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Abstract—The sense of time is directly involved in most
of the daily activities of humans and animals. However, the
cognitive mechanisms that support experiencing and processing
time remain unknown, with the assumption of the clock-like
tick accumulation dominating the field. The present work
aims to explore whether temporal cognition may be developed
without the use of clock-like mechanisms. We evolve ordinary
neural network structures that (i) monitor the length of two
time intervals, (ii) compare their durations and (iii) express
different behaviors depending on whether the first or the
second duration was larger. We study the mechanisms self-
organized internally in the network and we compare them
with leading hypothesis in brain science, showing that tick-
accumulation may not be a prerequisite for experiencing and
processing time.
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I. INTRODUCTION

The interaction of humans and animals with the environ-
ment is supported by multiple sensory modalities such as
audition, vision and touch, each one mapped on a specific
region of our brain. Interestingly, our sense of time relies on
radically different working principles breaking the rule of
using a dedicated brain region for processing. Humans and
animals lack “time sensors”, as well as a primary sensory
brain area devoted explicitly to the sense of time [1].

Time experiencing has attracted significant research inter-
est in brain science, with several works considering where
and how time is processed in our brain [2], [3]. An extensive
number of brain areas have been reported to contribute
in time experiencing such as the cerebellum [3], the right
posterior parietal cortex [4], the fronto-striatal circuits [5],
the insular cortex [6] and the medial temporal lobes [7].

There are now two main explanations on how our brain
experiences time [8]. The oldest and most influential ap-
proach assumes the existence of pacemakers producing
tick sequences which are counted by an accumulator. A
modern version of this assumption assumes coincidence
detection circuits to operate as timekeepers [9]. The alter-
native approach assumes that time may be encoded in the
dynamic state of neuron populations that support ordinary
cognitive processes. This implies that our brain does not
need pacemakers or timekeepers to experience the flow of
time. Still, it remains unclear whether such a neural-state-
based mechanism may robustly support the accomplishment
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of behavioral and cognitive tasks.

The present work aims to investigate the reliability of
the latter clock-free approach with respect to a time-based
behavioral task, exploring also the possible benefits that
a cognitive system may gain from adopting such a dy-
namical state approach. To address this issue, we employ
self-organized computational cognitive systems embodied in
artificial agents. Our study focuses on a task that considers
comparing the length of two time intervals. The underlying
task assumes agents capable of experiencing the flow of
time, monitoring and measuring the time elapsed, encoding
the duration of the first interval in working memory and
contrasting the first and second temporal durations, in order
to choose between alternative response activities. To develop
such a capacity, we evolve Continuous Time Recurrent
Neural Networks and we investigate the dynamics self-
organized in the networks in order to reveal the mechanisms
encoding and comparing the two temporal intervals. This is
expected to promote one of the alternative hypothesis of
time processing in the brain. Note that brain scientists have
recently considered embodiment as a key feature for the
emergence of time perception capacity (e.g., [6], [8]), there-
fore making robotic experiments particularly appropriate for
investigating time processing mechanisms.

In the field of artificial intelligence the role of time in
cognition is currently not adequately appreciated [10]. More
than a decade ago, F. Varela discussed the fundamental role
of time flow experiencing in cognition [11], without however
accomplishing to direct scientific interest on artificial time
perception. Existing systems can only superficially consider
time in their cognitive loop. For example, a turn-taking
task with two agents accomplishing to synchronize their
behavior, changing roles periodically is studied in [12].
In another experiment, an artificial cognitive system self-
organizes mechanisms that consider and exploit time, in
order to develop high level cognitive skills such as executive
control [13]. However, to the best of our knowledge, no
artificial cognitive system has been implemented capable to
explicitly process time in order to accomplish a behavioral
task. The present study aims to fill this gap, paving the way
for artifcial agents with human-like time processing capacity
(e.g., perceive synchrony and ordering of events, mentally
travel in the past and future, share with humans temporal
views about the dynamic world).
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In the following sections we first describe the task con-
sider in our study and the method used to design neural
network based cognitive systems. Subsequently, we present
the obtained results and the mechanisms self-organized in
neural networks. Finally, we discuss how our findings may
compare to time-related brain processes and we provide
directions for future work.

II. EXPERIMENTAL SETUP

The present experiment investigates mechanisms capable
of (i) experiencing the flow of time and (ii) comparing
temporal intervals. We have implemented a simulated en-
vironment which involves a two wheeled simulated robotic
agent equipped with 8 uniformly distributed distance and
light sensors. The agent experiences a light cue for two
different intervals A and B. A Continuous Time Recurrent
Neural Network (CTRNN) is used to provide the artificial
agent with cognitive capacity. The CTRNN is evolved to
experience the flow of time, compare the two intervals A and
B, and implement alternative robotic behaviors depending on
whether A or B was longer. Note that the robotic behaviors
considered in our experiments are kept in rather low levels
of complexity in order to direct focus on the mechanisms
supporting the experience and processing of time.

