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Abstract- In this paper, we propose a generalization of the well-
known regression analysis to fulfill supervised classification 
aiming to produce a learning model which best separates the 
class members of a labeled training set. The class boundaries 
are given by a separation surface which is represented by the 
level set of a model function. The separation boundary is 
defined by the respective equation. The model is represented 
by mathematical formulas and composed of an optimum set of 
expressions of a given superset. We show that this property 
gives human experts additional insight in the application 
domain. Furthermore, the representation in terms of 
mathematical formulas (e.g., the analytical model and its first 
and second derivative) adds additional value to the classifier 
and enables to answer questions, which other classifier 
approaches cannot. The symbolic representation of the models 
enables an interpretation by human experts. 

Keywords-Classification; Symbolic Regression; Knowledge 
Management; Data Mining; Pattern Recognition. 

I.  INTRODUCTION  

Supervised classification algorithms aim at assigning a 
class label for each input example. Given a training dataset 
of the form ),( ii yx , where n

ix  is the ith example and 

 1,1 iy  is the ith class label in a binary classification 

task. A model  is learned, so that 
ii yx )( for new unseen 

examples. In fact, it is an optimization task and the learning 
process is mainly data driven. It results in an adaptation of 
the model to reproduce the data with as few errors as 
possible. Several algorithms have been proposed to solve this 
task and the result of the learning process is an internal 
knowledge model .  

There are basically two ways to represent the knowledge 
of model . The first approach includes algorithms like 
Naïve Bayes Classifiers, Hidden Markov Models or Belief 
Networks [1]. The main idea is to represent it as probability 
distribution. The classification boundary is the intersection of 
the posterior probabilities in Bayes decision theory.  

The other approach for representing the knowledge is to 
determine a surface in the feature space which separates the 
different classes of the training data as good as possible. The 
decision surface is represented by parameterized functions 
which can be the sum of weighted base functions of one 
function class. Examples include the logistic functions and 

radial basis functions, which can be used in Neural Networks 
and Support Vector Machines [1].  

It is important to point out that the base functions are 
closely linked to the used classifiers. Our approach further 
refines this idea (see Sections II and III). Again, the decision 
surface is determined by a level surface of a model function. 
But, in this case, the function is composed of arbitrary 
mathematical symbols, forming a valid expression of a 
parameterized function. This approach allows the human 
users of the system to control the structure and complexity of 
the solutions.  

Following this idea, we try to find solutions which are as 
short (and understandable) as possible. Additionally, the 
selected solutions should model the dataset as good as 
possible. Clearly, this is a contradiction and of the nature of 
multiobjective decision making. Therefore, we select all 
good compromises of the pareto front [4] and sort them by 
complexity. This approach extends the concept presented in 
[11] and helps human experts to choose the best 
compromise. Standard classification approaches (e.g., Neural 
Networks) in which the structure of the base functions is 
predefined are not able to reduce their structural complexity. 
In most nontrivial applications they are not understandable to 
the human expert and the represented knowledge can 
therefore not be refined and reused for other purposes [2]. 

There are many different ways to further subdivide this 
class of learning algorithms (e.g., greedy and lazy, inductive 
and deductive [5]).  In this paper we focus on the symbolic 
and subsymbolic paradigm (see [2][3] for more details) and 
its consequences for the reusability of the model and the 
inherent learned knowledge. This subdivision separates the 
approaches with symbolic representations in which the 
knowledge of model  is characterized by explicit symbols, 
whereas subsymbolic are associated with continuous 
representations. One of the main disadvantages of 
subsymbolic classifiers (e.g., Neural Network or SVM) is 
that the class of classifiers includes rather the properties of a 
black box and the learned model cannot be interpreted or 
reformulated.  

The main advantages of our approach (see Table I) are 
determined by the inherent nature of mathematical formulas 
and there are many rules to reformulate, simplify and derive 
additional information from them (e.g., first and second 
derivative). In fact, reformulating mathematical formulas is 
one of the most important areas of mathematics. For the 
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black box character of the subsymbolic learning algorithms 
such rules simply do not exist.  

The remaining part of this paper is arranged as follows. 
In Section II, the proposed Symbolic Regression Algorithm 
is presented. Section III summarizes our approach and shows 
how to generalize the regression task to classification. 
Furthermore, the main advantages of the approach are briefly 
shown. Section IV explains some of our experiments and 
Section V concludes. 

