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Abstract—Thе paper presents a vision-based inspection 
algorithm for identifying the carbide phase state in 12CrMoV 
steel microstructures. The algorithm uses image preprocessing, 
anisotropic segmentation, discriminant analysis and 
mathematical model for calculating the residual life of the 
material. Based on the state of the carbide phase, the residual 
life can be precisely calculated. By implementing automated 
vision inspection, the subjective evaluation of microstructures 
by experts will be avoided. 

Keywords-vision inspection; discriminant analysis; steel 
microstrucutres;  carbide phase; 12CrMoV steel 

I.  INTRODUCTION 
The properties and the residual life of many types of 

steels (heat-resistant steels, tool steels, high strength steels, 
etc.) depend on the carbide phase, the quantity and the type 
of carbides, their shape and distribution. The state of the 
carbide phase is defined by heat treatment and can be altered 
by the working conditions [1,2]. 

The 12CrMoV steel pipes are used in thermal power 
plants for building superheaters with working temperature of 
up to 580°C.  The microstructure of the metal alters (the 
properties of the material degrade) during exploitation based 
on the working temperature and the applied pressure. Visual 
analysis by experts shows that the carbide state in the 
microstructure is modified during the exploitation of the 
metal. This alteration is the main assessment factor for the 
structural state of the material and standard scales are used. 
The analysis is performed mainly by experts and consists in 
comparing the analyzed and standard scale images. This 
evaluation is subjective, uses a qualitative rather than a 
quantitative method and the results depend on the expert’s 
qualification level, competence and experience [1,3,4]. 

At the moment, there are no integrated systems for 
performing this assessment. Some companies offer partial 
software and hardware solutions. 

The microstructure state and the level of spheroidization 
(carbide phase) are used for calculating the time remaining 
until metal destruction - the residual life of the material. An 
automated carbide phase vision-based inspection algorithm 
(CPVBIA) will minimize the subjective evaluation and will 
help the experts in making their final decision for the 
residual life of the material. The CPVBIA applies 
quantitative assessment methods for achieving a qualitative 
result. 

Fig. 1 shows the structural alterations of the 12CrMoV 
steel and the corresponding level of the spheroidization 
based on the adopted standards [1,3]. 

The photos in Fig. 1 show a metal structure with ferrite 
(bright zones) and carbide phases (dark zones and grains). 
Level 1 corresponds to new material and level 5 corresponds 
to a material with exhausted residual life which must be 
replaced.  

The presented CPVBIA is based only on computer vision 
algorithms without implementing any adaptive technologies 
such as neural networks, genetic algorithms or fuzzy logic. 
The presented approach has 4 general stages, as shown in 
Fig. 2. 

 
Figure 1. Level of spheroidization in 12CrMoV steel microstructures. 
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Figure 2. General stages of the CPVBIA 
 

The first stage contains the entire image preprocessing - 
image resizing, converting to grayscale, filtration, etc. In 
stage 2, vision algorithms are applied for extracting 
crystallite borders and for identifying interesting zones that 
may contain the carbide phase. The result from the second 
stage is an array of 5 different morphological parameters for 
the carbide phase. In stage 3, a mathematical model based on 
morphological parameters is used to define the level of 
spheroidization. The final fourth stage calculates the residual 
life of the material based on external variables (working 
pressure and working time), the calculated carbide phase 
level and mathematical model of linear approximation, 
derived from CTO 1723082.100.005-2008 [1]. 

100 sample images (20 for each level of spheroidization) 
were used in the study. All of these images were analyzed 
and classified by experts. 

II. IMAGE PREPROCESSING (STAGE 1) 
In this study, all input images are acquired by digital 

microscope camera with 2Mpix resolution. If the input image 
is not a grayscale one, then color to grayscale conversion is 
applied.  

The time needed for anisotropic segmentation (cf. III. 
Vision-based feature extraction) depends on the size of the 
input images. Therefore, in order to achieve higher 
performance, the algorithms in stage 1 resize the input image 
to 800x600 pixels if the original image is larger than that. To 
determine the relation between the size of the input image 
and the achieved recognition accuracy, a separate study can 
be conducted. An empirical analysis shows that 800x600 
pixels are sufficient for fast and reliable feature extraction. 

