
SDN-based Implementation of P2P Streaming Networks with Dynamic

Reconfiguration

Ryo Shibasaki, Noriko Matsumoto, Norihiko Yoshida
Graduate School of Science and Engineering

Saitama University
Saitama, Japan

Emails:{shibasaki, noriko, yoshida}@ss.ics.saitama-u.ac.jp

Abstract—The Software Defined Networking (SDN) technol-
ogy is one of the major technical infrastructures for the digital
society. This paper focuses on a dynamic streaming network
and its efficient implementation. A Peer to Peer (P2P) streaming
network tends to be unbalanced because of the dynamic nature of
its nodes to join and leave, and often suffers from delivery delay.
Therefore, it is required to reconfigure the network dynamically
to keep it balanced. This paper proposes an SDN-based scheme
for adaptive reconfiguration of the structure and routing in a
P2P streaming network. This scheme enables fully decentralized
delivery under a centralized control. Some simulation-based
experiments confirmed that this scheme worked effectively.

Keywords—P2P streaming; SDN

I. I NTRODUCTION

Streaming is used to download a multimedia content while
playing it. In this delivery method, the content is divided
into units called segments. Segments are transferred from the
server to the clients in turn. Typically, the Client/Server (C/S)
model is available for streaming. However, the C/S model
has problems such as the increase of the server load and
maintenance costs according to the increase of the number of
clients. Peer-to-Peer (P2P) Streaming has attracted attention
in order to solve these problems. However, P2P streaming
also has shortcomings such as failures due to concentration
of the connection to a specific node and delays in receiving
contents due to the increase of the number of hops from the
source node. In order to prevent these shortcomings, it is im-
portant to reconfigure the P2P streaming network dynamically
to keep it balanced [1]. Traditionally, each node in a P2P
network performs data transfer and routing in an autonomous
distributed manner. Load balancing could be achieved by each
node independently, however it would be inefficient. Therefore,
we propose a centralized control scheme for such decentralized
P2P networks.

Recently, Software Defined Networking (SDN) is attracted
attention as a concept of centralized control of network de-
vices. SDN can control network devices flexibly using soft-
ware. SDN has already been used in Google’s data center [2]
for example. In addition to this, SDN is expected to realize
new technologies such as Network Function Virtualization
(NFV) and Information Centric Network (ICN) [3]. OpenFlow
[4] is a typical implementation technology of SDN. The
OpenFlow specifies network devices from the datalink layer
to the transport layer. However, a conventional P2P network
is implemented as an overlay network at the application layer.

In this paper, we propose a scheme to configure a P2P
streaming network at the IP layer using OpenFlow. In our
proposal, the OpenFlow configures a P2P streaming network
and a centralized routing control for network devices. The
structure of this paper is as follows: Section II introduces
a routing method of P2P network using OpenFlow. Section
III describes our proposal. Section IV shows some results
of simulation-based experiments and related considerations.
Finally, Section V includes some concluding remarks and
future work.

II. RELATED WORKS

OpenFlow consists of a controller, OpenFlow switches
and OpenFlow Protocol. The OpenFlow switches forward or
discard packets according to “flows” which are given from the
controller. The OpenFlow Protocol is used to communicate
between the controller and switches. The controller is imple-
mented in software, and can update flows for the switches
dynamically. The network topology and its routing mechanism
is reconfigured flexibly and dynamically under the centralized
control in this manner. The routing method for the P2P network
using OpenFlow will be presented later.

In streaming delivery, delay or loss in the reception of
the segments leads to interruption of playback of contents.
Trajikovska et al. [5] proposed SDN based Quality-of-Service
(QoS) control in a P2P streaming network. In this proposal,
the provider decides a parent node for a new node which
joins the P2P streaming network. First, the provider figures
out candidate nodes which are close to the new node using
the Round-Trip-Time (RTT) distance between the new one
and others. Next, the provider checks the bandwidth between
the new one and the parent candidates. The new node is
connected to the parent node which is selected on the basis of
the RTT distance and the bandwidth. After that, the bandwidth
is adjusted between these nodes using OpenFlow meter table.

