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Abstract—In this paper we consider the problem of monitor-
ing an intruder in a setting where the number of opportunities
to conduct surveillance is budgeted. Specifically, we consider
a problem in which we model the state of an intruder in
our system with a Markov chain of finite state space. These
problems are considered in a setting in which we have a hard
limit on the number of times we may view the state. Such
a constraint is natural when considering surveillance where
mobile devices are involved and battery power is at a premium.
We consider the Markov chain together with an associated
metric that measures the distance between any two states. We
develop a policy to optimally (with respect to the specified
metric) keep track of the state of the chain at each time step
over a finite horizon when we may only observe the chain a
limited number of times. The tradeoff captured is the budget
for surveillance versus having a more accurate estimate of the
state; the decision at each time step is whether or not to use
an opportunity to observe the process.

Keywords-monitoring; surveillance; budget; resource alloca-
tion; dynamic programming

I. INTRODUCTION

The importance of monitoring technologies in today’s
world can hardly be overstated. Indeed, there are volumes
dedicated to this field [1] [2]. In recent years, the need for
effective security measures has become especially evident.
Indeed, at present, Microsoft announces almost one hundred
new vulnerabilities each week [3]. Perhaps more alarming
is the fact that government agencies routinely must manage
defenses for network security and are hardly equipped to do
so. This is evidenced by the fact that 10 agencies accounting
for 98% of the Federal budget have been attacked with as
high of a success rate as 64% [4].

This paper is concerned with a mathematical treatment
of these important problems. Specifically, we consider a
scenario in which we model the activities of an intruder
as a state in a Markov chain. We develop the problem of
monitoring the state in a finite-horizon discrete-time setting
where we are only able to make observations a limited
number of times. Such a budget arises naturally in wireless
settings, for example. We present an algorithm for deciding
when to use opportunities to view the process in order to
minimize the surveillance error. This error is accrued at each
time step according to a metric indicating how far from the
true state the estimate was.

A growing literature addresses security from a mathe-
matical perspective, with a range of theoretical tools being
employed for managing threats. In [5], a network dynam-
ically allocates defenses to make the system secure in the
appropriate areas as time progresses. Parallels between the
security problem and queuing theory are drawn upon, where
vulnerabilities are treated as jobs in a backlog. The model
of [6] uses ideas from game theory for intrusion detection
where an attacker and the network administrator are playing
a non-cooperative game. A related problem is addressed in
[7] as well.

More generally, theoretical work in signal estimation
has also been greatly developed [8]. Related works have
considered aspects of decision making with limitations on
the available information. In [9], an estimation problem is
considered in which the received signal may or may not
contain information. Similar issues are studied in [10] but
in a control theoretic context in which the actuator has a non-
zero probability of dropping estimation and control packets.

The unique aspect of our formulation is the nature of
the power limitation. This non-standard constraint was in-
troduced in [11] and developed in other works such as [12].
All of these problems consider finite horizon frameworks
in which decisions are usage limited and hence the ability
to make actions is a resource which must be appropriately
allocated.

In Section II, we begin by introducing the monitoring
problem mathematically. We continue with a derivation of
the optimal policy using dynamic programming and then
present the implementation of the optimal policy. In Section
III, we demonstrate performance using numerical results
and finally, in Section IV, we conclude the paper and offer
directions for future work in this vein.

II. MONITORING

Let us now examine the monitoring/surveillance problem
in greater detail. In what follows, we shall consider the
states of a Markov chain as an abstraction for the position
of an intruder in our system. Such a model is able to
capture several scenarios. In one, we may wish to spatially
monitor the location of an adversary using equipment that
has usage constraints. Another situation is that we can
consider the state of the intruder to be a location in a
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data network. Although many interpretations are possible,
our goal is to be able to track this state with as little
error as possible. We begin by presenting the model in a
mathematical state estimation framework, and then present
the solution structure.

A. Model

Consider a Markov chain M with finite state space S,
transition matrix P and an associated measure d : S ×S →
R. The metric gives a sense of how close states are so that
we can measure the effectiveness of an estimate of the true
state. We assume that the process is known to start at initial
state x0 and we are interested in having an accurate estimate
of the process over a finite horizon k = 1, ..., N − 1. The
decision space is simply u ∈ {0, 1} where 0 corresponds
to no observation being made and 1 corresponds to an
observation being made. When an observation is made, the
state xk of M is perfectly known. Without an observation,
on the other hand, we must form an estimate x̂k for the
state given all observed information thus far. The number of
times observations may be made is limited to M < N .