II. BACKGROUND AND RELATED WORK 

A. Symbolic vs. Subymbolic Representation 

As Smolensky [3] noted, the term subsymbolic paradigm 
is intended to suggest symbolic representations that are built 
out of many smaller constitutes: “Entities that are typically 
represented in the symbolic paradigm by symbols are 
typically represented in the subsymbolic paradigm by a 
large number of subsymbols” (p.3). From this point of view 
the syntactic role of subsymbols can be described that 
subsymbols participate in numerical computation. In 
contrast operations in the symbolic paradigm that consist of 
a single discrete operation are often achieved in the 
subsymbolic paradigm as the result of a large number of 
much finer-grained numerical operations. One well known 
problem with subsymbolic networks which have undergone 
training is that they are extremely difficult to interpret and 
analyze. In [2], it is argued that it is the inexplicable nature 
of mature networks.  
 

B. Pareto Front 

In this subsection we discuss the Pareto Front or Pareto 
Set in multiobjective decision making [4]. This area of 
research has a strong impact on machine learning and data 
mining algorithms.  

Many problems in the design of complex systems are 
formulated as optimization problems, where design choices 
are encoded as valuations of decision variables and the 
relative merits of each choice are expressed via a utility or 
cost function over the decision variables.  

In most real-life optimization situations, however, the 
cost function is multidimensional. For example, a car can be 
evaluated according to its cost, size, fuel consumption, 
storage room, and a configuration s which is better than s’ 
according to one criteria, can be worse according to another. 
Consequently, there is no unique optimal solution but rather 
a set of efficient solutions, also known as pareto solutions, 
characterized by the fact that their cost cannot be improved 
in one dimension without being worsened in another. In 
machine learning algorithms the competing criteria are the 
prediction accuracy and the size of the learning model.  

The set of all Pareto solutions, the Pareto front, 
represents the problem trade-offs, and being able to sample 
this set in a representative manner is a very useful aid in 
decision making.  

In other words the solutions are ordered by complexity. 
Through the symbolic representation the human expert is 
able to interpret the solutions of the pareto front (see section 
IV c).  

 

C. Classical Regression Analysis and Symbolic Regression  

Regression analysis [7] is one of the basic tools of 
scientific investigation enabling identification of functional 
relationship between independent and dependent variables. 
The general task of regression analysis is defined as 
identification of a functional relationship between the 
independent variables x = [x1, x2, … , xn] and dependent 
variables y = [y1, y2, . . . , ym], where n is a number of 
independent variables in each observation and m is a number 
of dependent variables.  

The task is often reduced from an identification of a 
functional relationship f to an identification of the parameter 
values of a predefined (e.g., linear) function.  That means 
that the structure of the function is predefined by a human 
expert and only the free parameters are adjusted.  From this 
point of view Symbolic Regression goes much further. 

Like other statistical and machine learning regression 
techniques Symbolic Regression also tries to fit observed 
experimental data. But unlike the well-known regression 
techniques in statistics and machine learning, Symbolic 
Regression is used to identify an analytical mathematical 
description and it has more degrees of freedom in building it. 
A set of predefined (basic) operators is defined (e.g., add, 
multiply, sin, cos) and the algorithm is mostly free in 
concatenating them. In contrast to the classical regression 
approaches which optimize the parameters of a predefined 
structure, here also the structure of the function is free and 
the algorithm both optimizes the parameters and the structure 
of the base functions. 

There are different ways to represent the solutions in 
Symbolic Regression. For example, informal and formal 
grammars have been used in Genetic Programming to 
enhance the representation and the efficiency of a number of 
applications including Symbolic Regression [8]. 

Since Symbolic Regression operates on discrete 
representations of mathematical formulas, non-standard 
optimization methods are needed to fit the data. The main 
idea of the algorithm is to focus the search on promising 
areas of the target space while abandoning unpromising 
solutions (see [4][9] for more details). In order to achieve 
this, the Symbolic Regression algorithm uses the main 
mechanisms of Genetic and Evolutionary Algorithms. In 
particular, these are mutation, crossover and selection [9] 
which are applied to an algebraic mathematical 
representation.  

The representation is encoded in a tree [9] (see Figure 1).  
Both the parameters and the form of the equation are subject 
to search in the target space of all possible mathematical 
expressions of the tree. The operations are nodes in the tree 
(Figure 1 represents the formula 6x+2) and can be 
mathematical operations such as additions (add), 
multiplications (mul), abs, exp and others. The terminal 
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values of the tree consist of the function's input variables and 
real numbers. The input variables are replaced by the values 
of the training dataset.  

 
 

 
Figure 1.  Tree representation of the equation 6x+2. 

 
In Symbolic Regression, many initially random symbolic 

equations compete to model experimental data in the most 
promising way. Promising are those solutions which are a 
good compromise between correct prediction quality of the 
experimental data and the length of the symbolic complexity.  

