
Implementation of the Wireless Autonomous Spanning Tree Protocol on Mote-Class
Devices

Kamini Garg, Daniele Puccinelli, and Silvia Giordano
Networking Lab

University of Applied Sciences of Southern Switzerland
CH-6928 Manno

Email:{kamini.garg,daniele.puccinelli,silvia.giordano}@supsi.ch

Abstract—The Wireless Autonomous Spanning Tree Protocol
combines medium access control and routing to streamline
energy-efficient communication in Wireless Body Area Net-
works. As these networks generally contain low-end resource-
constrained devices, a thorough evaluation on real hardware
is essential to the validation of any protocol. We present our
implementation of the Wireless Autonomous Spanning Tree
Protocol on mote-class devices, and highlight the challenges of
taming the vagaries of low-power wireless that do not arise
in simulation-based evaluations. We study the performanceof
the protocol in several dimensions, with a special emphasis
on energy-efficiency. Our comprehensive set of experimental
results indicates that the protocol can achieve low duty cycles
if used jointly with a low-power link layer.

Keywords-Wireless Body Area Networks; Wireless Au-
tonomous Spanning Tree Protocol; Low Power Listening,
Medium Access; Routing

I. I NTRODUCTION

A Wireless Body Area Network (WBAN) is a sensor
network whose nodes are either attached or implanted into
the human body. As for sensor networks in general, energy-
efficiency is of paramount importance for WBANs. Because
the radio notoriously accounts for the lion’s share of the
overall energy consumption, WBAN protocols must stream-
line communication. Due to their energy constraints, WBAN
nodes are forced to employ low-power radios whose limited
transmit power often precludes the option of forming a
simple star network topology and require multihop commu-
nication as a matter of course.

In this context, channel access and routing decisions
cannot be made in a vacuum and must account for the
conditions of the wireless medium. While most existing
solutions address the MAC and the network layer sepa-
rately, the Wireless Autonomous Spanning Tree Protocol
(WASP) [1] offers a unified framework for the coordination
of medium access and multihop routing tailored to the
relatively small network size of WBANs. With the WASP,
WBAN nodes self-organize in a tree topology where parents
set up a medium access schedule for children. In the original
WASP work, the existence of a static tree topology is taken
for granted, and the protocol is mainly evaluated through
simulation. In practice, however, static connectivity cannot

be expected in low-power wireless networks, because time-
varying link dynamics affect even networks of stationary
nodes. In a WBAN, nodes are generally stationary with re-
spect to one another, but the network as a whole moves with
the person and its link dynamics are affected accordingly.
In this paper we tackle the challenging task of taming the
vagaries of low-power wireless to implement the WASP on
mote-class devices and evaluate it experimentally in various
dimensions. Because the paramount goal of the WASP is
energy-efficiency, we use the duty-cycle of our nodes as our
primary figure of merit, and investigate the interplay of the
WASP with the standard link-layer duty-cycling technique
known as Low Power Listening (LPL) [2].

II. RELATED WORK

In the sensor network literature, communication protocols
can be mainly categorized as contention-based protocols,
such as B-MAC [2], Wise-MAC [3], and X-MAC [4],
and slotted protocols, such as S-MAC [5]. B-MAC is a
CSMA-based technique that leverages asynchronous LPL,
the standard technique for link-layer duty-cycling that en-
ables nodes to periodically put their radios into sleep mode
while maintaining the illusion of an always-on link. LPL
dampens the idle listening problem by shifting the energy
cost of communication from the receiver to the transmitter,
which needs to match the preamble of its outgoing packets
to the sleep interval of the receiver (long preamble). Wise-
MAC gets transmitters to learn the wake-up schedule of their
intended receivers and shortens LPL’s long preamble through
synchronization, while X-MAC sticks to asynchronous LPL
but reduces the energy impact of the preamble. S-MAC
uses a periodic listen/sleep cycle and ensures the schedule
synchronization of neighboring nodes. Tree-based collection
routing is a basic primitive for sensor networks employed by
several protocols, such as MintRoute [6], the Collection Tree
Protocol (CTP) [7], and Arbutus [8]. Cross-layer protocols
that merge medium access and routing have been proposed
to meet the specific needs of WBANs, whose network
size is typically rather small (less than 20 nodes). The
Wireless Autonomous Spanning Tree Protocol (WASP) [1]
combines slotted medium access control and tree-based col-

89

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

lection routing to streamline energy-efficient communication
in WBANs.

