
BPMN Requirements Specification as Narrative

Sabah Al-Fedaghi
Computer Engineering Department

Kuwait University
Kuwait

sabah@alfedaghi.com

Abstract—The first two phases of the software development
process include a requirements analysis stage that demands
conceptualization of a “real world domain” and the design
stage of the software product. UML-based diagrams are
typically used to model systems and make them readable. In
this paper we view conceptualization of a piece of reality
related to a software system as analogous to a narrative or
script created to describe a sequence of events. As an
application area, we concentrate on activity diagrams used in
BPMN. Examination of typical BPMN representation shows
that the resultant picture is fragmented into conceptual gaps
and discontinuities. Based on such a perspective, the focus is on
maintaining continuity across parts and along the production
process of software. To preserve continuity, we propose using
the notion of flow as an initial foundation for the
conceptualization process.

Keywords-Activity diagram, BPMN, UML, conceptual model,
narrative

I. INTRODUCTION AND MOTIVATION

An information system (IS) should reflect some part of
reality and its events. Consequently, building an IS begins by
determining requirements as part of a real-world domain.
The resulting conceptual picture serves as a guide for the
subsequent information system design phase, including a
description of the software system under development.
According to Peylo [6],

Requirements engineering is a central part of software
projects. It is assumed that two thirds of all errors in
software projects are caused by forgotten requirements
or mutual misunderstandings in the requirement
gathering process. Due to the inherent structure of
project planning and the project management process, it
is very unlikely that this problem will be solved unless
the process itself is changed or we develop tools that
possess some intelligence to facilitate the assessment of
requirements

Object-oriented methods and languages (e.g., UML) are
typically used to describe a software system. Researchers
have examined and proposed extending the use of object-
oriented software design languages such as UML to apply
them at the conceptual level (e.g., [7]). According to

Evermann [6], “UML is suitable for conceptual modelling
but the modeller must take special care not to confuse
software aspects with aspects of the real world being
modelled.”

In this paper, we concentrate on a specific UML
structure, activity diagrams, as applied as a conceptualization
tool in BPMN. UML activity diagrams are described as the
“flow charts” of object-oriented methodology. The problem
with extending object-oriented models and languages is “that
such languages [e.g., UML] possess no real-world business
or organizational meaning; i.e., it is unclear what the
constructs of such languages mean in terms of the business”
[6]. The object-oriented IS design domain deals with objects
and attributes, while the real-world domain deals with things
and properties. According to Storrle and Hausmann [9], in
UML, “activity diagrams have always been poorly
integrated, lacked expressiveness, and did not have an
adequate semantics in UML.” With the development of
UML 2.0, “several new concepts and notations have been
introduced, e.g., exceptions, collection values, streams,
loops, and so on” [9].

This paper proposes an alternative approach to specify
system requirements. The approach analyzes the relationship
between two types of conceptualizations—technical
conceptualization and artistic conceptualization—for the
purpose of focusing on a main feature of conceptualization:
continuity.

II. CONCEPTUALIZATION

We view conceptualization as of two types: functional
and artistic. Functional conceptualization is used for the
purpose of representing a piece of reality to be used in
building an information system. The resulting artifacts are
meant to represent functional requirements. Take for
example a UML use case, which describes an interaction as a
sequence of single steps and events to achieve a specific
goal. In this context, there are several representation
schemes.

The meaning (or semantics) of the use case is not
represented by the well defined building blocks of the
formalism …, but shall constitute itself (helped by
various annotations) in the mind of the reader. This
approach is quite common but prone to
misunderstandings. [6]

68

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

Furthermore, Peylo [6] states that

Due to their seeming clarity and formality they are
often over-estimated. Nevertheless, they are deceptive
with respect to their precision and expressiveness. Their
main limitations are:
1. Weak and not well defined semantics of relations.
2. The expressiveness of graphical representation
schemes is limited per se to a fragment of first order
logic
3. Generally, it is not possible to decide by the study of
a use case whether the process flow may lead to the
desired result (i.e. the system output may be achieved,
given the set of input).

