
Performance Evaluation of TCP Variants with Packet
Reordering

Yutaka Fukuda

Information Science Center,
Kyushu Institute of Technology

1-1 Sensui-cho, Tobata,
Kitakyushu 804-8550, Japan

Email: fukuda@isc.kyutech.ac.jp

Daiki Nobayashi

Faculty of Engineering,
Kyushu Institute of Technology

1-1 Sensui-cho, Tobata-ku,
Kitakyushu 804-8550, Japan

Email: nova@ecs.kyutech.ac.jp

Takeshi Ikenaga

Faculty of Engineering,
Kyushu Institute of Technology

1-1 Sensui-cho, Tobata-ku,
Kitakyushu 804-8550, Japan

Email: ike@ecs.kyutech.ac.jp

Abstract—Packet reordering in a short fixed period is
considered in this paper. We believe that data will be
transmitted dynamically and in parallel in the near
future, which will require more frequent periodic packet
reordering. This in turn will lead to unnecessary re-
transmissions and throughput degradation to the TCP
(Transmission Control Protocol). There has been much
research to improve the TCP performance with packet
reordering, but the considered reorder intervals have
been based on measurements on the existing Internet,
and the short, fixed reorder intervals caused by the
flexible transmission schemes have not been studied
sufficiently. Therefore, in this paper, we vary the fixed
reorder interval from within the Round-Trip Time
(RTT) to over the RTT, and evaluate the communi-
cation performance of TCP NewReno and Cubic. From
the simulation results, we show that the performance of
TCP Cubic is highly affected by the packet reordering.

Keywords–TCP; Cubic; NewReno; packet reordering.

I. Introduction
Packet reordering is out-of-order packet arrival at the

receiver. Namely, the destination receives a packet in a dif-
ferent order from its sending one. Although there are sev-
eral causes, one of the main reasons for packet reordering
is that some packets take different paths because of route
oscillations over the network layer. TCP (Transmission
Control Protocol) addresses this issue by performing se-
quence control and sends back duplicate ACKs (Acknowl-
edgments) to report the packet gap. However, the TCP
sender assumes packet loss after receiving three duplicate
ACKs from the receiver, and decreases the transmission
rate, which causes a substantial throughput degradation.
To avoid this performance deterioration, various methods
have been proposed in previous studies [4]–[10].

In contrast, recent development trends in network tech-
nologies, in addition to the usual communication perfor-
mance metrics, such as fault tolerance and delay, have
included multipath routing for a variety factors such as
power savings. Furthermore, research and development are
also being conducted extensively on maintaining communi-
cation while simultaneously using different types of media

on mobile devices, such as LTE and IEEE 802.11 wireless
LAN. Networks in the future are therefore expected to
move further toward dynamic multipath routing, which
will generate more packet reordering along the path and
change the reordering pattern. Especially, packet reorder-
ing may occur continuously at regular intervals because
of, for example, simultaneous multipath use in order to
achieve high-speed and efficient communication. However,
to the best of the authors’ knowledge, the impact of
packet reordering occurring at short, regular intervals on
the performance of TCP communication has not been
previously studied.

Therefore, the objective of this paper is to study the
impact of packet reordering occurring at regular intervals
on the performance of TCP communication. Specifically,
this paper examines the communication performance when
frequent packet reordering occurs continuously within and
over the Round-Trip Time (RTT) using NewReno and
Cubic as TCP congestion control algorithms, and shows
the requirement to adapt the packet reordering from sim-
ulation results.

The remainder of the paper is organized as follows.
Section 2 discusses the related studies. Section 3 describes
the simulation model and the packet reordering schemes
used in this paper. Section 4 presents the communication
performances of TCP NewReno and Cubic when packet
reordering occurs, and Section 5 summarizes our conclu-
sions.

II. Related Work
Many studies [1]–[3] show actual measurements of

packet reordering occurrence on the Internet. When a
packet arrives out of order, the TCP receiver sends out
a duplicate ACK on the missing packet. If at least three
duplicate ACKs arrive, then the TCP sender interprets
them as packet loss, and retransmits the packet indicated
by the duplicate ACK. Then, fast recovery is triggered
with fast retransmit, and congestion window cwnd is set
to half its value, which causes significant performance
degradation. To date, there have been many studies [5]–
[10] aimed at solving this problem.