In general, stage 1 has only two steps: 
1. Grayscale conversion 
2. Image resizing 

III. VISION-BASED FEATURE EXTRACTION (STAGE 2) 
The second stage of CPVBIA extracts features from the 

image for further analysis and calculation of the 
spheroidization level. The extracted set of features must 
identify the carbide phase precisely and provide numerical 
data for stage 3. Two general types of features are extracted: 

1. Crystallite borders 
2. Interesting zones possibly containing carbide phase 

blobs 
Fig. 3 shows the analyzed image, the interesting zones 

and the extracted borders of the grains. 

  
a) Analyzed image b) Extracted border 

  
c) Interesting zones d) Merged image 

 
Figure 3. General stages of the CPVBIA 

A. Extracting borders of the crystallites 
To extract the borders of the grains after the image 

preprocessing, an anisotropic segmentation algorithm is 
applied. This segmentation algorithm is based on the method 
proposed by Malik [5]. This algorithm  can  segment  
grayscale  images  in  disjoint  regions  of  coherent  
brightness  and contrast. Contours are treated in the 
intervening contour framework, while texture is analyzed 
using textons.  Each  of  these  cues  has  a  domain  of  
applicability,  so  to  facilitate  cue combination  the  authors  
introduce  a  gating  operator  based  on  the  texturedness  of  
the neighborhood at a pixel. Having obtained a local measure 
of how likely two nearby pixels are to belong to the same 
region, the algorithm uses the spectral graph theoretic 
framework of normalized cuts to find partitions of the image 
into regions of coherent texture and brightness [5]. 

Two parameters are used for the anisotropic filtration - 
the threshold K and the number of iteration (I). Fig. 4 shows 
blob extraction with different values for K and I. 
Experiments show that the best border extraction is achieved 
when K=2 and I=500.  

After the anisotropic segmentation, a connected 
component labeling is applied for blob detection. The 
majority of the borders are connected so the biggest blob is 
extracted. 

 
Figure 4. Border extraction with different values for K and I 
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B. Extracting interesting zones 
To define the interesting zones that may contain the 

carbide phase, a Bradley local threshold algorithm [6] is 
applied to the analyzed image. This algorithm is a simple 
extension of Wellner’s method [6] in which each pixel is 
compared to an average of the surrounding pixels and an 
approximate moving average of the last N pixels seen is 
calculated while traversing the image. If the value of the 
current pixel is T percent lower than the average, then it is 
set to black, otherwise it is set to white [6]. 

In the Bradley’s algorithm, by using the integral image 
(also known as a summed-area table) instead of computing a 
running average of the last S pixels seen, the average of an 
SxS window of pixels centered on each pixel is calculated. 
This is a better average for comparison since it considers 
neighboring pixels on all sides. The average computation is 
accomplished in linear time by using the integral image [7]. 

A previous study shows that this algorithm is suitable for 
extracting the sigma phase and non-metal inclusions in 
austenitic stainless-steel microstructures [8]. The sigma 
phase has similar image features as the carbide phase for 
12CrMoV steel. After the local threshold is applied, the 
resulting image is inverted and hit and miss filter is applied. 
The result is image containing the interesting zones. 

A connected component labeling is used for blob 
detection. These blobs contain the carbide phase, noise in 
the image and other detected particles. To extract the sigma 
phase blobs from the noise, a simple filtration is applied – 
all blobs with height and width of the bounding rectangular 
less than 3 pixels are removed.  

C. Morphological parameters 
The result from stage 2 of the CPVBIA must be a 

numerical set of data describing the carbide phase. This data 
contains the following information for each blob: 

1. Total number of blobs in the image. 
2. Total area of the blobs in the image, measured in 

pixels. 
3. Number of blobs inside the grains and on the 

borders. 
4. Number of blobs on borders. 
5. Average height of the bounding rectangular for all 

blobs, measured in pixels. 
6. Average width of the bounding rectangular for all 

blobs, measured in pixels. 
7. Average area of the blobs in the image. 
8. Average fullness (area of the blob divided by the 

surface of the bounding rectangle) for all blobs in 
the image. 

9. Average aspect (maximum of the height or width of 
the bounding rectangular, divided by the minimum 
of the height or width) for all blobs. 

The numbers of blobs inside the grains and on the 
borders are used for final decision by the expert and are not 
used in stage 3. Fig. 5 shows subset analysis of the 
morphological parameters based on the sample images. 
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Figure 5. Subset analysis of the morphological parameters 

 
The subset analysis shows that there is no only one 

morphological parameter that can classify the blobs. Each of 
the morphological parameters has some overlapping 
between the classes and a combination of two or more 
parameters should be used to correctly distinguish all 5 
classes. 

The summary statistics for the analyzed data is shown in 
Table I. 