Artistic conceptualization is also generated for the purpose
of representing a part of reality. It can be exemplified by
narratives, scripts of movies, and comic books.

Both types of conceptualization are strongly founded on
language. Their orientations are different, as shown in Fig. 1.
Artistic conceptualization captures reality but seeks to
release its content in an expanded universe of meanings and
interpretations. Functional conceptualization seeks precision
in releasing its content by narrowing its meaning and
interpretation. An important aspect of both types of
conceptualization is continuity, as described in the next
section.

A notion related to artistic conceptualization is that of
“operation concept,” which includes concept analysis.
Concept analysis is an overall “system development process”
for analyzing an operational environment and characterizes a
proposed system from the user’s perspective.

[An operation concept] document should, in contrast to
a requirements specification, be written in narrative
prose, using the language and terminology of the users’
application domain. It should be organized so as to tell
a story, and should make use of visual forms (diagrams,
illustrations, graphs, etc.) whenever possible [5].

However, this does not focus on the notion of flow (a
fundamental concept in our approach that will described
later) even through it recommends “scenarios [that] are
specified by recording, in a step-by-step manner, the
sequences of actions and interactions between a user and the
system” [5].

III. CONTINUITY

In a system, continuity indicates uninterrupted
connection and succession. In the production of film and
television, a script supervisor is concerned with maintaining
continuity across shots and along the production process. In
comic books, continuity means contiguous events “in the
same universe.”

In business, the notion of continuity/security arises when

planning for permanence of critical business processes in
case of security failure. It is a notion related to survivability,
load balancing, and redundancy.

In beginning mathematics a function is continuous if we
can draw its graph without taking the pencil off the page. A
discontinuity is a point where a function is not continuous.

Ivic [4] defines discontinuity as “the lack of … logical
sequence.” According to Webster’s New World College
Dictionary [10], discontinuity means “a lack of continuity or
logical sequence, or a gap or a break… this could mean a
break in the chronological sequence, or a very fragmented
structure in poetry.” Discontinuity is an undesirable feature
in literature. “Discontinuity in a novel interrupts the flow of
the story, ...” [10, italics added].

In architectural design, continuity is “the measurement of
the completeness of the sidewalk system with avoidance of
gaps… the pedestrian sidewalk appears as a single entity
within a major activity area or public open space” [11, italics
added].

In a software system, discontinuity may be a positive
feature for security. “System discontinuity emphasizes
security over compatibility by removing those constructs in
our system software which lead to security holes in
applications” [12]. Such strategy removes parts of the
interfaces “both of programming languages and operating
systems which have proven to engender the greatest number
of security holes.” Such a proposal assumes completeness.
In analogy, to secure a physical territory, subterritories can
be disconnected; however, the interior of each piece of
territory should be completely known (e.g., surveyed).

A conceptualization of reality needs a type of continuity:
logically sequential progression. This can be thought of as
reflecting the Aristotelian notion of organic unity, where
each component of a task is a necessary part of a whole.

Continuity is a necessary feature for designers. After
producing a conceptual representation, designers will seek
connections through temporal continuity, causality, or some
commonality such as presence in the same sphere.

In general, the notion of continuity is a phenomenon that
involves a gradual transition without abrupt changes or
discontinuities. We view it as the property of connectedness
of conceptual space of events. When a conceptualization
seems fragmentary, we look at the represented world. Is
there an underlying represented "reality" that can be pieced
together? Are there missing entities or connections? Are

Figure 1. Orientations of artistic and functional conceptualizations.

Fu
nc

tio
na

l
co

nc
ep

tu
al

iz
at

io
n

Human
imagination

Reality

Information
processing

A
rtistic

conceptualization

69

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

there discontinuities between spheres? Do conceptual parts
have gaps that can't be assertively filled?