Proposed solutions for packet reordering are classified
as follows: (1) dynamically control the number of duplicate

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

ACKs to enter fast recovery [4], [6], [7]; (2) detect the
occurrence of packet reordering by the TCP timestamp
option and restore the reduced cwnd and ssthresh to
their original values [5]; and (3) detect packet loss not by
duplicate ACKs but by using timers [8]. The advantages
and disadvantages of these proposed solutions, as well as
their evaluation through a simulation study, are provided
in detail in Leung et al. [9]. In addition, Feng et al. [10]
evaluated the performance of the proposed solutions for
packet reordering in a high-speed communication environ-
ment.

To evaluate the performance of the proposed solutions,
these previous studies use actual measurements on the
Internet. In simulations, they vary the packet delay be-
tween relay routers to invoke packet reordering. However,
we believe that data packets will be transmitted more
dynamically and in parallel to achieve effective perfor-
mance on the near-future Internet, which will cause more
frequent periodic packet reordering. To the best of the au-
thors’ knowledge, TCP communication performance with
frequent and continuous packet reordering within and over
the RTT has not been studied sufficiently.

III. Simulation Model
In this study, we use the network simulator ns-3 [11]

after adding a packet reordering function. The simulation
topology for the simulation is given in Figure 1. The
sending terminal S sends TCP segments with a size of
1,500 bytes to the receiving terminal D. It is assumed that
each TCP flow is used for greedy file transfer. Assuming
concurrent use of multiple paths, packet reordering was
modeled to occur at the bottleneck link between routers
R1 and R2 with a link bandwidth of 10 Mb/s and a delay
of 5 ms. In contrast, the link bandwidth of the access
links between each terminal and routers R1 and R2 is 100
Mb/s with a delay of 15 ms, resulting in an RTT of 70
ms between the terminals. The TCP congestion control
algorithms used for the study are NewReno [12] [13] and
the Linux-standard Cubic [14], [15]. Simulation time is 10.2
s, and TCP starts transmission at 0.2 s after starting the
simulation.

In previous studies, the setting of the packet reordering
interval is based on arrival distributions obtained by actual
measurements. In contrast, in this paper, we assume that
reordered packets arrive predetermined interval or more.
Specifically, if the buffer size of R1 is larger than the
predetermined variable RI (Reorder Interval), then the
head of line packet in R1 is moved behind by the RI
packet size. Note that other packets are not reordered until
transmission of the moved packet is completed.

Reordering behavior in our study is illustrated in Fig-
ure 2. First, assume that there are 11 packets in R1, packets
10 to 20, as shown in Figure 2(a) and RI = 4. Since the
buffer size is 11, which is larger than RI, and head of line
packet 10 has not been reordered before, packet reordering
occurs and packet 10 is moved behind by RI = 4 packets as
shown in Figure 2(b). Packets are thereafter sequentially
transmitted until packet 10 as shown in Figure 2(c). After
packet 10 is transmitted, six packets, packets 15 to 20,
still remain in R1. Since the packet reordering condition
is satisfied, the head of line packet 15 is moved behind

TABLE I. SIMULATION CONDITIONS

Segment Size 1,500 bytes
RTT 70 ms

Reorder Interval 4–100 packets
(Minimum 4.8–120 ms intervals)

TCP variants NewReno, Cubic
Simulation time 10.2 s

Simulator ns-3

Figure 1. Simulation model.

by 4 packets as shown in Figure 2(d). Based on this
scheme, packet reordering occurs and packets at every RI
are moved backward if the buffer size of R1 is larger than
RI.

In the simulation, RI was set from 4 to 100 packets.
Note that since the TCP segment size is 1,500 bytes and
the link bandwidth between R1 and R2 is 10 Mb/s, the
forwarding time of one packet is 1,500 bytes × 8 bits/10
Mb/s = 1.2 ms. Thus, if RI = 4, then packets are reordered
at intervals of 1.2 ms × 4 = 4.8 ms. Moreover for RI =
4, since the RTT between terminals is 70 ms, reordering
can occur 70/4.8 ≃ 14 times at most within one RTT. The
simulation conditions given above are shown in Table I.