TABLE I.  SUMMARY STATISTICS FOR THE MORPHOLOGICAL 
PARAMETERS 

Class Count Average Standard 
Deviation 

Coefficient 
of variation Minimum Maximum 

1 20 517,6 59,5752 11,5099% 445,0 654,0 
2 20 815,1 84,2514 10,3363% 661,0 932,0 
3 20 1278,2 110,928 8,67849% 1079,0 1431,0 
4 20 844,4 87,631 10,3779% 676,0 1056,0 
5 20 1095,5 53,7181 4,90352% 998,0 1182,0 
Total 100 910,16 273,071 30,0025% 445,0 1431,0 
 
Class Range Standardized Skewness Standardized Kurtosis 

1 209,0 1,5628 0,374479 
2 271,0 -0,583478 -0,914204 
3 352,0 -0,170449 -1,11532 
4 380,0 0,821561 0,695647 
5 184,0 0,0152641 -0,919001 
Total 986,0 0,0752718 -1,80172 

IV. CALCULATING THE LEVEL OF SPHEROIDIZATION 
(STAGE 3) 

A discriminant analysis based on the morphological data 
from 100 images was used to calculate the parameters for 
classification functions. Table II contains the classification 
function coefficients. 
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TABLE II.  CLASSIFICATION FUNCTION COEFFICIENTS 

 1 2 3 4 5 
CBlobs 0,0280909 0,00172282 0,0926188 -0,020431 0,0405502 
CArea -9,09884 -9,65378 -11,0216 -10,1958 -11,0222 
CHeight 125,935 128,924 144,078 130,624 139,747 
CWidth  112,696 95,9607 111,781 101,348 116,161 
CFullness 5471,58 5255,23 5589,67 5561,88 5876,29 
CAspect 2508,6 2701,41 2721,89 2861,86 2831,37 
CTotalArea -0,0192403 -0,0185858 -0,0205796 -0,0208617 -0,0218383 
CONST -3382,34 -3338,62 -3729,97 -3632,74 -3909,51 
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(1) 

where 1..5i =  and the level of the spheroidization is 
calculated by (2). 

( )( )iLevel of spheroidization MAX y=  (2) 
The classification with prior probability of 0,2 for all 

levels is shown in Table III. 

TABLE III.  CLASSIFICATION TABLE FOR DISCRIMINANT ANALYSIS 

Actual 
Class 

Group 
Size 

Predicted Class 
1 2 3 4 5 

1 20 20 0 0 0 0 
(100,00%) (  0,00%) (  0,00%) (  0,00%) (  0,00%) 

2 20 0 20 0 0 0 
(  0,00%) (100,00%) (  0,00%) (  0,00%) (  0,00%) 

3 20 0 0 20 0 0 
(  0,00%) (  0,00%) (100,00%) (  0,00%) (  0,00%) 

4 20 0 0 0 19 1 
(  0,00%) (  0,00%) (  0,00%) ( 95,00%) (  5,00%) 

5 20 0 0 0 0 20 
(  0,00%) (  0,00%) (  0,00%) (  0,00%) (100,00%) 

The summary statistics by each group is shown in Table IV. 

TABLE IV.  SUMMARY STATISTICS BY GROUP 

Class 1 2 3 4 5 TOTAL 
COUNTS 20 20 20 20 20 100 

MEANS 
Blobs count 517,6 815,1 1278,2 844,4 1095,5 910,16 
Area 
average 164,978 72,2296 40,8611 13,0502 24,8825 63,2003 

Height 
average 16,0838 10,282 9,30539 5,32764 6,94183 9,58813 

Width 
average 17,3916 11,2668 9,46961 5,7954 7,3866 10,262 

Fullness 
average 0,411401 0,3996 0,4436 0,427 0,4725 0,430824 

Aspect 
average 1,44945 1,46447 1,45718 1,39305 1,42559 1,43795 

Total area 
of blobs 84434,6 58818,1 51339,6 11120,6 27269,2 46596,4 

STD. DEVIATIONS 
Blobs count 59,5752 84,2514 110,928 87,631 53,7181 273,071 
Area 
average 18,5875 8,4545 8,95146 2,00407 1,61811 55,7795 

Height 
average 1,20869 0,630084 0,90664 0,38898 0,2901 3,77871 

Width 
average 1,04933 0,790887 1,04796 0,43678 0,43977 4,11296 

Fullness 
average 0,012544 0,00770 0,00952 0,02654 0,02439 0,0311191 

Aspect 
average 0,035857 0,042157 0,02393 0,02766 0,0278 0,0409149 

Total area 
of blobs 3647,13 8959,74 7020,1 2638,28 2343,12 26143,4 

 

Fig. 6 shows sample plots for some of the discriminant 
functions. 
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Figure 6. Classification functions 

V. CALCULATING THE RESIDUAL LIFE (STAGE 4) 
The residual life is defined by the standard curves 

published in [1] and according to the same metallography 
standard several parameters are used to calculate this value: 

1. Working hours 
2. Nominal pressure 
3. Level of spheroidization 

 As it was already defined, this analysis is subjective and 
highly dependent on the proficiency level of the expert. One 
of the main advantages of CPVBIA is removing the human 
factor. 
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From stage 3 the level of spherodization is calculated. By 
using linear approximation and the exponential equations 
from the nomograms the residual life can be precisely 
calculated avoiding the subjective factor. 