III. PROTOCOL DESCRIPTION

A. Overview of the WASP Protocol

As described in [1], the WASP protocol is a slotted
cross-layer protocol that uses a multi-level spanning treefor
the coordination of medium access and multihop routing.
The WASP employs a slotted notion of time, which is
viewed as a succession of WASP-cycles (sets of time-slots).
Moreover, the WASP presupposes the pre-existence of a
spanning tree rooted at the sink. It further assumes that
every node in the tree has exactly one parent as well as a
complete knowledge of its neighborhood (i.e., its parent, its
siblings, and its children), and that the sink has a complete
knowledge of the whole tree. Each node provides channel
access information to its children by broadcasting a node-
specific message called WASP-scheme. The WASP-scheme
serves to regulate medium access from parent to children:
a parent uses a WASP-scheme to tell its children when to
access the medium and when to sleep. The sink initiates
the process by broadcasting its own WASP-scheme. Upon
reception of the WASP-scheme from the sink, its children
broadcast their own WASP-scheme, which they derive from
the sink‘s WASP-scheme. This process continues until all
nodes in the tree have learned the correct timing for channel
access using WASP-schemes. A node whose many children
cannot be accommodated within the medium access time-
slots allocated through its parent’s WASP-scheme can use
its own WASP-scheme to request additional time-slots for
its children to use in future WASP-cycles.

Table I
FORMAT OF THE WASP-SCHEME FOR THESINK

SinkID ChildIDs SP TFS CS

As shown in Table I, the format of the sink’s WASP-
scheme comprises the SinkID, the ChildIDs, the Silent
Period (SP), the Total number of Forwarding Slots (TFS),
and the Contention Slot (CS). The SinkID and ChildIDs
are the addresses assigned, respectively, to the sink and its
child nodes. The WASP-scheme of the sink indicates the
timeline of one WASP-cycle that includes a slot for the
sink to broadcast its WASP-scheme, a slot for each of its
children to send out their own WASP-schemes, a radio sleep
mode period (whose slot count is the SP), a period during
which the sink receives data forwarded by its children (the
forwarding slots, whose total count is the TFS), and a special
slot, the CS, in which new nodes may join the network using
CSMA-CA. Let S denote the sink andΛm denote themth

level in the spanning tree, withΛ0 , {S}. Also, let Ti

denote the set of nodes in the subtree of nodei. The SP of

the sink can be computed as

SPS = maxi∈Λ1
|Ti|. (1)

The TFS needed by the sink is given by the sum of all
forwarding slots required by each node inΛ1. During the
forwarding slots, the nodes inΛ1 forward their received data
to the sink, and the number of forwarding slots required by
each node inΛ1 is equal to the total number of nodes in its
sub-tree.

Table II
FORMAT OF THE WASP-SCHEME FOR ANODE IN Λm (m ≥ 1)

NodeID SP ChildIDs TFS CS DATA

Every node derives its own WASP-scheme based on the
parent’s WASP-scheme and therefore learns about its role
in each time-slot of the WASP-cycle. While a sink’s WASP-
scheme is a dedicated control packet, the WASP-schemes
of all other nodes may include data. As shown in Table II,
the format of the WASP-scheme for nodes other than the
sink contains the NodeID (the address of the node), the SP,
the ChildIDs, the TFS, the CS, and the data itself. For any
node other than the sink, the SP is used to tell its children in
which time-slots they can go into sleep mode. As explained
in [1], for a nodej ∈ Λ1, the length of the SP is equal to
the slot number of the start of the SP of the sink S minus
the slot number of its first occurrence in the WASP-scheme
of S, minus 1. For a nodei ∈ Λm (m > 1), the length of
the SP is equal to the slot number of the CS minus the
slot number of its first occurrence in its parent’s WASP-
scheme. The number of forwarding slots for each node can
be computed based on the requirements of the children and
may vary accordingly over different WASP-cycles. For any
node in any particular WASP-cycle, the TFS is given by
the sum of the data packets received from its children. The
length of a WASP-cycle depends on the length of the sink’s
WASP-scheme. The total number of WASP-cycles needed
to send data from all the nodes to the sink depends on the
depth the spanning tree. Data up toΛ2 can be sent only
in one WASP-cycle while for the further level nodes more
WASP-cycles are required.