IV. Simulation Results and Discussion
The simulation results are presented in this section.

We set the buffer size of relay router R1 sufficiently in
order not to lose packets, and the impact of packet re-
ordering alone on the performance of TCP communication
is studied. Next, we show how packet reordering impacts
communication performance both when RI is within and
over RTT.

A. Fundamental Characteristics
As a preliminary step, throughput was measured when

packet reordering does not occur under the same sim-
ulation conditions. A throughput of 9.54455 Mb/s was
confirmed for both Cubic and NewReno. Figure 3 shows
the normalized throughput (= throughput with packet
reordering / throughput without packet reordering) when
RI is varied from 4 to 100. Figure 4 shows the number of
fast recovery events.

From Figure 3, normalized throughput of both
NewReno and Cubic are not strictly increasing, since the
packet reordering pattern in each RI is different. However,
the occurrence of packet reordering caused throughput
to decrease by a maximum of approximately 50 % for
NewReno and a maximum of approximately 65 % for
Cubic. The throughput performance of Cubic is lower than
that of NewReno except for RI = 30. In addition, Figure 4
also shows that packet reordering causes fast recovery for
RI below 100. Moreover, a shorter RI corresponds to a
larger number of fast recovery events. Note that for RI =
100, Figure 4 shows that there is no fast recovery, and since
packet reordering does not occur at R1, the normalized

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

Figure 2. Packet reordering.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70 80 90 100

N
o
rm

al
iz

ed
 t

h
ro

u
g
h
p
u
t

Reorder interval [packets]

CUBIC

NewReno

Figure 3. Normalized throughput [Mb/s].

throughputs of both TCP variants are equal to 1. Fur-
thermore, a comparison of Figures 3 and 4 reveals that,
for Cubic, throughput performance deteriorates regardless
of the number of fast recovery events. We can therefore
consider that both frequent occurrence of packet reorder-
ing (small RI) and occurrence of packet reordering with a
large cwnd (large RI) affect throughput performance for
Cubic. Thus, in the next section, we examine the behavior
of NewReno and Cubic for different RIs.

B. For RI shorter than RTT
We first consider the case that RI is 8 (1.2 ms × 8 =

9.6 ms), where the interval for packet reordering is shorter
than RTT. The cwnd of NewReno and Cubic are shown
in Figures 5 and 6, respectively. cwnd increases even after
fast recovery due to packet reordering in TCP NewReno,
whereas cwnd fluctuates at a low range in TCP Cubic, as
illustrated by Figures 5 and 6. To show their behaviors in
more detail, the time range between 2 and 2.3 s is shown
in Figures 7 and 8. Figure 7 shows that, after fast recovery
is invoked because of packet reordering, NewReno sets
cwnd to half its value before fast recovery and continues
communication in congestion avoidance mode. In contrast,
Cubic repeatedly decreases cwnd to its initial value of 2

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
er

 o
f

F
as

t
re

co
v
er

y
 c

o
u
n
t

Reorder interval [packets]

NewReno

CUBIC

Figure 4. Fast recovery count.

after fast recovery, as demonstrated in Figure 8.
To understand Cubic’s behavior, cwnd from 0 to 2

s is considered in Figure 9. As shown in the figure, in
Cubic, the size of cwnd after fast recovery is gradually
reduced until it falls to the minimum value of 2. This is
because Cubic updates cwnd and ssthresh according to
the following equation [15].

cwnd = ssthresh =

max(cwnd × β

BICTCP_BETA_SCALE
, 2)

(1)

We use β = 819 and BICTCP_BETA_SCALE =
1024 for the simulation, thus multiplicative decrease factor
is 0.8. Based on (1), cwnd with successive fast recov-
ery gradually becomes smaller and eventually converges
to the minimum value of 2, which significantly reduces
throughput. These results show that, for frequent packet
reordering, the throughput performance of TCP Cubic is
highly affected by the packet reordering because Cubic
updates cwnd based on (1).