VI. CPVBIA COMPLETE STRUCUTRE 
The complete structure of the CPVBIA algorithm is 

shown in Fig. 7. 
 

 
 

Figure 7. Complete structure of CPVBIA algorithm  

VII. EXPERIMENTS AND RESULTS 
To test and to validate the proposed algorithm, two 

groups of images were used. Group A contains images of 
steel microstructures of 12CrMoV steel for levels 1 to level 
5. Group B contains images with varying contrast, 
microstructures of different steel type, larger optical 
magnification or insufficient preparation of the steel 
specimen. The results expected by experts are high 
classification accuracy within group A and high number of 
wrong classifications in group B. 

All of the images in group A and group B were not used 
in the preliminary discriminant analysis. 

Table V shows the results from the analysis. 

TABLE V.  EXPERIMENTAL DATA 

Test Group Description Count Correctly 
classified 

Wrong 
classification 

Group A 

Level 1 8 8 0 

Level 2 13 10 3 

Level 3 6 5 1 

Level 4 18 18 0 

Level 5 11 10 1 

Group B 

Modified Contrast 4 0 4 

Different steel type 1 0 1 

Bigger optical 
magnification 8 0 8 

Not  well developed 
borders 2 0 2 

Wrong amount of 
ferrite 1 0 1 

 
Fig. 8 shows graphical representation for the 

classification accuracy in group A. 
 

 
 

Figure 8. Recognition accuracy for group A 
 

The classification accuracy for group A is 91.07% and 
0.00% for group B, and these results confirm the 
expectations of experts. According to CTO 1723082.100.005-
2008, the calculation of the carbide phase should be made on 
multiple microstructure images from the same steel exemplar 
[1].  
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Further analysis shows that two of the wrongly classified 
images in group A contain high amount of non-metal 
inclusion in the material, and one image has blurred zones. 
To improve the recognition accuracy, some images with 
small amount of non-metal inclusions can be added to the 
discriminant analysis for each level. 

A detailed analysis of the algorithm parameters for group 
B shows that the error percentage between the correct level 
(classified by an expert) and the wrong level (classified by 
the CPVBIA) varies depending on the image type. Table VI 
contains the average of the classification functions and 

y∆ (see (3)). 

Correct Wrongy y y∆ = −  (3) 

TABLE VI.  EXPERIMENTAL DATA FOR GROUP B 

Description 
Classification function - average Avg  

ΔY y1 y1 y2 y4 y5 

Modified 
contrast 817.23 845.71 855.76 857.18 857.73 -1.41 

Different 
steel type 1025.8 1025.4 1028.1 1035.5 1041.5 -15.70 

Bigger 
optical 
magnification 

896.90 916.76 919.90 928.95 929.74 -7.32 

Poorly 
developed 
borders 

903.46 919.47 921.56 928.56 931.1 -4.24 

Wrong 
amount of 
ferrite 

1109.8 1104.4 1110.4 1117.4 1126.3 -16.50 

 
If the algorithm is used in an application, two of the most 

common problems with the input images will be the different 
contrast and the borders development. The contrast may vary 
due to different light conditions and the camera – Fig. 9a. 
Improper preliminary preparation and polishing of the steel 
specimen can lead to blurred or missing borders of the 
crystallites (see Fig. 9b). 

 

  
a) b) 

Figure 9. Input images with dissimilar contrast (a) and with poorly 
developed borders (b) 

 
The y∆  for these two types of images is low. If the 

images used in the discriminant analysis contain samples 
with varying contrast and poorly developed borders, the 
overall classification accuracy of the algorithm can be 
increased.  

The analysis time for a single test image with the 
proposed algorithm parameters is around 170 seconds and 
depends on the hardware used. The slowest function is the 
anisotropic segmentation. By modifying the K and 
decrementing the number of iterations (cf. III, part A) the 
algorithm will be faster. In this type of analysis the overall 
inspection time is not important, but faster execution will 
allow the usage of the CPVBIA in more complex systems.  

If a faster execution time is required (for application in 
real-time systems), an adaptive approach can be adopted. In 
this case the CPVBIA can be used in parallel for later 
validation or comparison of the results. 

VIII. CONCLUSIONS 
A vision-based inspection algorithm for identifying the 

carbide phase and calculating the level of spheroidization in 
12CrMoV is developed. 

The algorithm is stable and the calculation accuracy for 
the carbide phase is very high – 91.07% (based on 
experiments).  

The algorithm can be used in automated applications for 
carbide phase identification and calculation of the residual 
life of the material. 

The overall execution time is slow due to the large 
number of iterations in the anisotropic segmentation 
function. 

The CPVBIA can be used in parallel with adaptive 
approach (neural network) for result comparison. 

Future studies can be performed with high resolution 
images and the algorithm can be tested for real-time 
application. 
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