A. Behavioral Task

The experiment starts with a simulated mobile robot
located at the beginning of a corridor environment (see
Figure 1). The artificial agent remains at the initial position
where it experiences the same light cue for two different time
intervals A and B. The agent has to consider and compare
the durations of A and B to decide which one is longer.
Then, in order to successfully complete the task, the agent
has to navigate to the end of the corridor and turn right when
the A interval was longer, or, turn left when the A interval
was shorter (than B).

The temporal structure of the experimental procedure
is illustrated in Figure 2. The trial starts with a short
preparation phase making the internal state of the CTRNN
obtain a non-random initial value before light experience
begins. Just after that, the first light experience is provided
to the agent, which last for a randomly specified number of
simulation steps (in the range [10,100]), corresponding to
the length of the temporal interval A. Subsequently the agent
rests for ten simulation steps and then it experiences light for
a second time, which corresponds to the second time interval
B (that is again randomly specified in the range [10,100]).
Then the agent is provided 20 simulation steps to decide the
response direction. At the end of the wait period the agent is
provided a “go” signal and then it starts navigating to the end
of the corridor turning left or right. We note that we preserve
a minimum distance of 15 simulation steps between the A
and B intervals, to ensure that the agent will be capable of
comparing all randomly generated pairs of A and B.
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Figure 1. Graphical illustration of the experimental setup . The agent
experiences light for two temporal intervals A, B and depending on which
one was longer it has to drive either leftwards, or rightwards.
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Figure 2. The temporal structure of the experiment.

B. CTRNN Model

We use a Continuous Time Recurrent Neural Network
(CTRNN) model to investigate how time experiencing and
processing mechanisms self-organize in neuronal dynamics.
The implementation of the CTRNN is based on the well
known leaky integrator neurons as it is described in pre-
vious studies [14]. Interestingly, in CTRNNs information
is implicitly encoded using internal neurodynamics. Thus,
in our experimental setup, the neuronal state is initialized
only once in the beginning of the trial, and then neuronal
dynamics continue without resetting.

In the present work we use a two-layer neural network
(with full connectivity within and among layers), as shown in
Figure 4(a). The upper layer receiving sensory information
is expected to monitor environment changes self-organizing
a time processing capacity, and additionally implement the
mechanism for comparing A and B. For the purposes of the
present study this layer is considered as the core component
of the CTRNN. The lower part of the network aims to
combine the result of the A and B comparison with the
current sensory input in order to effectively drive the robotic
agent along the corridor.

C. Evolutionary Procedure

We employ a Genetic Algorithm (GA) to explore cog-
nitive dynamics enabling the artificial agent to perceive
the flow of time and additionally compare the length of
the two time intervals A and B. We use a population of
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1000 artificial chromosomes encoding different CTRNN
configurations (their synaptic weights and neural biases).
Each candidate CTRNN solution is tested on eight randomly
initialized versions of the task described in the previous sec-
tion (randomness regards the lengths of A and B intervals).
In the first four tasks, the duration of A was longer than B,
while the opposite relation holds for the last four tasks. The
evaluation of CTRNNs in multiple random tasks has been
shown to significantly improve the validity of the evaluation
metric, while at the same time it increases the robustness
of the evolved cognitive system against difficult exemplar
scenarios.

To evaluate the capacity of the artificial agent in com-
paring the length of temporal intervals A and B, we mark
two different positions in the environment which are used
as goal positions for agent’s behavior, as shown in Figure 1.
Depending on whether A has been actually longer than B or
not, we select the appropriate goal position and we measure
the minimum distance D of the agent’s path from that
goal (i.e., when A>B the agent should approximate Goall,
while when A<B the agent should approximate Goal2).
Additionally, during navigation, we consider the number B
of robot bumps on the walls. Overall, the success of the
agent to accomplish a given task ¢ is estimated as:

100
Si= 55 (M)
By maximizing S;, we aim at minimizing the distance from
the goals producing responses at the correct side of the
corridor, as well as avoid bumping on the walls. Then, the
total fitness of the individual for the combination of eight
randomly initialized tasks is estimated by:

8
fit =] s:
=1

The afore mentioned measures guide the evolution of the
randomly initialized population consisting of 1000 individ-
uals, each one encoding a complete CTRNN configuration.
Real-value encoding is used to map synaptic weights and
neural biases into chromosomes. We have used a standard
GA process with survival of the fittest individual along
consecutive generations. During reproduction, we have used
as a basis the best 30 individuals of a given generation,
which randomly mate with the 70% of the rest individuals
using a single point crossover. Mutation corresponds to the
addition of up to 25% noise, in the parameters encoded to
the chromosome, while each parameter has a probability of
4% to be mutated. In each evolutionary run the randomly
initialized population is evolved for a predefined number of
500 generations.

