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Abstract—High functioning autistic people can exhibit ex-
ceptional skills with numbers, eidetic imagery and recall of
concrete detail, as brought to popular attention in the film
Rain Man. However, it now transpires that these skills are to
some extent latent within all of us. We do not have access
under normal circumstances to this concrete detail, yet brain
stimulation experiments show that it exists in all of us. This
paper proposes that one of the reasons for this lies in the brain’s
need to conserve energy. Computer simulations using a spiking
neural network support this hypothesis. A spiking neural network
was set up with a number of feature detectors feeding an output
unit, which in turn generates inhibition of the input neurons.
This reduces the spike activity of the input, and thus overall
energy usage.
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I. INTRODUCTION

The evidence from high functioning autistic individuals

shows the overwhelming advantage of concept formation in

the human brain. Such individuals tend to have weak concept

formation but can have very powerful perception and memory

for detail. The evolutionary significance is abundantly clear.

What is less clear is why the raw detail to which these people

have access is not available to everybody else. The surprising

thing, revealed by direct brain stimulation, is that this detail

is not destroyed on the way to conscious awareness, but is

somehow blocked from access. This paper provides a novel

solution to this conundrum.

Early indicators that some of this low-level detail might

be accessible came from studies on victims of stroke and

brain injury, where, for example, a person might discover the

ability to draw realistically. Snyder and Mitchell [1] predicted

that such access might be obtained using brain stimulation

techniques in which the conceptual part of the brain was

blocked, because concepts inhibit lower level detail [2].

It transpired that this was indeed the case. The direct brain

stimulation techniques, Transcranial Magnetic Stimulation

(TMS) and the more recent technique, Transcranial Direct-

Current Stimulation (TDCS) can be used to “switch off” part

of the brain. By targeting the anterior temporal lobe in the left

hemisphere—a brain area highly involved in concept formation

and storage—it is possible to block access to concepts and thus

release access to lower-level detail. In the first such study,

now nearly a decade old, drawing and proof-reading [3] were

found to be enhanced by TMS. So, for example, it is hard for

many people to see the word “the” when it is repeated on a

following line. The ability to spot the error is enhanced when

the meaning of the sentence is blocked by brain stimulation.

Likewise, numerosity [4] (rapidly estimating the number of

objects in the field of view, inspired by an incident in the film

Rain Man) also goes up with TMS to the left anterior temporal

lobe. Over the subsequent decade, a diverse range of higher-

level cognitive phenomena have been shown to be enhanced

through dis-inhibition with brain stimulation. False memory,

where like objects may get mixed up in memory tests (e.g.,

chair instead of stool), can be reduced in this way [5]. Even

the ability to solve visual puzzles can be enhanced [6].

There are numerous arguments for why this might be

the case, such as the possibility of computational overload,

discussed further in Section IV. In this era of information

overload, such an explanation is at first sight appealing, but is

hard to quantify with our existing knowledge of the brain.

Closely linked to computational overload is the energy cost

of neural computation. The human brain uses about 20% of

the body’s energy [7] and various evolutionary changes, such

as the appearance of meat in the diet, may have allowed the

brain’s energy consumption to grow. Navarette et al. [8] show

that in over 100 species of mammal, adipose deposits correlate

negatively with encephalisation. This suggests that fat storage

and increased brain size are alternative evolutionary strategies

for avoiding starvation.

Laughlin and Sejnowski [9] show that the brain’s overar-

ching network structure is consistent with preserving energy.

The energy required for the transmission of nerve impulses, or

spikes, and synaptic transmission are very tightly optimized,

approaching the thermodynamic limits within cellular con-

straints [10]. Neuronal spikes account for a significant fraction
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of neuronal energy usage [11].

The idea that the number of spikes might be kept to a

minimum to save energy began with the idea of sparse coding

in sensory systems [12][13]. More recently, cells have been

observed which fire strongly when the subject is exposed to

stimuli corresponding to a particular person, say Bill Clinton,

and to very little else [14][15]. They respond to the concept,

and can be activated by pictures, voice or unique events. Obvi-

ously, for most people such a cell would fire very infrequently.

The alternative distributed representation might have many

cells coding for all US presidents. All of these cells would

be active for any president, thus making their average activity

much higher.

However, sparse coding is not the only way to reduce energy

consumption by neurons using action potentials (APs). Chang-

ing the kinetics of the ion channels involved in generating

the spike can reduce the energy requirements of the APs.

Sengupta et al. [16] show that considerable differences in

the relative cost of spike transmission versus the energy of

synaptic transmission may be found, depending upon the exact

ion channel kinetics, for example between giant squid neurons

and those in mouse cortex.