We show the importance of continuity through
scrutinizing BPMN activity diagramming. To provide
opportunities to contrast continuous and discontinuous
representations, we next review a flow-based
conceptualization that can be used for modeling activities.

IV. FLOWTHING MODEL (FM)

A flow model is a uniform method for representing
things that “flow,” i.e., things that are exchanged, processed,
created, transferred, and communicated [1, 2]. “Things that
flow”, called flowthings, include information, materials (e.g.,
in manufacturing), and money. To simplify this review of
FM, we introduce the model in terms of information flow.
Information occurs in five states: transferred, received,
processed, created, and released, as illustrated in Fig. 2.
Here, we view a "state of information" in the sense of
properties; for example, water occurs in nature in the states
of liquid, solid, and gas.

Fig. 2 also represents a transition graph, called a
flowsystem, with five information states and arrows
representing flows among these states. Information can also
be stored, copied, destroyed, used, etc., but these are
secondary states of information in any of the five generic
states. In Fig. 2, flows are denoted by solid arrows. Flows
may trigger other types of flow, denoted by dashed arrows,
as will be discussed.

The environment in which information exists is called its
sphere (e.g., computer, human mind, organization
information system, department information system). The
flowsystem is reusable because a copy of it is assigned to
each entity (e.g., software system, vendor, and user). An
entity may have multiple flowsystems, each with its own
flowsystem. It is possible to have flowsystems of different
flowthings: requests, invoices, plans, and actions. These are,
like information, flowthings that can be received, processed,
created, released, and transferred.

A flowsystem may not necessarily include all states, for
example, conceptualization of a physical airport can model
the flow of passengers: arriving (received), processed (e.g.,
passports examined), released (waiting to board), and
transferred (to planes); however, airports do not create
passengers (ignoring the possibility of an emergency where a
baby is born in the airport). In this case, the flowsystem of
the airport includes only passenger states of received
(arrival), processed (e.g., passports), released (waiting for
boarding), and transferred (on the plane).

As we mentioned previously, we view a system as the
environment in which information exists, called its sphere. A
system is also viewed as a complex of flowsystems.

The states shown in Fig. 2 are exclusive in the sense that
if information is in one state, it is not in any of the other four
states. Consider a piece of information x in the possession of
a hospital. Then, x is in the possession of the hospital and
can be in only one of the following states:

1. x has just been collected (received) from some source,
e.g., patient, friend, or agency, and stored in the hospital
record waiting to be used. It is received (row) information
that has not been processed by the hospital.
2. x has been processed in some way, converted to another
form (e.g., digital), translated, compressed, etc. In addition,
it may be stored in the hospital information system as
processed data waiting for some use.
3. x has actually been created in the hospital as the result of
doctors’ diagnoses, lab tests, produced by processing current
information (e.g., data mining), and so forth. Thus, x is in
the possession of the hospital as created data to be used.

If a piece of information is copied, then the new piece of
information is a different instance of a flowthing (e.g., one is
stored, and one is transferred).

4. x is being released from the hospital information sphere.
It is designated as released information ready for transfer
(e.g., sent via DHL). In an analogy of a factory
environment, x would represent materials designated as
ready to ship outside the factory. They may actually be
stored for some period waiting to be transported;
nevertheless, their designation as “for export” keeps them in
such a state.

5. x is in a transferred state, i.e., it is being transferred
between two information spheres. It has left the released
state and will enter the received state, where it will become
received information in the new information sphere.

It is not possible for processed information to directly
become received information in the same flowsystem.
Processed information can become received information in
another flowsystem by first becoming released information,
then transferred information, in order to arrive at (be
received by) another flowsystem.

Processed
information

Received
information

Figure 2. State transition diagram of FM with possible triggering
mechanism.

Released information

Created
information

Transferred
information

70

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

Consider the seller and buyer information spheres shown
in Fig. 3. Each contains two flowsystems: one for the flow of
orders, and the other for the flow of invoices. In the seller’s
infosphere, processing of an order triggers (circle 3) the
creation of an invoice in the seller’s information sphere, thus
initiating the flow of invoices.

