based applications being on the level 2 or 3 of the
maturity model shown in Table III. But this architecture style
gets more and more common in cloud application engineering
[3].

VII. CONCLUSION

Once attackers successfully breach a cloud system there is
little to prevent them from modifying the forensic trail. This
involves a serious challenge - from a security but also from
an economic point of view. The forthcoming EU General Data
Protection Regulation (GDPR) has a regime of penalties which
can rise up to 4% of global turnover in those cases where
failure by the company to protect systems in a sufficiently
robust manner will be seen as complicit in the loss of customer
data.

Although the presented approach evolved mainly from
transferability research questions for cloud-native applications,
it can be adopted as a foundation for an approach one could
call ‘immune system” inspired. This paper proposed to regen-
erate virtual machines (the cells of an IT-system) with a much
higher frequency than usual to purge even undetected intruders.
Our evaluations on infrastructures provided by AWS, GCE,
Azure and OpenStack showed that a virtual machine can be
regenerated in somewhere between two minutes (AWS) and
10 minutes (Azure). The reader should compare these times
with recent cyber security reports. E.g., the M-Trends report
from 2016 reported that an attacker was undetected on a victim
system for about 100 days. For an attacker this means that their
undetected time on a victim systems drops from months down
to minutes, thus minimising the potential for damage.

Nevertheless, even in a very short amount of time an
attacker could delete (parts) of the cloud forensic trail. To
use external and trusted append-only logging systems seems
somehow obvious. However, existing solutions rely on trusted
environments. But if that environment can not be assured,
the need for complex and “ugly” double logging architectures
arises, as Section IV, has shown. Our further research will
investigate how “regenerating” platforms and append-only
logging systems could be integrated more straightforward.
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