Othman et al. [6] proposed a method that the controller
executes routing control. In this proposal, changing from the
C/S model to the P2P model occurs depending on the server
load. When changing to the P2P model, the server sends
a request to redirect content requests to the controller. The
redirection request includes the content IDs and the list of
nodes which receive this content. This list contains the IP
address of the node and the number of child nodes which can
be connected to this node. When the controller receives the
redirection request, the controller sends some necessary flows

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-521-0

ICDS 2016 : The Tenth International Conference on Digital Society and eGovernments

1.Forward 2.Forward

: Terminal

:

: Node

Network
Device

Figure 1. Content delivery of a traditional P2P network

1.Forward 2.Forward

: Terminal

:

: Node

: Controller

OpenFlow
Switch

Figure 2. Content delivery of a P2P network using OpenFlow

to the OpenFlow switches. A content request is then redirected
to a node which already has the content.

These proposals focus only on the situation when a node
joins a P2P network. Additionally, some studies proposed
reconfiguration of a P2P network dynamically. Akiyama et al.
[7] applied the publish and subscribe (pub/sub) model to a P2P
network. In the pub/sub model, a publisher sends a content to
the middleware, and the content is categorized in some topic.
Then the middleware sends the content to subscribers which
are joined to the topic. In this proposal, the controller examines
the physical topology using Link Layer Discovery Protocol
(LLDP). The agent which runs on the node is migrated based
on the physical topology and the topic name.

III. PROPOSEDMETHOD

This section introduces our proposal. Our proposal is
based on the study by Ono et al. [1]. Ono et al. proposed a
scheme to reconfigure a P2P streaming network dynamically.
To implement this, each node monitors its neighbor nodes
such as its parent and children. If the parent node can spare
its capacity, a child node reconnects itself to the parent.
Load balancing is achieved in this manner, and delay in
content delivery is reduced. In this proposal, each node in
a P2P streaming network performs data transfer and routing
in an autonomous distributed manner. However, this kind of
autonomous distributed manner is inefficient because each
node performs a similar behavior and causes excessive control
packets.

There are two kinds of streaming: on-demand and live
delivery. In on-demand streaming, a content created in advance
is delivered to clients when its server receives a content
request. In live streaming, a content is delivered to clients in
real time while recording and encoding. In traditional P2P live
streaming, each leaf node which is joined to the P2P streaming
network receives and sents the content so that all the nodes
can decode and play the same content at the same time (Figure
1).

Since the same content is delivered at the same time, P2P
live streaming has some resemblance with IP multicast by
network devices (Figure 2). In this paper, a pair of a host
and its corresponding switch is considered a “node.”

Network

: Server

: Client

: Controller

: OpenFlow
Switch

Figure 3. Proposal system overview

: Client

:

1.Forward 2.Forward

3.Forward
OpenFlow
Switch

Figure 4. A content request is forwarded to the controller

Matching rule

Destination IP address Server’s IP address

Action

1. Forward to a server

2. Forward to the controller

Figure 5. The flow to forward a content request to the controller

In our proposal, the controller manages the route of the P2P
streaming network. Our proposal comprises a server, clients,
OpenFlow switches and the controller (Figure 3). The server
forwards segments to clients according to a content request.
The clients receive segments from a server. If a client has
child nodes, the client forwards its segments to the children.
The OpenFlow switch forwards a content request and segments
according to the flows which are given from the controller.
The controller sends flows so as to change the P2P streaming
network. The procedure of the controller is described below.

A. Management of nodes

In our proposal, the controller manages nodes in the P2P
streaming network in a centralized manner. To know a node
which has joined or left from the P2P streaming network, a
content request is forwarded to the controller (Figure 4). To
forward to the controller, the flow which is shown in Figure 5 is
given to an OpenFlow switch neighboring to the server. When
the controller receives a content request, the controller reads
the header of its packet to get the source IP address. After that,
the controller updates the network topology information within
it according to join or leave of the node of the IP address.