The reflexive arrow of the transfer state shown in Fig. 2
(above) denotes flow from the transfer state of one
flowsystem to the transfer state of another.

In Fig. 3, the Buyer creates an Order that flows by being
released and is then transferred to the Seller. The “transfer
components” of the Buyer and the Seller can be viewed as
their transmission subsystems, while the arrow between them
represents the actual transmission channel.

V. BPMN ACTIVITY DIAGRAM

Business Process Modeling Notation (BPMN) is popular
in some communities of practice and “in some cases may be
locally mandated” [8]. Therefore, it is useful to utilize it as
an area where different activity conceptualizations are
compared.

When developing a business system, it is essential to first
produce a general conceptual description of activities. The
activities pose scenarios that represent the circumstances of
events. The resultant description is a model of overall
activities, subactivities, and connections among them. This
conceptualization liberates designers to produce neutral
specifications not oriented to any actual current methodology
of conducting business. It also represents a common
understanding of system operations shared by technical and
nontechnical individuals involved in the project.

BPMN shows activities within swimlanes, which
represent different performers as nodes in the Business Node
Connection Model. Fig. 4 illustrates the basic form of a
BPMN diagram, in the context of a travel planning activity
[8 - Citizant Corp.]. Fig. 5 shows the corresponding FM
representation. According to Sowell [8],

This all-in-one notation can be very helpful and time-
saving when the architecture in question is an As-Is
architecture, because all the relevant information is
known, and merely needs to be captured. [Italics added]

We claim that the activity diagram shown in Fig. 4
exhibits a fragmented conceptualization of reality. The
workflow description items form a narrative that is created to
describe a sequence of events. Consequently, we go one item
at a time, as follows. We assume that the software designer is
the reader of such a narrative.

Consider the following scenario in Fig. 4.

Travel agent: Research Travel Options
Traveler: Select Itinerary
Travel agent: Make Reservation
Traveler: Submit Payment
Travel agent: Confirm reservation
Traveler: Verify Itinerary

The arrows in the figure seem to indicate control flow. The
semantics involved are as follows:

The travel agent researches travel options,
the traveler selects an itinerary,
the travel agent makes the reservations,
the traveler submits payment,
the travel agent confirms the reservation,
the traveler verifies the itinerary.

Here we see a discontinuity. For example, in the sequence:
[the travel agent confirms the reservation →
the traveler verifies the itinerary] the events seem to jump.

A corresponding scenario with continuity would be as
follows:

The travel agent researches travel options,
the search by the travel agent produces a list of options,
the travel agent sends the list to the traveler,
the traveler selects an itinerary from the list,

Orders

 Created

Released

Transferred

Transferred

Created

Received Released

Processed

Transferred

Received

Transferred Buyer

Seller

Invoices

Figure 3. Order flow triggers invoice flow.

1

2

3

5

4

71

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

Request travel Select
Itinerary

Submit Travel
Details

Make
Reservation

Research
Travel Options

Submit
Payment

Confirm
reservation

Verify
Itinerary

Submit
Reimbursement

Review
Reimbursement

Traveler

Travel
Agent

Approver Review travel
request

Figure 4. A Simple BPMN Diagram [8].

X •

Travel
Request

Reimbursement
Request

 Travel Policy e-Travel

Approver

 Request

Crea

Rele

Tran

Tran

Proc

Response

Creat

Rele

Tran

Tran

Rece

Proc

Travel
Details

Crea

Rele

Tran

Tran

Rece

Rece

Proc Crea

Rele

Tran

Tran

Rece

Figure 5. Flow-based representation of a Simple BPMN Diagram

Rele

Rece
Crea

Reser-
vation

Crea

Request
Payment

Rele

Tran

Tran

Rece

Proc

Payment

Crea

Rele

Trans

Tran

Rece

Crea

Itinerary
list

Tran

Rece

Reimbur-
sement
request

Rele

Tran

Tran

Rece

Proc
(confirm)