The cost of making estimate x̂k at time k when the true
state is actually xk is d(xk, x̂k). If d is a metric, we have
the important properties

1. d(x, y) ≥ 0 ∀x, y ∈ S
2. d(x, x) = 0 ∀x ∈ S
3. d(x, y) = d(y, x) ∀x, y ∈ S
4. d(x, z) ≤ d(x, y) + d(x, z) ∀x, y, z ∈ S

At each time k, the state of our system can be represented
by {(r, s, t);xN−t−r;xN−t} where r is the number of time
slots that have passed since the last observation, s is the
number of opportunities remaining to make an observation,
t is the number of time slots remaining in the problem,
xN−t−r is the last observed state of M and xN−t is the
current state. We seek a policy π = {µk}N−1

k=1 such that the
actions uk = µk((r, s, t), xN−t−r) ∈ {0, 1} are chosen to
minimize the cumulative estimation error. The policy π is
admissible if it abides by the additional constraint that the
number of times observations are made is no greater than
M . Denote the class of admissible policies by Π.

We want to find a policy π∗ ∈ Π to minimize

E

{
N−1∑
k=1

d(xk, x̂k)

}
It should be noted that the estimate x̂k depends on the
action uk because if uk = 1 then x̂k = xk and there is
no estimation error, while if uk = 0 then we must make
the best guess of the state that is possible with the known
information.

Deciding on the distance metric is an issue of modeling
and may be specific to the application at hand. We consider
a few alternatives here:

1) Probability of Error: To recover a cost structure that
results in the same penalty regardless of which state is
chosen in error (probability of error criterion), we simply
set the distance metric as

d(x, y) =
{

0 if x = y
1 otherwise

Such a choice maximizes the likelihood of estimating the
correct state.

2) Euclidean distance: We may suppose that states corre-
spond to physical locations - in this case, we may choose to
let the distance d(·, ·) correspond to the Euclidean distance
between states so that best estimates minimize the error as
measured spatially.

B. Dynamic Programming

We use a dynamic programming approach to obtain an
optimal policy [13]. Before presenting our algorithm for
determining π∗, however, we first develop some important
notation. In order to proceed, we must begin by determining
several quantities offline. Let d(w) be the vector of distances
of each state from w. Then we proceed by cataloging the
quantities

w∗r(x) = argmin
w∈S

∑
y∈S

P[xr = y|x0 = x]d(y, w)


= argmin

w∈S
{(P rd(w))(x)}

e∗r(x) = (P rd(w∗r(x)))(x)

for r = 1, ..., N . The values w∗r(x) and e∗r(x) correspond
to the optimal estimate and estimation error, respectively,
when we must determine the current state given that r time
steps ago we observed that the state was x. There may, in
some cases, be an efficient way to determine these quantities,
but in general we must do this by simply cataloging these
quantities offline through brute force. This may be done with
relative ease if the state space is of tractable size or if the
specific application displays certain sparsity (if our intruder
is moving at a bounded rate then we may narrow down his
location to a sparse set of states).

Now we proceed to construct the solution using back-
wards induction. We begin with t = 1, which corresponds to
one unit of time remaining in the problem, and then continue
for t = 2, 3, ... until we are able to determine a recursion.
As we build backwards in time (and forward in t), we let s
vary and keep track of the cost Jr,s,t(x) where x is a state
of the Markov chain.

For t = 1, we can either have s = 0 or s = 1. These
costs, respectively, are (in vector form)

J(r,0,1) = e∗r

J(r,1,1) = 0
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since not having an observation means we need to make a
best estimate, and having an observation leads to zero cost.

Moving on to t = 2, the values of s can range from s = 0,
s = 1 or s = 2. For s = 0 we have

J(r,0,2) = e∗r + e∗r+1

since we would need to make an optimal estimate with no
further information for the next two time slots. When s =
1, there are two choices: use an opportunity to make an
observation so that u = 1 or do not observe, in which case
u = 0. These choices can be denoted with superscripts above
the cost function for each stage:

J
(0)
(r,1,2)(x) = e∗r(x) + J(r+1,1,1)(x) = e∗r(x)

J
(1)
(r,1,2)(x) = 0 +

∑
y∈S

P [xN−2 = y|xN−2−r = x]e∗1(y)