B. Delivery of contents

Segments which are forwarded from a parent node are
copied in an OpenFlow switch. The segments are passed to the
coupled host as well as transferred to its child nodes (Figure
6). To implement this, the flow which is shown in Figure 7 is
kept in the OpenFlow switch. According to this flow, the client
assumes that segments are forwarded from a server in spite that

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-521-0

ICDS 2016 : The Tenth International Conference on Digital Society and eGovernments

: Server

:

: Controller

OpenFlow
Switch

1.Forward 2.Forward

4.Forward
6.Forward …

3.Modify destination IP address
5.Modify destination IP address

…

Figure 6. Delivery of segments

Matching rule

Source IP address Server’s IP address

Action

1. Forward to a neighbor terminal

2. Repeat the Following
 only the number of child nodes

2.1. Destination IP address is modified
 child node’s IP address

2.2 Forward to the child node

Figure 7. The flow to forward a content to child nodes

actually they are forwarded from the parent node. This delivery
is similar to IP multicast using OpenFlow [8][9], however IP
addresses are not necessary unlike IP multicast. Accordingly,
the packet which is copied by this flow is forwarded on a
network similar to ordinary packets.

C. Reconstruction of a P2P stereaming network

The controller must select a parent node of a new node
which has joined the P2P streaming network. Similarly, the
controller must select a parent node of nodes which were child
nodes of a leaving node. A parent node is determined following
the below procedure.

1) Select candidate nodes which is located at the lowest
depth from the server among nodes which can spare
their capasities.

2) Select a parent node which has the smallest number
of child nodes out of the candidates.

Following these steps, a joining node or child nodes of a
leaving node select a parent node to reconstruct a balanced
P2P streaming network. However, the P2P streaming network
may be unbalanced because this procedure does not consider
descendant nodes of these nodes. Therefore, the controller
checks the P2P streaming network topology regularly. If the
P2P streaming network is unbalanced, an unbalanced node
selects a parent node again using the above procedure. After
that, the P2P streaming network is reconfigured to be balanced
it. An unbalanced node is determined using (1).

In our proposal, the maximum number of child nodes
which can be connected to a node is fixed to a constant (c).
The total number of clients (nmax) which can be connected
in the depthd is shown below when the server’s depth is0.

nmax =
d∑

i=1

ci

=
c(cd − 1)

c− 1

: Server

: Client

: Controller

: OpenFlow
Switch

・・・

Figure 8. A virtual network used in the experiment

TABLE I. The parameters used in the experiment

Parameter Value
The number of child nodes which are connected the node2
The number of segments to be sent 10 packets per second
Check interval for the network topology every 2 seconds
Interval for statistics of OpenFlow switches every 1 second

Therefore, if the number of joining clients to the P2P streaming
network isn, the optimal value of the depth of the P2P network
is shown below.

n ≤ nmax

ln(nc− n+ c)

ln c
− 1 ≤ d (1)

The optimal value is the minimum value ofd which satisfies
(1). If all the unbalanced nodes select a parent node again
at once, the P2P streaming network changes drastically. As
a result, the loss or the duplication of segments may occur.
Furthermore, the reconfiguration does not complete by the time
of the next check because processing time of the controller is
increased. From the above, the depth of nodes which select a
new parent node are restricted todmin + 1.

The controller must send flows, which are shown in Figure
7, to the OpenFlow switches when the P2P streaming network
topology is changed. In our proposal, segments that are for-
warded from a parent node is considered equivalent to the ones
forwarded from a server. Accordingly, if a parent node which
is connected to the node is changed, the node does not have
any influence. However, if child nodes which are connected to
the node are changed, the node must send segments to these
new nodes. The controller must send the flow to these nodes’
switch to forward segments to child nodes. From the above,
the OpenFlow switches which must update the flow are the
old parent node and the new parent node.

IV. EVALUATION

A simulator was made for experiments in order to confirm
the effectiveness of our proposal.