Itinerary

Proc

Crea

Rele

Tran

Tran

Rece

Itinerary
(final)

Proc

Proc

Proc
(select)

Crea

Travel
Agent

Traveler

1

72

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

the traveler sends the itinerary to the travel agent,
the travel agent makes the reservation,
the travel agent issues a payment invoice,
the travel agent sends the invoice to the traveler,
the traveler receives the invoice,
the traveler makes payment(e.g., money order)
the traveler sends payment to the travel agent
the travel agent receives payment from the traveler,
the travel agent confirms the reservation,
the travel agent sends the itinerary to the traveler,
the travel agent confirms the reservation, then
the traveler verifies the reservation.

Fig. 5 reflects such continuity. Starting at circle 1, the
travel agent creates an itinerary that flows to the traveler,
which triggers him/her to select a single option (itinerary)
that flows back to the travel agent, who processes it and (1)
makes a reservation, and (2) creates an invoice. The invoice
is sent to the traveler, who makes (creates) payment, which
arrives at the travel agent. The travel agent confirms the
reservation, and sends the final itinerary to the traveler. Upon
receiving the itinerary, the traveler processes it to verify it.

This flow-based description is similar to a comic book,
where a stream of events flows in a continuous fashion.
Flowthings such as requests, lists, and invoices flow like a
ping pong ball between players.

VI. WITH WORKFLOW DESCRIPTION

“Use case” as a modeling tool provides a software-
independent description of the processes to be automated.

The IT team must have descriptions of the business that
allow team members to make informed decisions,
including an unambiguous specification of the business
process that details relevant value and cost factors.
Business use cases are documented via specifications that
consist of both textual workflow descriptions and one or
more Unified Modeling Language (UML) activity
diagrams. [3]

Consider Fig. 6, which provides an example of a business
use case specification [3]. The activity diagram provides a
pictorial representation of the workflow structure described
in the following business use case text. [3] gives the
corresponding workflow description for Fig. 6. For lack of
space, we discuss the first three steps as follows:

• The Customer Sales Interface initializes contact.

• If the Customer Sales Interface determines that initial
opportunity work is complete, then the Customer Sales
Interface sends a proposal request to the Proposal Owner.

• Otherwise the Customer Sales Interface searches for
alternatives. [3]

As stated previously, the workflow description items
form a narrative that describes a sequence of events. We
assume that the software designer is the reader of such a
narrative.

• The Customer Sales Interface (CSI) initializes contact.

From such a description, implicitly (from the name), we
understand that there is a customer. Contact denotes
communication, thus, it seems that the designer would
understand that CSI creates something (e.g., a message) and
then executes the contact. To maintain continuity and
completeness in the initial step, we must explicitly state that
something is created, as follows.

CSI creates an offer and communicates it to customer.

Here we ignore the issue of what type of information is
involved in such a creation.

• If the Customer Sales Interface determines that initial
opportunity work is complete, then the Customer Sales
Interface sends a proposal request to the Proposal Owner
(PO).

This scenario includes missing pieces. How does the
designer understand that the “determination” is the result of
receiving some type of communication from the customer? It
is possible that the designer thinks that embedding some type
of information about communication with a customer is
unnecessary since the determination is based on informal
contact. It is highly improbable that contact with a customer
is non-recorded informal contact. We can rewrite this as
follows.

CSI receives a response from the customer, processes the
response, then If CSI determines that initial opportunity

work is complete, CSI sends a proposal request to the PO.

The whole process can be described as flows of offers,
responses, and requests as partially shown in Fig. 7.

73

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

Notice that a general conceptualization (shown partially

for lack of space) in Fig. 7 reflects a “forest-level” of flows
in the piece of reality being abstracted. There is the flow
originating from CSI to customer, and another flow
originating from customer that may reach PO. The need for
flow has been expressed previously in a discussion of
Peylo’s [6] “flow of action” in scripts, and “flow of the
story” in [11].