For u = 0, we accrue error for the current time slot and no
error afterwards. When an observation is made, no error is
accrued for the current time slot N − 2, but there is error in
the next time slot which depends on the current observation.
In vector form, we may write

J
(0)
(r,1,2) = e∗r + J(r+1,1,1) = e∗r

J
(1)
(r,1,2) = P re∗1

We now introduce some new notation:

∆(r,1,2) = J
(0)
(r,1,2) − J

(1)
(r,1,2)

= e∗r − P re∗1
so that if ∆(r,1,2)(x) ≤ 0, then we should not make an
observation, whereas we should make an observation if
∆(r,1,2)(x) > 0. We proceed now by defining sets τ(r,1,2)
and τ c(r,1,2) such that

x ∈ τ c(r,1,2) ⇔ ∆(r,1,2)(x) ≤ 0

x ∈ τ(r,1,2) ⇔ ∆(r,1,2)(x) > 0

and we also define an associated vector 1(r,1,2) ∈ {0, 1}S

1(r,1,2)(x) =
{

1 if x ∈ τ c(r,1,2)
0 otherwise

Moving on to s = 2, we have J(r,2,2) = 0, since there are
as many opportunities to observe the process as there are
remaining time slots. We continue with t = 3:

J(r,0,3) = e∗r + e∗r+1 + e∗r+2

since there are three time slots to make estimates for with
no new information arriving. For s = 1, we again have a
choice of u = 0 and u = 1. For u = 0, we accrue a cost for
the current stage, and then count the future cost depending
on the current state:

J
(0)
(r,1,3)(x) = e∗r(x) + 1(r+1,1,2)(x)J (0)

(r+1,1,2)(x)

+ (1− 1(r+1,1,2)(x))J (1)
(r+1,1,2)(x)

and combining terms gives us

J
(0)
(r,1,3)(x) = e∗r(x) + J

(1)
(r+1,1,2)(x)

+ 1(r+1,1,2)(x)∆(r+1,1,2)(x)

which after substituting the value of J
(1)
(r+1,1,2)(x) and

putting things in vector form gives us:

J
(0)
(r,1,3) = e∗r + P r+1e∗1 + diag(1(r+1,1,2))∆(r+1,1,2)

Now we consider the u = 1 case:

J
(1)
(r,1,3)(x) = 0 +

∑
y∈S

P [xN−3 = y|xN−3−r = x]J(1,0,2)(y)

=
∑
y∈S

P [xN−3 = y|xN−3−r = x](e∗1(y) + e∗2(y))

which can be put in vector form:

J
(1)
(r,1,3) = P r(e∗1 + e∗2)

We now write the expression for ∆(r,1,3) = J
(0)
(r,1,3)−J

(1)
(r,1,3):

∆(r,1,3) = e∗r + P r+1e∗1 + diag(1(r+1,1,2))∆(r+1,1,2)

− P r(e∗1 + e∗2)

Continuing with s = 2,

J
(0)
(r,2,3)(x) = e∗r(x) + 0

whereas for u = 1,

J (1)
(r,2,3)(x) = 0 +

∑
y∈S

P [xN−3 = y|xN−3−r = x](
1(1,1,2)(y)J (0)

(1,1,2)(y) + (1− 1(1,1,2)(y))J (1)
(1,1,2)(y)

)
where we have accounted for the cost stage by stage: in
the current stage, no error is accrued since an observation
is made but future costs depend on the observation that is
made. That is, future costs depend on whether the current
state xN−3 is observed to be in the set τ(1,1,2). Averaging
over these, we obtain the expression above. Combining like
terms as above, we arrive at:

J
(1)
(r,2,3)(x) = 0 +

∑
y∈S

P [xN−3 = y|xN−3−r = x](
J

(1)
(1,1,2)(y) + 1(1,1,2)(y)∆(1,1,2)(y)

)
Substituting the expression for J (1)

(1,1,2)(y), we get

J
(1)
(r,2,3)(x) =

∑
y∈S

P [xN−3 = y|xN−3−r = x](∑
z∈S

P [xN−2 = z|xN−3 = y]e∗1(z)

+1(1,1,2)(y)∆(1,1,2)(y)
)
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We simplify the expression by bringing the first summa-
tion in the parentheses. Then we apply the Kolmogorov-
Chapman equation to get

J (1)
(r,2,3)(x) =

∑
z∈S

P [xN−2 = z|xN−3−r = x]e∗1(z)

+
∑

y∈τc
(1,1,2)

P [xN−3 = y|xN−3−r = x]∆(1,1,2)(y)

Putting this into vector form, we have the expression:

J (1)
(r,2,3) = P r+1e∗1 + P r1(1,1,2)∆(1,1,2)

We use these expressions to get ∆(r,2,3).