@)

III. RESULTS

We have evolved CTRNN controllers running eight dif-
ferent GA processes. Five of the evolutionary procedures

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-218-9

Distance

Sense
Light
Sense

Figure 3. The CTRNN used in the present study.
(a) A<B (b) A>B

Figure 4. Parts (a) and (b) correspond to the results of the evolutionary
procedure showing the two different types of responses provided by the
agent when A<B, or A>B.

converged successfully configuring CTRNNs capable of
comparing temporal intervals, accomplishing the behavioral
task described in the previous sections. Interestingly, the re-
sults obtained from the statistically independent evolutionary
procedures exhibit common characteristics, which are dis-
cussed below using as a working example one representative
solution. The performance of the agent in comparing two
time intervals successfully driving to the correct side of the
corridor, is demonstrated in Figure 4 (a) and (b).

Note that the experience of time intervals and the esti-
mation of their length is mainly implemented in the upper
component of the CTRNN. The motor component of the net-
work seems to have no contribution in measuring the length
of time intervals being mainly involved in implementing the
motor response. Therefore, we concentrate on the upper part
of the CTRNN for the rest of our study.

In order to obtain insight in the dynamics self-organized
internally in the CTRNN, we have conducted tests revealing
the memorization and comparison mechanisms. Following
the symbolization [A vs B] to denote the durations of A
and B intervals considered in a particular test case, we have
examined the following exemplar tests with A shorter than
B: [10 vs 25], [20 vs 40], [20 vs 70], [40 vs 60], [80 vs
95] as well as test cases where A is longer than B: [25 vs
10], [40 vs 20], [70 vs 20], [60 vs 40], [95 vs 80]. The
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activation of neurons in the upper part of the CTRNN for
the aforementioned pairs of [A vs B] tests is depicted in
Figure 5. We see that the obtained solution is sufficiently
robust, dealing successfully with the cases of A and B being
both short or both long, as well as with other intermediate
comparisons. In all shown plots we can easily identify the
A and B period that the agent experiences light, followed by
a sinusoidal activation which corresponds to the navigation
of the agent to the end of the corridor turning either left or
right. For example, in the second plot of the first column of
Figure 5 considering [20 vs 40] the agent experiences the
first period of light from step 15 to step 35, then rests for
10 steps, and experiences the second period of light from
step 45 to step 85. In the next 20 steps it has to decide
the direction of the given response, and implements the
underlying response from step 105 until the end of the trial.

Monitoring the Elapsed Time. With a close look into
the dynamics implemented in the upper component of the
CTRNN, we see that three neurons are employed to measure
the length of temporal intervals. This corresponds to the
neurons plotted in red, green and magenta in Figure 5. We
observe that these three neurons start diminish their activities
one after the other as time passes, which suggests that the
agent segments the time flow at bins of approximately 25
simulation steps (see for example the last plot in Figure 5).
This type of segmentation facilitates counting the length of
the experienced light intervals and the aggregation of the
time elapsed. We note that similar time related ramping
activity (in fact, it is an inverse ramp in our model) has
been observed in many brain areas being probably involved
in time processing [15], [16].

Note that measuring the elapsed time for the case of
interval B, is affected by the length of interval A. For
example, compare the way that the 40-steps interval is
experienced in the second plot of Figure 5 (a) and in the
fourth plot of Figure 5 (b). Clearly, the given interval of 40
simulation steps is experienced in two different ways. This
is because the internal state of the network as it is shaped
at the end of A, modulates the experience of B. As it is
explained below, this perceptual adjustment is implemented
in order to facilitate comparison.

Decision Making. In order to obtain insight on how the
CTRNN decides the longest of the two intervals, we conduct
principal component analysis in the neural activity of the
upper level. The activity of the first principal component
(PC1) for the test cases discussed above is illustrated in
Figure 6. Clearly, the longer interval (either A or B) is
the one that implements the lower PC1 values. Note that
the shortest the length of the first interval, the steepest
the decrease of PC1 in the begging of the second interval,
while in contrast when the first interval is long then PCl1
diminishes slowly when B is experienced. This means that
the network memorizes the length of the A period by
undertaking neural states that properly modulate the ways
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the second interval is experienced. In other words, a 20 steps
interval is not the same when it is experienced first or second
in order. This is in agreement to the subjective experience of
time and the modulation of duration perception in humans
by external factors such as attention, or emotions.