Notice also the general level of conceptual mapping in
FM. When designing a city, the designer does not specify at
intersections that green means go and red means stop. These
details (types of processes in FM) come at a lower level of
abstraction. Thus, it is not necessary, in our example, to
specify at this level, that “If the Customer Sales Interface
determines that initial opportunity work is complete, then the
Customer Sales Interface sends a proposal request to the
Proposal Owner.” It is sufficient to indicate at this point that:

Initial contact

Search for alternatives

Send the proposal project
plan to the Quote Owner

Send a proposal request to
the Proposal Owner

Create a proposal project
plan

Determine that
initial opportunity
work is complete

Find an alternative

Proposal request

Proposal project
plan

Prepare a quote

Send the quote to the
Proposal Owner

Quote

Analyze the proposal

Finalize the proposal

Create a delivery project plan

Complete additional
information

Send the proposal to the
Customer Sales Interface.

Proposal

Present the proposal

Obtain the customer decision

Customer Sales Interface (CSI) Proposal Owner (PO) Quote Owner (QO)

Figure 6. Example of a business use case specification (From [3]).

Customer

Customer
Sales

Interface

Process

Receive

Receive

Create

Proposal Owner

Request

Positive
Response

Offer

Figure 7. Non-programming conceptualization of part of
the example.

Create

List

74

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

 - Responses are received from customers, processed, and
according to this process a request is sent to Proposal
Owner.

FM description draws a conceptual topology of flows of
data, leaving the interior of the process (e.g., specification of
decision criteria) to a later stage. Accordingly, the designer
can visualize the total procedure as:

For list of customers
Send an offer
Receive a response
Process the response
According to the results of processing, send/do not send a
request for Proposal Owner

Note that there is no “if” statement in this procedure,
because “if” triggers specification of the criteria for a
decision.

Additionally, going back to the narrative of workflow of
[3], we see the following.

• The Quote Owner (QO) prepares a quote.
• The Quote Owner sends the quote to the Proposal Owner.

Here one wonders why “prepare” is used, instead of “create,”
as used previously by [3]. “Create” is more suitable because
it is a flow-oriented term: QO creates (originates) quotes that
flow to PO.

In Fig. 6, there are odd arrows (dataflow? control flow?)
from a process to an object, such as the arrow from “Send
the proposal project plan” to the “Quote Owner”, and the
arrow from “Send the quote to the Proposal Owner” to “a
quote”.

We stop here reviewing the rest of the workflow and
activity diagram because it is clear at this point that such a
description is “narrative-wise”, is a fragmented
conceptualization that is filled with gaps, and discontinuities.

Finally, we note the uncontrollable use of many verbs:
“initializes”, “determines”, “searches”, “finds”, “sends”,
“prepares”, “creates”, “analyzes, “finalizes”, “completes”,
“presents”, and “obtains”. This style of specifying flow
among processes is a frail feature in any good “conceptual
narrative”. In contrast, FM uses only five flow-oriented
operations: receive, process, create, release, and transfer.

Clearly, we are not introducing a completely new
methodology for specifying requirements; rather we describe
a general approach that emphasizes flow and continuity of
requirements description.

VII. CONCLUSION

This paper introduces the concept that a piece of reality
related to a software system can be conceptualized analogous
to a narrative or script created to describe a sequence of
events. This is demonstrated by applying it to activity
diagrams used in BPMN utilizing flow-based model. The
resultant description maintains continuity across parts and
along the production process of software. Further research
would explore applying the concept to other software
diagramming tools.

REFERENCES
[1] S. Al-Fedaghi, “Conceptualization of business processes,” IEEE

Asia-Pacific Services Computing Conference (IEEE APSCC 2009),
Dec 7-11, 2009, Biopolis, Singapore.