∆(r,2,3) = e∗r − P r+1e∗1 − P r1(1,1,2)∆(1,1,2)

Finally, letting s = 3, we get

J(r,3,3)(x) = 0

This process can be continued for t = 4, 5, .... For each
stage (r, s, t), we may determine J (0)

(r,s,t) and J (1)
(r,s,t). These

costs then allow us to determine when we should make an
observation in the process and when we should not. The
implementation of this policy is detailed in the following
subsection.

C. Solution

We now present a method for constructing an optimal
policy. We do this by storing for each (r, s, t) a subset of S,
denoted by τ c(r,s,t), which is the set of last observed states
for which we do not use an opportunity to view the process
when we are at stage (r, s, t). That is, if the last observed
state x was seen r time slots ago, it is in the set τ c(r,s,t),
there are s opportunities remaining to make observations
and there are t time slots remaining in the horizon then we
should not make an observation at this time and simply make
an estimate w∗r(x). On the other hand, if x ∈ τ(r,s,t) then
we should make an observation at stage (r, s, t) and accrue
zero cost for that stage.

More precisely, an optimal policy π∗ is given by

u(r,s,t)(x) =
{

0 if x ∈ τ c(r,s,t)
1 otherwise

Let us introduce three vector valued functions:
F(r,s,t),∆(r,s,t) ∈ RS and 1(r,s,t) ∈ {0, 1}S . We fill
in values for these functions by using the following
recursions:

F(r,s,t) = F(r+1,s−1,t−1) + P r1(1,s−1,t−1)∆(1,s−1,t−1)

∆(r,s,t) = e∗r + F(r+1,s,t−1) − F(r,s,t)

+ diag(1(r+1,s,t−1))∆(r+1,s,t−1)

1(r,s,t)(x) =
{

0 if ∆(r,s,t)(x) > 0
1 otherwise

for 1 < s < t < N and 1 ≤ r ≤ N − t + 1. We also have
the boundary conditions

F(r,t,t) = 0, F(r,1,t) = P r
t−1∑
j=1

e∗j , ∆(r,t,t) = e∗r

These recursions allow us to determine the sets τ c(r,s,t)
for s, t, r in the bounds specified, which in turn defines our
optimal policy. Specifically, we assign

x ∈ τ c(r,s,t) ⇔ ∆(r,s,t)(x) ≤ 0

We conclude by giving expressions for the cost-to-go from
any particular state when a particular action u ∈ {0, 1} is
taken. The superscripts denote whether or not an observation
will be made in the current stage.

J
(0)
(r,s,t) =e∗r + F(r+1,s,t−1) + diag(1(r+1,s,t−1))∆(r+1,s,t−1)

J
(1)
(r,s,t) =F(r,s,t)

Observe that ∆(r,s,t) is the difference between these
two quantities. Hence, ∆(r,s,t) functions as a method of
determining whether or not to make an observation in the
current time step.

We note that although the curse of dimensionality can
make the operations required for the solution to be in-
tractable for large scale problems, the structure of specific
problems may allow us to generate good approximations
to the solution. For medium sized problems, we see that
with the given algorithms we do not need to conduct
any sort of value iteration to converge at the optimum,
but rather the dynamic programming has been reduced to
matrix multiplications. Hence, the algorithm provided here
outperforms conventional Dynamic Programming tools such
as Dynamic Programming via Linear Programming or value
iteration because this algorithm has been tailored to our
specific problem. In the following section we apply our
results to small example problems.

III. NUMERICAL RESULTS

Let us now examine the performance of our algorithm. We
shall fix a horizon length and plot the cost that the prescribed
algorithm accrues versus the number of opportunities to
make observations. Let us consider Markov chains of the
type Mn×n in Fig. 1, which is an n-by-n grid of states
where the transition probabilities are given in the figure.
Such a construction is simple enough for quick simulation
but can capture the inherent variations which our algorithm
is able to leverage.