The strong need to conserve energy suggests a possible

explanation for why raw sensory input is not accessible to

us, excluding external means like TMS. It is turned off to

save energy. Snyder et al. [2] and Bossomaier and Snyder [17]

propose a concept model for how inhibition mechanisms might

generate the observed effects of TMS. The effect is to turn off

the inhibitory mechanisms, dis-inhibiting their targets.

Inhibition is of course widespread in the brain, and the pre-

frontal cortex—the area with most development over other

primates—abounds in inhibitory effects. But, evidence is now

emerging that even sensory perception in early areas such as

primary visual area V1 depends upon top-down modulation,

of which a large part is inhibitory [18][19].

Feedback mechanisms are a common way of modulating

input from lower processing areas of the cortex to higher

processing areas. Visual processing streams provide a good

example, where higher-order visual areas display an in-

hibitory top-down activity to lower visual processing areas like

V1 [18][19]. However these models only consider connectivity

patterns in the cortex related to visual processing. Jelinek and

Elston [20] have shown that on a cellular level, processing

complexity increases from V1 to prefrontal cortex, with layer-

III pyramidal cell dendritic branching patterns becoming more

complex and larger, thus requiring more energy. Higher visual

processing areas deal more with conceptual phenomena by

integrating simple bits of information from lower processing

areas.

Such top-down effects reduce activity at lower levels. Zhang

et al. [21] show that in inferotemporal cortex, activity corre-

sponding to a particular object is vastly different depending

upon whether attention is focussed on that object.

In this paper, we show that spiking neural networks, even

when using the most basic approximation to the established

Hodgkin-Huxley spike-dynamic equations [22], can exhibit

significant energy savings within such inhibition models. We

note that the energy cost of neural computation is split between

the generation of spikes and synaptic activity, the relative

proportion varying across species [16]. This article focusses

on the spike activity component.

We consider two cases. The first implements a concept

model outlined by the previous paragraphs. The second uses

a Bayesian or attention approach to reduce energy costs even

further. The essential feature of both models is the inhibition

of inputs as soon as a concept has been activated.

II. SIMULATION MODELS

The simplest approximation to the Hodgkin-Huxley equa-

tions is the Leaky Integrate and Fire model. Izhikevich [23]

points out that this neuron is capable of only a few of

the 20 or so behaviors of which the full Hodgkin-Huxley

model is capable. However, it is used here because if a very

simple model can generate the behavior we observe, then so

can any of the more complex models. This assures that the

model is reasonably robust to parameter variations. Since more

powerful neural models, such as the Izhikevich [23] model,

can imitate the behaviour of simpler models (such as integrate

and fire) then these more powerful models will have the same

behaviour.

Equation 1 shows the model for one neuron, where R is

resistance, I the input current, u the membrane voltage and τ

the time constant:

du

dt
= −

u

τ
+

IR

τ
(1)

Synaptic activation is represented by an alpha function with

another time constant τs:

ε(t) =
1

τs
e
1−t/τs (2)

The two simulation models use the same type of neuron,

although the time constants are not the same.

A. Model 1: Basic Concept and Inhibition

In Model 1 we use a local inhibitory circuit, shown in

Figure 1. Since an eye fixation takes around 200msec [24], we

assume this represents the minimum time for which a concept

would remain active. The inhibitory circuit requires around

20msec. It does not matter if input spikes come in as a single

volley or as some Poisson process; if the maximum spike rate

is around 100 spikes per second, the concept cell can see about

2 spikes in 20msec, and should it see a spike from every cell,

then it takes 40msec to turn the input cells off. This would

represent an spike-saving factor of around five.

B. Model 2: Prior Knowledge and Intention

There is abundant evidence of the use of Bayesian informa-

tion processing throughout sensory and cognitive processing.

For the purposes of this paper, the implication is that only

a small subset of feature detectors need to fire to recognize

something, given the assumption that something is going to

appear.
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Figure 1. The basic model. Sensory signals are the features in blue, of which there may be many more than 5. Green connections are
excitatory (from features to concept and concept to interneuron). Red connections from the interneuron to the features are inhibitory.

For instance, sometimes just a single cue, like hair colour,

might be enough to distinguish between two people. So if

we know that the person coming up the driveway is one of

two similar-looking people, then hair colour might be enough

to identify them. In this case, it is not necessary to wait

for all feature cells to fire. Just a few cells may suffice, in

which case inhibition can start sooner. This is the essence of

Model 2, illustrated in Figure 2. The prior neuron represents

the assumption of what will appear: as soon as it has its

minimal set of features, it activates the output neuron, in turn

suppressing the input activity early.