Mutation in a symbolic expression can change the 
mathematical type of formula in different ways. For 
example, a div is changed to an add, the arguments of an 
operation are replaced (e.g., change 2*x to 3*x), an operation 
is deleted (e.g., change 2*x+1 to 2*x), or an operation is 
added (e.g., change 2*x to 2*x+1). 

The fitness objective in Symbolic Regression, like in 
other machine learning and data mining mechanisms, is to 
minimize the regression error on the training set. After an 
equation reaches a desired quality level of accuracy, the 
algorithm returns the best equation or a set of good solutions 
(the pareto front). In many cases the solution reflects the 
underlying principles of the observed system. 
  
  

III. PROPOSED METHOD  

This section explains our knowledge acquisition 
workflow (see Figure 2). The core of the workflow is 
structured in 4 steps.  

1. The human expert defines the set of base functions. 
The functions should be adapted to the domain 
problem. For example many geometrical problems 
are much easier to solve with trigonometric base 
functions. 

2. The second step in the workflow is the main 
optimization process (see [12], section II c. and III a. 
of this paper for more details). Symbolic Regression 
is used to solve this task. It should be noted, 
however, that other optimization algorithms which 
can handle discrete black-box optimization can be 
used for this task. 

3. A human expert can interpret and reformulate the 
solutions of the pareto front (see section IV b.).  

4. The knowledge can be transferred to other domains. 
 

 

 

 
Figure 2.  The knowlede acquisition workflow. 

A. From Regression to Classification 

In this subsection the symbolic regression algorithm is 
generalized to a symbolic regression classification.   

First, an activation function is defined. In our approach it 

is a step function which is defined as 
0

0

0

1
)(







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z

z

iff

iff
z . 

 
Given is a training set of N feature vectors  N

iix 1
and 

assigned class label N

iiy 1 , ]1,0[iy .  The main challenge 

and computer time consuming task is to find a function f 
which transforms the input space in the way that 

yxf


 ))((  with as few errors as possible. In other words, 
a function )(xf


is sought with 0)( xf


separating the areas 

of the feature space, where the vectors of the different 
classes are located. The zero-crossing 0)( xf


therefore 

defines the decision surface. So far, the approach is 
Perceptron-like [6]. Instead of replacing the step-functions 
by continuous and differentiable base functions to allow cost 
function optimization, Symbolic Regression is used to 

optimize the cost function 



N

i
ii yxfJ

1

2))]([( and 

therefore to find )(xf


. 
The main advantage of this approach is due to the fact 

that complexity and interpretability of the solution can be 
controlled by the user by the set of allowed operations and 
by selecting the appropriate complexity by means of the 
pareto front. Further approach advantages (see the next 
subsection) are consequences of this property.  
 

B. Advantages 

In this subsection we summarize the additional 
advantages of the proposed approach. It should be noted that 
all mathematical reformulations of the classifier do not 
change its behavior in classification.  

To be understandable to human experts our approach 
tries to find solutions which are as simple as possible. The 
pareto front [4] sorts the solutions by complexity and 
prediction quality.  

One of the main advantages is that this approach enables 
to calculate the first derivative of the classifier. One 
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scenario could be in engineering technologies or medical 
systems.  

TABLE I.  ADVANTAGES 

 

For example it could be the task to learn when a 
workpiece is damaged or when there is a risk of an illness. 
The general learning approaches enable only to predict the 
class (e.g., defect or no defect). With the first derivative 
which can be analytically calculated by our approach we can 
also say which attributes of the classifier should be changed 
(and in which direction) to leave the undesired class as soon 
as possible. 

IV. EXPERIMENTS AND RESULTS  

 
This section discusses and demonstrates some of the 

conducted experiments. First we show two experiments 
based on artificial datasets while the third described 
experiment is based on a real-word dataset.  

A. First Experiment 

 
Figure 3.  First dataset. 

Figure 3 shows the data of a two class learning task 
in a two-dimensional plot. The first class is represented by 
the circles and the second by the triangles. The zero-
crossing 0)( xf


 decision boundary of the different classes 

of formula 1 (calculated by our Symbolic Regression 
algorithm) is displayed in Figures 3 and 4 by the parabola. 
In order to find interpretable formulas we restricted the 
search on using add, sub, mul and all real numbers as 
operators. 

 
(1) 

As diskussed in Section III, it is easy for a human 
expert to interprete this solution. It is a representation of a 
ellipse. With this knowledge the user can conlude much 
more about the domain. The additional knowledge includes 
conclusions about the decision area. Based on their high 
complexity black box machine learning algorithms usually 
give no additional insight into its bahavior. 