C. For RI longer than RTT
In this section, we consider the case that RI is 80 (1.2

ms × 80 = 96 ms), where the interval for packet reordering
is longer than RTT. The cwnd for each congestion control
algorithm is shown in Figures 10 and 11. Figure 10 shows
that NewReno can send packets in congestion avoidance
mode even after the occurrence of packet reordering. In
contrast, as shown in Figure 11, increase of cwnd in Cubic
occurs intermittently in the range between 2 and 8 s. In
Cubic, cwnd can be increased after receiving the number
of ACKs given by cnt. The count variable cnt is calculated
according to the following equation [15].

if (cwnd < W (t + RTT)
cnt = cwnd

W (t+RT T)−cwnd (2)
else

cnt = 100 × cwnd (3)

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

 0

 50

 100

 150

 200

 0 2 4 6 8 10

cw
n
d
 [

p
ac

k
et

s]

Time [s]

cwnd

Figure 5. TCP NewReno (RI = 8).

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

cw
n
d
 [

p
ac

k
et

s]

Time [s]

cwnd

Figure 6. TCP Cubic (RI = 8).

 0

 50

 100

 150

 200

 2 2.05 2.1 2.15 2.2 2.25 2.3

cw
n

d
 [

p
ac

k
et

s]

Time [s]

cwnd

Figure 7. TCP NewReno (RI = 8; 2.0–2.3 s).

 0

 10

 20

 30

 40

 50

 2 2.05 2.1 2.15 2.2 2.25 2.3

cw
n
d
 [

p
ac

k
et

s]

Time [s]

cwnd

Figure 8. TCP Cubic (RI = 8; 2.0–2.3 s).

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2

cw
n

d
 [

p
a
ck

e
ts

]

Time [s]

cwnd

Figure 9. TCP Cubic (RI = 8; 0–2.0 s).

Based on (2) and (3), cnt becomes large if cwnd
becomes somewhat large and the difference between W (t+
RTT) and cwnd is small. In other words, a large number
of received ACKs is required to increase cwnd. For the
case of RI = 80 considered in this section, the value of
cnt is relatively large because packet reordering occurs
when cwnd has increased to some extent. Thus, the cwnd
increase is intermittent for a long period of time, whereas
NewReno can increase cwnd with normal congestion avoid-
ance mode. In order to improve the performance of TCP
Cubic when packet reordering occurs with large cwnd,
different packet loss detection aproach is required.

From these simulation results, we have shown that the
throughput performance of Cubic may deteriorate consid-
erably when packet reordering occurs at intervals longer
than RTT and cwnd is large, even if the number of packet
reordering events per unit time is small. Furthermore,
results of Sections 4.2 and 4.3 show that there is a need for
packet loss detection that does not rely on duplicate ACKs
and a transmission method with higher tolerance to packet
reordering, whereas the cause for the lower throughput in
Cubic varies depending on how packet reordering occurs.

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

 0

 50

 100

 150

 200

 0 2 4 6 8 10

c
w

n
d

Time [s]

cwnd

Figure 10. TCP NewReno (RI = 80).

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10

c
w

n
d

Time [s]

cwnd

Figure 11. TCP Cubic (RI = 80).

V. Conclusion
In this paper, we examined the impact of packet re-

ordering occurring at very short regular intervals on the
communication performances of TCP NewReno and Cu-
bic. Implemented on ns-3, packet reordering was designed
to occur at each predetermined RI interval and head of
line packet move to RI packets. RI was then varied so that
it was within or over RTT to study the throughput and
number of fast recovery events due to packet reordering.
For an RI smaller than RTT, the throughput for Cubic
decreases considerably since Cubic continually reduces
cwnd and ssthresh when duplicate ACKs are detected due
to frequent packet reordering. For an RI larger than RTT,
the throughput performance of Cubic also deteriorates
substantially when packet reordering occurs with a large
cwnd even if the number of packet reordering events per
unit time is small. Specifically, in congestion avoidance
mode, NewReno can increase the cnwd by 1 segment for
each RTT, whereas Cubic cannot increase cwnd until the
predetermined number of ACKs are received. These simu-
lation results indicate that both a packet loss detection
scheme which does not rely on duplicate ACKs and a
method to maintain packet transmission in spite of packet
reordering are vital. Future work includes evaluations of