Now, assume that we have attentional control or a mindset

that one is going to see objects K5 or K7, represented by the

cell labelled prior in Figure 2. The facilitating cell is activated

from higher up, but is agnostic as to whether K5 or K7 appears.

It fires slowly with a long recovery time and brings a small

subset of features closer to threshold. This only costs a small

number of spikes and synaptic events, since on average only

one cell will fire, facilitating a particular hypothesis. Now,

only this small number of features needs to be activated for

the concept to trigger. But, since these features lead over the

remainder, only they will be allowed to fire.

All simulations were carried out in Matlab using the Biolog-

ical Neural Network Toolbox [25]. The toolbox uses Matlab’s

integration routines for solving differential equations.

III. RESULTS

Figure 3 shows the spiking patterns for Model 1. The

features are suppressed for the duration of activation of the

concept, representing at least a substantial decrease in energy

usage. Whereas the activity of the concept and inhibitory

neurons are maintained throughout the 200msec simulation,

activity of the feature neurons rapidly dies away. Without

the inhibition, their firing would also be maintained. Figure 4

shows the average number of spikes in each neuron over 100

runs.

The prior or attention neuron of Model 2 pre-activates some

of the features, as shown in Figure 5. Figure 6 shows the

average number of spikes over 100 runs of this simulation.

In this paper, only one concept neuron is ultimately ac-

tivated, but a single prior could pre-activate any number of

feature neurons, in turn subserving more than one concept.
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Figure 3. Spike activity of the network of Model 1. Cells are laid out
along the y-axis. The top cell is the inhibitory interneuron, the next
cell down is the concept and the remainder are the features. Each dot
represents a spike event. The inhibition in neuron 12 sets in after the
concept neuron has started to fire.
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Figure 4. The average number of spikes for each neuron in Model
1. Neurons 1–10 are the input features, neuron 11 the concept and
neuron 12 the inhibitory interneuron.
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Figure 2. The prior/attention model. Features, concepts and inhibitory interneurons are similar to Figure 1. Here we have two concepts and
a single prior/attention neuron selecting them. The latter has excitatory connections to a small subset of feature detectors (black).
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Figure 5. The effect of attention bias or prior assumption (Model
2). The prior neuron (number 11) is already active and the three
sensitized neurons fire first (1–3). Firing in the other feature detectors
is suppressed.

Thus, the prior biases the outcome to some subset of possible

concepts in a given context.
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Figure 6. Mean number of spikes in Model 2. The prior neuron is
number 11, the concept, 12 and the inhibitory interneuron, 13.

IV. DISCUSSION

The conjecture that it is possible to reduce the spikes gen-

erated by a feature might seem surprising. There is, however,

substantial work demonstrating that a single spike per neuron

may be enough for pattern recognition. Thorpe et al. [26]

discovered that people can make very rapid decisions on
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whether pictures contain animals – so rapid that they are likely

to be able to use only a single spike along the path from retina

to associative cortex. Subsequent computational models have

demonstrated the feasibility of the single-spike model.

The information overload argument for detail suppression

suffers from a lack of understanding of what the brain can

actually do on a large scale. We know something about

the capacity of simple neural networks, such as the number

of patterns storable in a Hopfield network or the Vapnik-

Chervonenkis Dimension of feedfoward networks. But on the

scale of the cortex, we have only the most rudimentary of

measures.

Darwin [27] famously remarked: to suppose that the eye

[...] could have been formed by natural selection, seems, I

freely confess, absurd in the highest degree. A century later,

Nillson and Pelger [28] showed that evolving an eye was

actually relatively easy. By the same token, without a very

good model of the computational limits of the brain, the

information-overload argument is hard to substantiate.

On the other hand, people are good at blocking out stimuli.

The noise of a busy road, the drone of the engines in an aircraft

cabin, the buzz of other speakers in a cocktail party – all

demonstrate our remarkable capacity to shut out interference

when we so desire. But this blocking is reversible and we can

turn our attention to the distractions themselves. Koechlin [29]

has shown that the pre-frontal cortex can select one context

and block others when choosing an action.

The blocking of sensory detail seems to be hardwired and

is not switchable. To turn off this inhibition would require

additional circuits to turn off conceptual information. In gen-

eral, such circuits do not seem to have evolved, and external

techniques such as TMS are required for their inhibition. This

would make sense: strategies to save energy would be likely

to have evolved much earlier than the expansion of the cortex

and its sophisticated filters and control mechanisms.
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