The original work on WASP uses analysis and simulation
to evaluate the protocol, and takes for granted the tree
formation process as well as the distribution of connectivity
information across the tree. In practice, however, tree topolo-
gies [7][8] are never static and are continuously subjectedto
real-life link dynamics: parents, siblings, and children may
and do change. To enable an implementation of WASP on
Berkeley motes, we approximate the static tree that WASP
presupposes by constructing a stable tree,i.e., a tree that
is solely constituted by links with high noise margins, or,
equivalently, a high Received Signal Strength (RSS). We

90

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

will refer to links whose RSS exceeds a cutoff thresholdΘ
as highly reliable links. As long as the noise margins of its
links are sufficiently high to withstand the link dynamics,
our empirical evidence indicates that a stable tree can be
expected to remain static with high probability.

B. Generation of a Stable Tree

We obtain a robust connectivity graph by blacklisting all
links other than the highly reliable ones. A stable tree is
obtained by using a randomized subset of the links in the
robust connectivity graph. The stable tree formation process
initiates from the sink and continues across the network
until all the nodes learn about their local connectivity. In
accordance with the WASP’s requirements, every node has to
have a highly reliable link to its single parent, and the nodes
that share a parent are also required to have a highly reliable
link to each other. LetRi,j denote the RSS measured atj

when i transmits. The connectivity matrix between nodesi

andj can be defined as

Cij = 1Ri,j≥Θ. (2)

By way of a sink-initiated connectivity discovery sweep,
each node inΛm (m > 0) selects a unique parent and
implicitly assigns itself to a given levelΛm based on the
availability of a highly reliable link to a unique parent and
highly reliable links to one or more siblings (nodes that share
the same parent). The basic condition for the assignment of
a nodej (with k as its parent) to levelm is

CjkCkj = 1, k ∈ Λm−1 (3)

If multiple nodes satisfy (3), then we examine the cross-links
between the nodes to find all pairs(i, j) such that

CjiCij = 1, i ∈ Λm, j ∈ Λm (4)

After arbitrarily selecting one pair(i, j) that satisfies (4), we
check whether other nodes that satisfy (3) also have highly
reliable links to bothi and j (according to (4)). All such
nodes are added toΛm. If no pair (i, j) exists that satisfies
(4), one single node that satisfies (3) is selected. Once the
stable tree has been set up, every node learns the structure
of its subtree and sends it to its parent. Subsequently this
structure is propagated until the sink receives it. At the end
of this process the sink learns the structure of the whole
tree and determines the number of slots in its SP in its own
WASP-scheme accordingly.

Depending on the connectivity properties of the network,
it may not be possible for the stable tree to span all the nodes
for a given value of the cutoffΘ. Network partitioning is
a well-known side effect of blacklisting [9], but it is not
likely to occur at the levels of node density that are typical
of WBANs.

C. Example

Let us illustrate the tree formation process with a sample
network of ten nodes. Nodes are labeled with numbers
ranging from 0 to 9, and the sink is node 0. The connectivity
matrix of our sample network is displayed in Table III.

In the matrix highly reliable links are represented with a
1 and all other links with a 0. For our sample network the
sink has highly reliable links to nodes 1, 2, 3, 4, 5 and 9, as
shown in Figure 1. All these nodes satisfy (3) and are eligible
to become children of the sink. We further check the cross-
links and find the pairs of nodes satisfying equation (4). For
our sample network such pairs are (1,3), (1,4), (1,9), (2,4),
(2,5), (3,9), (4,5), (4,9) and (5,9). We arbitrarily choosepair
(1,3) and further check for the remaining nodes satisfying
(3) and (4). If we consider node 4, we find that it satisfies
(3) with the sink as its parent; node 4 also satisfies (4) with
node 1 but does not satisfy (4) with node 3, and therefore
it is not elected to join the pair (1,3) as a sibling. Likewise,
we check for all the eligible nodes and, as an outcome of
this process, we find that node 9 is the only remaining node
that satisfies both (3) and (4). Therefore nodes 1, 3, and 9
will belong toΛ1. For our sample network the structure of
the stable tree up to level 1 is given in Figure 2.