 

 
Figure 4.  The tranformation of the feature space.  

As a result of the interpretable analytical solution 
(formula 1) we know that there is only one decision 
boundary (the zero-crossing). This knowledge is essential 
for some domains (application scenarios can include 
medical or other critical domains) which require robust 
classifiers. This robustness includes predictable behaviour to 
unknown datasets which include so far uncovered areas of 
the feature space.  
 

 

B. Second Experiment 
!  

The second experiment is based on the well-known 
spiral dataset [10][12]. The problem to distinguishing two 
intertwined spirals is a non-trivial one. Figure 5 depicts the 
970 patterns that form the two intertwined spirals. These 
patterns were provided in [10].  

This experiment is an example of the way in which 
additional human expert knowledge can improve the quality 
of the found solutions (see section III). For a human expert 
it is obvious that the problem is periodic. To find good and 
short models it is therefore essential to add periodic and 
trigonometric base functions. Therefore, we allowed the 
algorithm to use additions (add), substractions (sub), 
divisions (div), multiplications (mul), sin, cos and all real 
numbers. Several correct problem solving solutions had 
been found by our system for this classifictaion problem. 
One of them is formula (2) (the numbers in the formula are 
rounded using 3 fractional digits) which is able to classify 
the spiral dataset without an error and figure 6 shows the 
three-dimensional plot of the function. To the best of our 
knowledge it is one of the shortest known solutions to solve 
this classification tasks. 
 

Can be interpreted by human experts 
 

Can be reused in other domains 

Knowledge Base 

Rules to simplify and reformulate. The reformulations do 
not change its bahaviour.  

Analytical Boundary Detection  

Analytical Gradient Calculation  

Blocks of analytical expert knowledge can be used 

 x0.672694 - y - x- xy 1.63312 +y  + 1.54516y)f(x, 22
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Figure 5.  The spiral dataset. 

 
 
 

(2) 
 
 
 

 
Figure 6.  The three-dimensional plot of function 3. 

C. Real Life Dataset – Haberman’s Survival Data Set 

The Habermans’s Survival Dataset dataset contains 
cases from a medical study that was conducted between 
1958 and 1970 at the University of Chicago's Billings 
Hospital on the survival of patients who had undergone 
breast cancer surgery [13][14][15][16].  
 
It consists of 4 attributes: 
1. Age of patient at time of operation (age). 
2. Patient's year of operation (the year of the operation).  
3. Number of positive axillary nodes detected (nodes).  
4. The survival status (class attribute) . 
 

Table II summarizes the rules of the pareto front of 
one run found by our Symbolic Regression system [12]. The 
formulas are ordered by complexity. It should be mentioned 
that repeating this procedure can result in different 
solutions.  

 
complexity accuracy formula 
13 0.478355 f(age,operation,nodes) = 

operation/(2.05368*age*nodes - 
83.8188*nodes - 154.58) 

9 0.493074 f(age,operation,nodes) = 
nodes*nodes/(age - 43.7473) - 
6.15 

7 0.493074 f(age,operation,nodes) = age - 
71/nodes - 41.35 

5 0.52987 f(age,operation,nodes) = nodes - 
469.83/age 

3 0.544589 f(age,operation,nodes) = nodes - 
8.69 

1 0.596104 f(age,operation,nodes) = 0 

TABLE II.  RULES. 

As a simple showcase to show how additional insights in 
a domain can be gained we consider the formula 
f(age,operation,nodes) = age - 71/nodes - 41.35 (complexity 
7) in Table II. It can be reformulated by age = 71/nodes + 
41.35. A human user knows that the number of axillary 
nodes cannot have negative values. This implies that if the 
age of the patient is less than 41.35 the survival status is  
greater than 50 percent. This simple explample shows, that 
reformulating and adding additional domain knwoledge 
adds further insight. New knowledge is derived and it can be 
used in another context. This procedure is however, only 
possible on the basis of the symbolic and interpretable 
representation of the formulas (see section II). 
 
 

V. CONCLUSIONS AND FUTURE WORK  

     In this paper, we showed a generalization of the well-
known regression task to classification problems. 
Furthermore, the focus was set on understandable solutions 
achieved via Symbolic Regression which enable human 
experts to redefine and reuse the knowledge. Very important 
is that mathematically correct reformulations of the 
classifier formulas do not change its properties. Additional 
knowledge can be derived by reformulation the formulas. 
The power of our approach has been shown in experiments. 
Future work will focus on how the developed techniques 
can be transferred to other domains. Additionally, we will 
cooperate with our industrial partners to put the approaches 
into practice.  
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