Turning back to Figure 5, we observe that the neurons
being responsible for comparing the two temporal intervals
and deciding the direction of robot’s motion are mainly
the ones plotted in red and black. Every time that the
agent concludes “B is longer” the black neuron activity
is high and the red activity low (Figure 5 (a)). However,
when “A is longer” these two neurons do not have enough
time to take extreme high and low values (Figure 5 (b)).
Interestingly, the same neurons hold also an estimate of the
final decision at the intermediate rest period of the agent.
When the first interval is short, then the neurons predict that
a probably longer one will follow decreasing the activity
of the underlying neurons at the beginning of B (see for
example the first and second plot in Figure 5(a)). In contrast
when the agent has experienced a long A, the agent predicts
that the second period will be probably shorter, setting both
neurons to relatively high values at the beginning of B (see
for example the last plot in Figure 5(b)).

Adjustable Duration Comparison. When A is short, it
is easy for the network to compare it with a long B, but it is
difficult to compare it with a short B. To address this issue,
the network adjusts the way B is experienced. In particular, a
short A results into fast neural changes in the early B steps,
magnifying possible differences between a short A and a
short B. See for example neural activities in the first plot of
the Figure 5 (a) where both A and B are short. The other
case of B being long, can be easily handled with clear neural
differences as it is shown in the third plot of Figure 5(a).

In the other extreme case where both A and B are long,
we see that neural changes are slow at the early steps of B
making the network shift focus at a later time, magnifying
the difference between the two intervals when the length of
B approximates the length of A. See for example the last
plot in Figure 5(a) where fast neural changes are observed
mainly at the end of the B interval. The case of A being
long and B short can be easily handled with clear neural
differences, as it is shown in the third plot of Figure 5(b).

Overall, following the above described adjustments, de-
pending on the length of A, the network accomplishes to
direct focus on the moments that are more critical for a
given comparison.

Motion Planning and Action Implementation. The
direction of the motor response is decided by the upper
part of the CTRNN. Note that the main difference in neural
activity between the cases that the agent moves left-wards
or right-wards, is the unfolding of the neuron plotted in blue
(compare the plots shown in Figs 5(a) and 5(b)). We observe
a clear oscillation of the underlying neuron when the agent
drives left, while the activity of the neuron vanishes when
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Figure 5.
(a) and A being longer than B in column (b).

the agent moves right.

IV. DISCUSSION

The present work explores time processing cognitive
mechanisms considering whether they require clock-like
“tick” signals to work. According to our findings, cogni-
tive systems can solve duration comparison tasks without
using any tick-based mechanism. Our model has developed
another time measurement mechanism with an (inverse)
ramp functionality similar to the one observed in the brain
[15], [16]. Despite the fact that the implemented system
adopts oscillation-based internal mechanisms for driving
the robot, the experience of time is based on rate coding
rather than a mixture of oscillations. This contrasts the
neuroscientific assumption arguing that time experiencing
relies on monitoring the neurons oscillating in our brain at
different rates [2].

As it is explained above, the CTRNN model implements
an adjustable way to experience time, which facilitates
duration comparison. This is in agreement with modern ap-
proaches explaining time-experience on the basis of dynamic
neural states [17]. According to our results, experiencing a
given time interval is not accomplished in a universal, flat
way and is not always the same, but it is rather modulated by
the state of the network at the beginning of time experienc-
ing. The present work reveals a beneficial characteristic of
such a flexible time experiencing mechanism which regards
the ability of the network to properly focus on the most
critical moments of a given comparison accomplishing to
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The activity of neurons in the upper level of the CTRNN for several test cases with the duration of interval A being shorter than B in column

solve the task for difficult exemplar cases (i.e., compare A
and B having small duration difference).

V. CONCLUSIONS

The current work investigates possible mechanisms for
time perception in cognitive systems. We show that ordi-
nary neural schemes can self-organize robust mechanisms
for monitoring, representing and comparing two different
temporal intervals developing at the same time biologically
reliable characteristics. Our findings suggest (i) that pace-
makers is not the only possible solution for experiencing
and processing time, and (ii) that adaptive time perception
may be beneficial for the functionality of the overall sys-
tem enabling to direct attention on the most critical time
moments.

The current work may serve as a basis for more so-
phisticated computational models developing the full extent
of time processing skills. In the near future we intend to
extend the implemented model in the direction of ordering
perception, and time-based recall.

Interestingly, time processing models may be also embod-
ied in robotic systems to improve their cognitive capacities.
Due to the central role of time in a range of different
modalities, such as experience encoding and learning, the
use of tenses in natural language, long term action planning,
etc., the implementation of artificial agents that perceive and
process temporal information has a great potential towards
the seamless integration of robots in human societies.
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