Table III
CONNECTIVITY MATRIX OF HIGH CONNECTIVITY NODES

NodeID 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 0 0 0 1
1 1 1 0 1 1 0 1 1 1 1
2 1 0 1 0 1 1 0 0 1 0
3 1 1 0 1 0 0 1 0 1 1
4 1 1 1 0 1 1 1 0 0 1
5 0 0 1 0 1 1 0 0 0 1
6 0 1 0 1 0 0 1 0 0 1
7 0 1 0 0 0 0 0 1 1 1
8 1 1 1 1 0 0 1 1 1 1
9 1 1 0 1 1 1 0 1 1 1

1

2

3

0

4

5

9

Figure 1 : Connectivity Graph of the Sink’s Neighborhood

91

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

Level 0

Level 1

0

9

Figure 2: The Stable Tree Formation Up to Level 1

31

Nodes atΛ1 start identifying their own children by using
the same procedure as the sink. Let us assume that node 1
begins the child formation, followed by node 3 and 9. Highly
reliable links to node 1 are 0, 3, 4, 6, 7, 8 and 9. Node 0
is the parent of 2 while nodes 3 and 9 are the siblings.
Therefore the nodes that are eligible to become the children
of node 1 are 4, 6, 7 and 8. Further we find that only pair
(7,8) satisfies (4) and therefore belong toΛ2. The procedure
continues at nodes 3 and 9 and the outcome is shown in
Figure 3.

Level 0

Level 1

0

9

Figure 3 : The Stable Tree Formation Up to Level 2

31

7 8 6 4 5 Level 2

Afterwards,Λ2 nodes will also perform the same procedure
for the formation ofΛ3. Node 2 will be the only node in
Λ3. For our sample network the final stable tree (comprising
of three levels) is displayed in Figure 4.

Level 0

Level 1

0

9

Figure 4 : The Final Stable Tree of Level 3

31

7 8 6 4 5 Level 2

2 Level 3

As soon as the complete tree is built, the sink learns the
structure of the whole tree. After the tree formation is com-
plete, the sink constructs its WASP-scheme and broadcasts
it. To generate its WASP-scheme, the sink first calculates
the SP and the TFS. In our example,Λ1 = {1, 3, 9}, and
from (1) SPS = 4. The TFS of the sink is given by the sum
of all the forwarding slots needed by each child inΛ1 and
is therefore equal to 6. Table IV shows the SP and TFS for
each node in two WASP-cycles.

Table IV
SPAND TFSVALUES IN TWO WASP-CYCLES

WASP-cycle 1 WASP-cycle 2
NodeID SP TFS SP TFS

0 4 6 4 6
1 2 0 2 1
2 1 0 1 0
3 1 0 1 0
4 2 0 2 0
5 1 0 1 0
6 1 0 1 0
7 2 0 3 0
8 1 0 2 0
9 0 0 0 0

IV. PROTOCOL IMPLEMENTATION AND EXPERIMENTAL

RESULTS

We have implemented the WASP using MICAz motes
and the TinyOS operating system. MICAz is a widely
used research platform built around the CC2420 transceiver,
which employs the 802.15.4 physical layer. We evaluated our
implementation on an indoor testbed of ten MICAz motes.
The testbed consists of a sink acting as the coordinator and
nine other nodes that inject their data into the network so
that it can be delivered to the sink. The sink in turn forwards
everything to a base station node connected to a Crossbow
MIB600 gateway that exports the data for offline processing.
The 5ms slot length used as a simulation parameter in [1]
is simply not workable with our hardware. To simplify the
implementation we relax the slot length to one second,
thereby eliminating the need for a tight time synchronization
technique. Our own experimental results suggest that the
RSS thresholdΘ = −60dBm is more than sufficient for the
link dynamics that are typical of WBANs (in general, it is
a rather conservative calibration).

Since the ultimate goal of WASP is energy efficiency,
a paramount figure of merit is the duty-cycle, which we
measure with online software estimation [10]. In our imple-
mentation, we compare WASP’s own duty-cycling and the
joint action of WASP’s duty-cycling with LPL [2]. We use
the standard TinyOS implementation of LPL, integrated in
a link layer called BoX-MAC [11].

Each of our experiments was run for the duration of
one hour. We explored two different LPL settings and ran
experiments with sleep intervals of 100ms and 150ms for
each node. In general, the LPL sleep interval must be
significantly smaller than the duration of a WASP slot.
Figure 5(a), 5(b) and 5(c) show the stable tree obtained
by applying our tree formation algorithm in three different
experiments (respectively with no LPL, with LPL at 100ms,
and with LPL at 150ms). Although we employed a similar
network setup in all experiments, the tree formation process
(selection of a subset of the highly reliable links in the
robust communication graph) is randomized, leaving us with

92

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

no control over the specific tree layout for each individual
experiment. In general, because of the requirements that
the WASP imposes on the tree topology, routes may be
set up using more hops than needed based on connectivity;
sacrificing a low hop count is certainly a drawback of the
WASP approach [12].