A. Simulator Design

The simulator was implemented in Trema which is one
of the OpenFlow frameworks. The experiment was performed
using a virtual network on Trema. A virtual network is
composed of star topology (Figure 8). The controller detects
links between OpenFlow switches using LLDP in order to
forward packets. Links between an OpenFlow switch and
a leaf are detected using Packet-In messages. Packets are
forwarded using Dijkstra’s algorithm. The parameters used in

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-521-0

ICDS 2016 : The Tenth International Conference on Digital Society and eGovernments

 𝑖 : Node 𝑖 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 24 20 19 18 26 22 21 17 25 23

Figure 9. The P2P streaming network topology before nodes join

the experiment are shown in Table I. The controller knows a set
of Server’s IP address and an OpenFlow ID which neighbors
the server in advance. A server forwards segments to the
OpenFlow switch. The OpenFlow switch forwards segments
according to the flow shown Figure 7. The experiment was
performed as described below under these conditions.

• Join of nodes
We examined the P2P streaming network topology

when nodes join the network. Furthermore, we exam-
ined whether each client receives all the segments or
not.

• Withdrawal of a node
We examined the P2P streaming network topology

when nodes left the P2P streaming network. Then,
we examined the number of nodes which changed
its parent node and flows which are forwarded to an
OpenFlow switch from the controller. Furthermore,
we examined whether each client receives all the
segments or not.

• Comparison of the P2P model and the C/S model
If the number of child nodes which are connected to

a node is unlimited, our proposal constructs a network
similar to the C/S model. Accordingly, we compared
with the C/S model along with the P2P model and
examined each client whether to receive segments or
not. And then, we compared the load of OpenFlow
switches in the P2P model and the C/S model.

The amount of segments which are sent from a server
and received by the clients was compared in order to confirm
examine that each client receives all segments or not. The
amount of segments which are sent or received is obtained
using statistics per port of an OpenFlow switch. However,
the amount of segments which are sent from the server and
received by the clients are not equal when the node joins
or leaves in the P2P streaming network. Accordingly, we
calculated the amount of segments per second and compared
their values. The load of an OpenFlow switch is the sum of the
number of packets which are sent from its switch and received
by the switch.

B. Results and Considerations

• Joining of nodes

A node joined in the P2P streaming network which already
includes a server and 25 clients (Figure 9) every 10 seconds.
5 new nodes joined the network in total. As a result, a P2P
streaming network is reconfigured to be balanced (Figure 10).

Figure 11 compares the amount of segments which are sent
from the server and an average of the amount of segments

 𝑖 : Node 𝑖 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 24 20 19 18 26 22 21 17 25 23 28 30 29 27 31

Figure 10. The balanced P2P streaming network topology

 9.6

 9.65

 9.7

 9.75

 9.8

 9.85

 9.9

 9.95

 10

 10.05

 0 10 20 30 40 50 60 70

P
a

c
k
e

ts
 [

p
a

c
k
e

ts
 /

 s
e

c
o

n
d

]

Time [s]

Transmission amount of the distribution source node
Average reception amount of node

Figure 11. Comparison of the amount of segments which are sent from the
server and received by the clients

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70

P
a

c
k
e

ts
 [

p
a

c
k
e

ts
 /

 s
e

c
o

n
d

]

Time [s]

Transmission amount of the distribution source node
Reception amount of the parent node

Reception amount of the new node
The new node has joined

Figure 12. Comparison of the amount of segments which are sent from the
server and received by the new node and its parent node

which are received by the clients when 5 nodes join the
P2P streaming network. These values are equal in general.
However, it is not equal occasionally due to delay such as
to modify the flow and forward segments before a joining
node begins to receive segments (Figure 12). The amount
of segments which are received by its parent node is equal
to the amount of segments which are sent from the server.
Accordingly, a joining node causes the delay before receiving
segments when it joins the P2P streaming network. However,
other nodes do not suffer from this.

• Leaving of a node

A node whose depth from a server is 1 is left from the
network which has the server and 30 clients (Figure 10).
The unbalanced P2P streaming network topology is changed
immediately after a node left (Figure 13). Its topology is
reconfigured to be balanced by repeating the reconfiguration

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-521-0

ICDS 2016 : The Tenth International Conference on Digital Society and eGovernments

 𝑖 : Node 𝑖 1

4 3

8 5 12 7

16 9 20 11 24 13 28 15

19 21 17 25 23 29 27 31 6

10 14

18 26 22 30

Figure 13. The P2P streaming network which is roconfigured immediately
after a node left.