[2] S. Fedaghi, “Scrutinizing UML activity diagrams,” 17th International
Conference on Information Systems Development (ISD2008),
Paphos, Cyprus, August 25-27, pp. 59-67, 2008.

[3] A. Frankl, “Validated requirements from business use cases and the
Rational Unified Process,” IBM, 15 Aug 2007, accessed June, 2010.
http://www.modernanalyst.com/Resources/Articles/tabid/115/articleT
ype/ArticleView/articleId/52/Validated-requirements-from-business-
use-cases-and-the-Rational-Unified-Process.aspx

[4] C. Ivic, “Review of discontinuities: new essays on Renaissance
literature and criticism,” Early Modern Literary Studies 5, 2,
September, 1999, 8.1-6, accessed June 2010.
http://purl.oclc.org/emls/05-2/ivicrev.htm

[5] R. E. Fairley, R. H. Thayer, and P. Bjorke, “The concept of
operations: the bridge from operational requirements to technical
specifications,” Proceedings IEEE International Conference on
Requirements Engineering , 18-21 April 1994, Colorado Springs.

[6] C. Peylo, “On restaurants and requirements: how requirements
engineering may be facilitated by scripts,” The 4th Workshop on
Knowledge Engineering and Software Engineering (KESE 2008),
accessed June, 2010. http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-425/paper7.pdf

[7] J. Evermann, and Y. Wand, “Towards ontologically based semantics
for UML constructs,” In: Kunii, H, Jajodia, S, and Solvberg, A (eds.),
Proceedings of the 20th International Conference on Conceptual
Modeling, pp. 354-367, 2001, Yokohama, Japan.

[8] K. Sowell, “Creating and Presenting Activity Models,” SowellEAC
Blog, Accessed, December, 2009.
http://sowelleac.com/Creating_and_Presenting_Activity_Models.pdf

[9] H. Storrle, and J. H. Hausmann, “Towards a formal semantics of
UML 2.0 activities,” German Software Engineering Conference, pp.
117-128, 2005. http://wwwcs.uni-paderborn.de/cs/ag-
engels/Papers/2005/SE2005-Stoerrle-Hausmann-
ActivityDiagrams.pdf.

[10] ENH241, “American Literature before 1860, Discontinuity,”
Accessed June, 2010. http://enh241.wetpaint.com/

[11] Kansas City, “Walkability Plan. 32. Measuring Walkability,”
Accessed June, 2010, .
http://www.kcmo.org/idc/idcplg?IdcService=GET_FILE&dID=26423
&dDocName=019904

[12] J. A. Solworth, “Robustly secure computer systems: a new security
paradigm of system discontinuity,” Proceedings of the 2007
Workshop on New Security Paradigms, 2007.

75

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

http://www.ibm.com/developerworks/rational/library/aug07/frankl/index.html#author1
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-425/paper7.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-425/paper7.pdf
http://sowelleac.com/Creating_and_Presenting_Activity_Models.pdf
http://wwwcs.uni-paderborn.de/cs/ag-engels/Papers/2005/SE2005-Stoerrle-Hausmann-ActivityDiagrams.pdf
http://wwwcs.uni-paderborn.de/cs/ag-engels/Papers/2005/SE2005-Stoerrle-Hausmann-ActivityDiagrams.pdf
http://wwwcs.uni-paderborn.de/cs/ag-engels/Papers/2005/SE2005-Stoerrle-Hausmann-ActivityDiagrams.pdf
http://www.kcmo.org/idc/idcplg?IdcService=GET_FILE&dID=26423&dDocName=019904
http://www.kcmo.org/idc/idcplg?IdcService=GET_FILE&dID=26423&dDocName=019904

	I. Introduction and motivation
	II. CONCEPTUALIZATION
	III. continuity
	IV. FLOWTHING MODEL (FM)
	V. BPMN ACTIVITY DIAGRAM
	VI. WITH WORKFLOW DESCRIPTION
	VII. CONCLUSION
	References