A. Surveillance

Suppose we would like to track the position of an intruder
in an environment modeled by the Markov chainM3×3 over
a discrete-time horizon of 30 time slots. However, updating
the location of the intruder requires battery power of a
mobile device due to communications with a satellite and
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(1, 1) (2, 1)

(2, 2)(1, 2)

pba

paa

pad pbc

pbb

pba

pcc

pcb

pcd

pdd

pda

pdc

Figure 1. Markov chainM2×2

hence we are not able to request the position of the intruder
at every time. Fixing the initial position of the device to be
(2, 1), let us vary the number of opportunities to retrieve the
true location from 0 to 30. The distance metric we take is
the standard Euclidian norm, which may be represented in
matrix form as:

D =



0 1 2 1
√

2
√

5 2
√

5
√

8
1 0 1

√
2 1

√
2
√

5 2
√

5
2 1 0

√
5
√

2 1
√

8
√

5 2
1
√

2
√

5 0 1 2 1
√

2
√

5√
2 1

√
2 1 0 1

√
2 1

√
2√

5
√

2 1 2 1 0
√

5
√

2 1
2
√

5
√

8 1
√

2
√

5 0 1 2√
5 2

√
5
√

2 1
√

2 1 0 1√
8
√

5 2
√

5
√

2 1 2 1 0


and we choose the transition matrix to be

P =



0 0.1 0 0.9 0 0 0 0 0
0.1 0 0.9 0 0 0 0 0 0
0 0.1 0.8 0 0 0.1 0 0 0
0 0 0 0 0.2 0 0.8 0 0
0 0.7 0 0.15 0 0.15 0 0 0
0 0 0.5 0 0 0 0 0 0.5
0 0 0 0.9 0 0 0 0.1 0
0 0 0 0 0.8 0 0 0 0.2
0 0 0 0 0 0.5 0 0.4 0.1


where we have ordered the states by the first index and then
the second (that is in order (1, 1), (1, 2), (1, 3), (2, 1), ..).

We expect the estimation error to monotonically decrease
with the number of opportunities to learn the true state.
In Fig. 2, we see that this indeed the case, and also
compare it to a benchmark strategy of randomly distributing
observations.

Figure 2. Plot of Optimal Error vs. Number of Observation Opportunities

B. Analysis of Performance

We now note several properties of our curve in Fig.
2. First, the endpoints are fixed no matter what policy is
used - this is because when there are zero opportunities
to make observations or there are 30 chances to view the
process, there is no way to come up with policies that result
in different decisions. There is only one way to allocate
opportunities to observe the process. Next, we note that our
algorithm outperforms a benchmark strategy of randomly
placing observations over the 30 time slots. We see that
the greatest “savings” occurs when we have a sparsity of
opportunities to make observations. This is the case in most
practical situations.

Finally, we observe the convexity of the curve. This is
interpreted to mean that as opportunities to observe the pro-
cess are more readily available, there is a law of diminishing
returns and these opportunities become less valuable. The
degree of convexity depends greatly on the transition matrix
P of the Markov chain. For example, if the grid Mn×n
has transitions that are all equal, the benchmark and our
algorithm both produce a straight line. This is because there
is no variation in the Markov chain to exploit.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have developed a problem in monitoring
over a finite horizon when there are a limited number of
opportunities to conduct surveillance. We mathematically
model this as a problem of state estimation. In the estimation
problem we hope to minimize the distortion from estimating
the state of a Markov chain when the number of time the
process may be viewed is limited to a few times over the
total horizon. The distortion is measured using a specified
metric d(x, y) which tells us how “far apart” states x and y
are.
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In our optimal policy, a set of recursive equations with
boundary conditions give a practical method for determining
an optimal policy. Although the policy could have been
determined using standard methods in dynamic program-
ming, such as value iteration, the algorithm given here relies
only on the ability to store data and conduct matrix multi-
plications. Hence, larger problems can be handled before
intractability results due to state space complexity.

There are many further problems to consider in future
work. If the state space complexity becomes unmanageable,
we must develop policies that are near optimal or find
some other way around the complexity using approximation
schemes. Also, we may consider problems with a variable
horizon length. That is, we might consider problems in
which the Markov chain dictates a random stopping time
for the process during which we may only make obser-
vations a limited number of times. Additionally, there are
practical scenarios in which one does not have complete
information about the transition matrix. In this case, we may
be interested in coupling parameter estimation with efficient
budget allocation. Finally, we can generalize the model so
that observations not only are limited in number but also
carry a cost per usage.
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