In our experiments we measure the duty cycle and the
Packet Delivery Ratio (PDR) of each node in the network.
The PDR for a given node other than the sink is defined as
the total number of data packets delivered to the sink over
the total number of data packets injected by the node into
the network. The PDR for the sink is the end-to-end delivery
ratio computed as the total number of delivered packets over
the total number of injected packets by all nodes. We group
nodes based on theirΛm (m ≥ 0) membership and compare
the duty cycle and the PDR of the nodes residing in the
same level. We also measure the Control Overhead for the
network, defined as the ratio of the number of dedicated
control packets over the total number of transmitted packet
(control and data packets). Tables V, VI, and VII show the
duty cycle and PDR for all the experiments.

In Tables V, VI, and VII, we observe that by imposing
LPL on the WASP protocol we obtain a sharp drop in
the duty cycle of each node as compared to WASP’s own
application-based duty cycling. The sharp decrease in the
duty cycle allows a drastic reduction of the overall energy
consumption needed for network communication and boosts
the energy-efficiency of the WASP protocol. We observed
from Tables V, VI, and VII that the duty cycle for the sink
without using LPL is 61.35%, which drops sharply to 9.48%
with a 100ms LPL and 7.51% with a 150ms LPL. The drop
in the duty cycle for the sink is around 52% with either
LPL setting. Our results show that WASP can peacefully
coexist with a low-power link layer and greatly benefit
from it, because its baseline duty-cycling is not sufficiently
aggressive to ensure significant energy savings. Nodes inΛ1

are responsible for forwarding the data of the lower levels,
and therefore they consume the largest amount of energy as
they have to keep their radio on for the longest time. Our
results show that both nodes that are very active (likeΛ1

nodes) and nodes that are see relatively little action (like
the leaf nodes) can greatly benefit from the joint action of
WASP and LPL.

LPL only takes a small toll on the reliability of the
protocol. For our experiments the end-to-end PDR is 100%
without LPL, 99.83% with 100ms LPL, and 99.82% with
150ms LPL. We obtain a better PDR performance compared
to [1] where packet loss rate is 30%, but this is largely
a byproduct of our relaxed time-slotting as well as the
overly pessimistic channel model employed in the WASP
simulations in [1].

We also measure the Control Overhead for the network.
In our implementation the control packets are the packets
broadcast for the network set up and the control WASP-

scheme broadcast by the sink node. The Control Overhead is
about 6% in all of our setups, suggesting that neither the tree
layout nor the presence/absence of LPL has a considerable
impact on the overhead. We display the total number of
control and data packets transmitted by the WASP protocol
(without LPL) over time in Figure 6.

7 8 Level 1

Level 00

Level 21 3

6

54 Level 3

7 Level 1

Level 00

1 2 4

3

6

9 Level 2

8

Level 3

Level 45

2 7 Level 1

Level 00

3 4 5 Level 2

1

6 9 Level 3

8 Level 4

9

2

(a) (b)

(c)

Figure 5: (a) Tree obtained with WASP-No LPL (b) Tree obtained with

WASP-LPL-100ms (c) Tree obtained with WASP-LPL-150ms

Table V
DUTY CYCLE AND PDR VALUES FOR THEWASP-NO LPL

Level NodeID Duty Cycle PDR
Λm (m ≥ 0) (in %) (in %)

Λ0 0 61.35 100
1 91.71 100

Λ1 2 22.76 100
7 28.29 100
3 72.15 100

Λ2 4 31.04 100
5 36.54 100

Λ3 6 42.03 99.49
9 61.25 99.49

Λ4 8 86.08 99.49

Table VI
DUTY CYCLE AND PDR VALUES FOR THEWASP-LPLAT 100MS

Level NodeID Duty Cycle PDR
Λm (m ≥ 0) (in %) (in %)

Λ0 0 9.48 99.83
Λ1 3 15.64 100

7 14.46 100
1 11.29 100

Λ2 2 3.63 100
4 4.10 100
9 4.11 99.49

Λ3 6 10.33 99.66
Λ4 5 7.91 99.49
Λ4 8 9.91 99.49

93

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

Table VII
DUTY CYCLE AND PDR VALUES FOR THEWASP-LPLAT 150MS

Level NodeID Duty Cycle PDR
Λm (m ≥ 0) (in %) (in %)