 𝑖 : Node 𝑖 1

4 3

8 5 12 7

16 9 20 11 24 13 28 15

6 23 14 19 10 26 18 21 17 25 23 30 29 27 31

Figure 14. The balanced P2P streaming network after reconfiguration

TABLE II. Difference of the process according to the depth from a server

The depth from a server 1 2 3 4
The number of reconstruction 3 2 1 1

The number of nodes which reselect a parent node8 4 2 0
The number of flows which are modified 12 6 3 1

procedure (Figure 14). Similar experiments were conducted
repeatedly where a node in a different depth left. Then we
examined the number of reconfiguration to make the P2P
streaming network balanced, the number of nodes which
reselect parent nodes and modified flows in the OpenFlow
switches (Table II). If a node whose depth isdn left, these
values are as follows.d = dmin−dn, wheredmin is calculated
using (1). The number of reconfiguration isd. The number of
nodes which reselect parent nodes iscd, wherec is the number
of child nodes which are connected to the nodes. Then, the
number of flows which are modified in an OpenFlow switch
is cd + cd+1.

Figure 15 compares the amount of segments which are sent
from the server and an average of the amount of segments
which are received by the clients when a node left from the
P2P streaming network. These values are equal. Accordingly,
other nodes do not suffer from any influence by a leaving node
and reconfiguration of the P2P streaming network.

• Comparison of the P2P model and the C/S model

We performed similar experiment which the node joins or
leaves to change the number of child nodes is unlimited. Figure
16 compares the amount of segments which are sent from the
server and an average of the amount of segments which are
received by the clients when 5 nodes join the P2P streaming
network. If these values are not equal, a joining node causes
delay as mentioned above. Figure 17 compares the amount of
segments which are sent from the server and an average of the

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

P
a

c
k
e

ts
 [

p
a

c
k
e

ts
 /

 s
e

c
o

n
d

]

Time [s]

Transmission amount of the distribution source node
Average reception amount of node

Figure 15. Comparison of the amount of segments which are sent from the
server and received by the clients

 9.6

 9.65

 9.7

 9.75

 9.8

 9.85

 9.9

 9.95

 10

 10.05

 0 10 20 30 40 50 60 70

P
a

c
k
e

ts
 [

p
a

c
k
e

ts
 /

 s
e

c
o

n
d

]

Time [s]

Transmission amount of the distribution source node
Average reception amount of node

Figure 16. Comparison of the amount of segments which are sent from the
server and received by the clients when 5 nodes join

 9.9

 10

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

 0 5 10 15 20 25 30 35 40

P
a

c
k
e

ts
 [

p
a

c
k
e

ts
 /

 s
e

c
o

n
d

]

Time [s]

Transmission amount of the distribution source node
Average reception amount of node

Figure 17. Comparisone of the amount of segments which are sent from the
server and received by the clients when a node leaves

amount of segments which are received by the clients when a
node leaves from the P2P streaming network. If the amount of
the segments which are received by the clients is more than the
amount of segments which are sent from the server, the leaving
node receives segments after it left from the P2P streaming
network. From the above, our proposal system would be able
to perform also as the C/S model.

Figure 18 compares the P2P model and the C/S model
when 5 nodes join. Similarly, Figure 19 compares the P2P
model and the C/S model when a node leave. In the C/S model,
the load of the OpneFlow switch which is next to the server
is increased or decreased according to the number of clients.

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-521-0

ICDS 2016 : The Tenth International Conference on Digital Society and eGovernments

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

P
a

c
k
e

ts
 [

p
a

c
k
e

ts
 p

e
r

s
e

c
o

n
d

]

Time [s]

C/S model Switch adjacent to the distribution source node
P2P model Switch adjacent to the distribution source node
C/S model The average of the switch adjacent to the node
P2P model The average of the switch adjacent to the node

Figure 18. Comparison of the load of swithes when 5 nodes join

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

P
a

c
k
e

ts
 [

p
a

c
k
e

ts
 p

e
r

s
e

c
o

n
d

]

Time [s]

C/S model Switch adjacent to the distribution source node
P2P model Switch adjacent to the distribution source node
C/S model The average of the switch adjacent to the node
P2P model The average of the switch adjacent to the node