other TCP variants, such as Compound TCP and TCP-
PR [8], which detects packet loss using timers rather than
duplicate ACKs, in the same packet reordering environ-
ment as in this paper. In addition, congestion control
algorithms with high tolerance to packet reordering should
be considered.

Acknowledgments
This work was supported in part by a JSPS KAKENHI

Grant-in-Aid for Scientific Research (C) (Research Project
No. 16K00129).

References
[1] X. Zhou and P. V. Mieghem, “Reordering of IP Packets in

Internet,” Passive and Active Network Measurement: 5th In-
ternational Workshop, PAM 2004, pp. 237-246, Antibes Juan-
les-Pins, France, Apr., 2004.

[2] L. Gharai, C. Perkins, and T. Lehman, “Packet reordering,
high speed networks and transport protocol performance,” In
Proceedings of the 13th International Conference on Computer
Communications and Networks (IEEE Cat. No. 04EX969), pp.
73-78, Chicago, IL, USA, Oct. 11-14, 2004.

[3] N. M. Piratla and A. P. Jayasumana, “Metrics for packet
reordering: a comparative analysis,” International Journal of
Communication Systems, Vol. 21, No. 1, pp. 99-113, 2008.

[4] E. Blanton and M. Allman, “On making TCP more robust to
packet reordering,” ACM SIGCOMM Computer Communica-
tion Review, Vol. 32, No. 1, pp. 20-30, 2002.

[5] R. Ludwig and R. H. Katz, “The Eifel algorithm: making TCP
robust against spurious retransmissions,” ACM SIGCOMM
Computer Communication Review, Vol. 30, No. 1, pp. 30-36,
Jan. 2000.

[6] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: a
reordering-robust TCP with DSACK,” In Proceedings of the
11th IEEE International Conference on Network Protocols, pp.
95-106, Nov., 4-7, 2003.

[7] K. C. Leung and C. Ma, “Enhancing TCP performance to
persistent packet reordering,” Journal of Communications and
Networks, Vol. 7, No. 3, pp. 385-393, Sept. 2005.

[8] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka,
“A new TCP for persistent packet reordering,” IEEE/ACM
Transaction on Networking, Vol. 14, No. 2, pp. 369-382, Apr.
2006.

[9] K. C. Leung, V. O. K. Li, and D. Yang, “An overview of packet
reordering in Transmission Control Protocol (TCP): problems,
solutions, and challenges,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 18, No. 4, pp. 522-535, Apr. 2007.

[10] J. Feng, Z. Ouyang, L. Xu, and B. Ramamurthy, “Packet
reordering in high-speed networks and its impact on high-speed
TCP variant,” Computer Communications, Vol. 32, No. 1, pp.
62-68, Jan. 2009.

[11] “Network Simulator ns-3,” http://www.nsnam.org/
retrieved: Mar. 2018.

[12] S. Floyd and T. Henderson,“RFC2582: the NewReno modifica-
tion to TCP’s fast recovery algorithm,” RFC, 1999.

[13] S. Floyd, T. Henderson, and A. Gurtov, “RFC3782: the
NewReno modification to TCP’s fast recovery algorithm,”
RFC, 2004

[14] I. Rhee and L. Xu, “CUBIC: a new TCP friendly high-speed
TCP variant,” SIGOPS Operating System Review, Vol. 42, No.
5, pp. 64-74, Jul. 2008.

[15] B. Levasseur, M. Claypool, and R. Kinicki, “A TCP CUBIC
implementation in ns-3,” In Proceedings of the 2014 Workshop
on ns-3 (WNS3’14), Atlanta, Georgia, USA, May 7, 2014.

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-625-5

ICN 2018 : The Seventeenth International Conference on Networks