Λ0 0 7.51 99.82
6 14.05 100

Λ1 7 2.71 100
8 12.13 100
1 8.80 100

Λ2 3 7.38 100
9 4.49 100
4 4.73 99.47

Λ3 5 5.49 100
2 5.83 99.47

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60

N
um

be
r

of
 P

ac
ke

ts

Time(min)

Total Transmitted Data Packets
Total Control Packets

Figure 6: Total Control and Transmitted Data Packets for theWASP over Time

V. CONCLUSIONS

We successfully implemented the Wireless Autonomous
Spanning Tree Protocol (WASP) on mote-class devices and
evaluated its performance on 10-node testbed. We chose the
WASP because of its promising cross-layer design approach
that combines and coordinates medium access and multihop
routing. The WASP presupposes the existence of a static
tree structure to be superimposed to the network, but in
practice low-power wireless connectivity is highly dynamic,
even for networks of (almost) stationary nodes like WBANs.
To obtain a stable tree topology out of inherently unstable
low-power links, we adopted a blacklisting-based approach
to build a tree of highly reliable links. While this approach
is indispensable to approximate the static tree topology that
the WASP presupposes, in practice it may lead to routes
consisting of too many short hops, with the consequent loss
of the benefits of long-hop routing [12]. The approximation
of static connectivity also has scalability issues, and the
lack of overlap between logical and physical (broadcast)
connectivity may thwart WASP’s slotted medium access
with omnipresent hidden node effects. From the standpoint
of energy-efficiency, while WASP’s baseline duty-cycling is
insufficient to meet the lifetime demands of WBANs, our
results show that the WASP can be effectively complemented
by a standard link-layer duty-cycling technique, which re-

duces the mean node duty-cycle from over 50% to about
8%, and the standard deviation from 25% to 4%.

REFERENCES

[1] B. Braem, B. Latré, I. Moerman, C. Blondia, and P. De-
meester. The Wireless Autonomous Spanning tree Protocol
for multi hop wireless body area networks. InThe 3rd
Ann. Int. Conf. on Mobile and Ubiquitous Systems: Networks
and Services (MOBIQUITOUS’06), San Jose, CA, USA, July
2006.

[2] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media
Access for Wireless Sensor Networks. In2nd ACM Confer-
ence on Embedded Networked Sensor Systems (SenSys’04),
Baltimore, MD, USA, November 2004.

[3] A. El-Hoiydi and J.-D. Decotignie. Wisemac, An ultra low
power MAC protocol for multi-hop wireless sensor networks.
In First Int. Workshop on Algorithmic Aspects of Wireless
Sensor Networks (ALGOSENSORS’04), Turku, Finland, July
2004.

[4] M. Buettner, G. Yee, E. Anderson, and R. Han. X-MAC: a
short preamble MAC protocol for duty-cycled wireless sensor
networks. In 4th ACM Conference on Embedded Networked
Sensor Systems (SenSys’06), Boulder, CO, USA, November
2006.

[5] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
MAC protocol for wireless sensor networks. In21th Annual
Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM’02), pages 1567–1576, New York, NY,
USA, June 2002.

[6] A. Woo, T. Tong, and D. Culler. Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks.
In 1st ACM Conference on Embedded Networked Sensor
Systems (SenSys’03), Los Angeles, CA, November 2003.

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection Tree Protocol. In7th ACM Conference on Embed-
ded Networked Sensor Systems (SenSys’09), Berkeley, CA,
November 2009.

[8] D. Puccinelli and M. Haenggi. Reliable Data Delivery in
Large-Scale Low-Power Sensor Networks.ACM Transactions
on Sensor Networks, July. 2010.

[9] O. Gnawali, M. Yarvis, J. Heidemann, and R. Govindan.
Interaction of Retransmission, Blacklisting, and RoutingMet-
rics for Reliability in Sensor Network Routing. In1st
IEEE Conf. on Sensor and Ad Hoc Comm. and Networks
(SECON’04), Santa Clara, CA, USA, October 2004.

[10] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Software-
based on-line energy estimation for sensor nodes. In4th
Workshop on Emb. Networked Sensors (Emnets IV), Cork,
Ireland, June 2007.

[11] D. Moss and P. Levis. BoX-MACs: Exploiting Physical and
Link Layer. Technical Report 08-00, Stanford University,
2008.

[12] M. Haenggi and D. Puccinelli. Routing in Ad Hoc Networks:
A Case for Long Hops.IEEE Communications Magazine,
43:93–101, October 2005.

94

EMERGING 2010 : The Second International Conference on Emerging Network Intelligence

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-103-8