Figure 19. Comparison of the load of swithes when a node leave

On the other hand, in P2P model, the load of the OpneFlow
switch which is next to the server is constant. Moreover, we
can claim that the P2P model realized load balancing because
the loads of all the OpenFlow switches are equal.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method which the controller
controls routing of the P2P streaming network. In our proposal,
the controller reconfigures the P2P streaming network topology
when a node joins or leaves. The proposal uses OpenFlow,
and can reconfigure more flexibly and dynamically than the
implementation which does not use OpenFlow. We conducted
experiments using Trema in order to confirm the effectiveness
of our proposal. As a result, a node causes delay before
receiving segments. However, the node receives all segments.

The disadvantages of our proposal are as below. First, the
wrong P2P streaming network topology may be configured due
to complex control packets. Next, if OpenFlow switches and
non-OpenFlow switches are mixed, the node which has a non-
OpenFlow switch should be a leaf node. We will solve these
disadvantages.

At last, we describe future works.

• In this paper, we performed experiments using test
packets of Trema instead of segments. Therefore, we
need to confirm the behavior of the server, clients and
OpenFlow switches when segments are forwarded us-
ing streaming protocol, such as HTTP Live Streaming
[11].

• In OpenFlow, network devices are controlled by the
controller in a centralized manner. However, it is
difficult to apply OpenFlow to a large network such
as the Internet currently. Accordingly, if OpenFlow is
applied to the P2P streaming network, the following
methods may be needed. First, a virtual switch would
be prepared on each host which joins the P2P stream-
ing network. Next, an overlay network is configured
using these switches. Lastly, the controller controls
these virtual switches.

REFERENCES

[1] K. Ono, A. Zhygmanovskyi, N. Matsumoto, and N. Yoshida, “Resilient
Live-Streaming with Dynamic Reconfiguration of P2P Networks,”
EMERGING 2014, The Sixth International Conference on Emerging
Network Intelligence, 2014, pp. 6–11.

[2] S. Jain, et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comp. Comm. Review. Vol. 43. No.
4. ACM, 2013, pp. 3–14.

[3] B. A. A Nunes, M. Mendonca, X. Nguyenm, K. Obraczka, and T.
Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” Comm. Surveys & Tutorials, IEEE,
16.3, 2014, pp. 1617–1634.

[4] N. McKeown et al.,“OpenFlow: Enabling Innovation in Campus Net-
works,” ACM SIGCOMM Comp. Comm. Review 38.2 pp. 69-74, 2008.

[5] I. Trajikovska, P. Aeschimann, C. Marti, T. M. Bohnert, and J. Sal-
vachtia. “SDN enabled QoS provision for online streaming services
in residential ISP networks,” Proc. Consumer Electronics-Taiwan IEEE
Int. Conf., 2014, pp. 33–34.

[6] O. M. M. Othman and K. Okamura, “On Demand Content Anycasting
to Enhance Content Server Using P2P Network,” IEICE TRANS. on
Info. and Sys., 2012, pp. 514–522.

[7] T. Akiyama, K. Iida, J. Zhang, and Y. Shiraishi, “Proposal for a New
Generation SDN-Aware Pub/Sub Environment,” Proc. 13th Int. Conf.
on Net., 2014, pp. 210–214.

[8] T. Akiyama, Y. Kawai, Y. Teranishi, R. Bannno, and K. Iida, “SAPS:
Software Defined Network Aware Pub/Sub – A Design of the Hybrid
Architecture Utilizing Distributed and Centralized Multicast,” Proc.
Comp. Software and App. Conf. on IEEE 39th Annual, 2015, pp. 361–
366.

[9] Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method of
IP multicast in overlay networks using openflow.” Proc. 1st workshop
on Hot topics in software defined networks, ACM, 2012, pp. 91–96.

[10] Trema, http://trema.github.io/trema/ [retrieved: March, 2016]

[11] HTTP Live Streaming, https://developer.apple.com/streaming/ [re-
trieved: March, 2016]

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-521-0

ICDS 2016 : The Tenth International Conference on Digital Society and eGovernments

