
Intelligent Safety Verification for Pipeline Process Order Control Based on
bf-EVALPSN

Kazumi Nakamatsu
School of Human Science and Environment

University of Hyogo
Himeji, Japan

Email: nakamatu@shse.u-hyogo.ac.jp

Jair Minoro Abe
GP in Production Eng., ICET

Paulista University
Sao Paulo, Brazil

Email: jairabe@uol.com.br

Seiki Akama
C-corporation

Kawasaki, Japan
Email:akama@jcom.home.ne.jp

Abstract—A paraconsistent logic program called Extended
Vector Annotated Logic Program with Strong Negation(abbr.
EVALPSN) has been developed for dealing with defeasible
deontic reasoning and plausible reasoning, and also applied
to various kinds of intelligent safety verification and control.
Moreover, in order to deal with before-after relation between
processes (time intervals), another EVALPSN called bf(before-
after)-EVALPSN has been developed recently. In this paper, we
review the reasoning system for before-after relation between
processes based on bf-EVALPSN and introduce how to apply
the reasoning system to real-time pipeline process order safety
verification and control with an example.

Keywords- before-after relation; paraconsistent logic pro-
gram; safety verification; pipeline process order; reasoning
system.

I. INTRODUCTION

It has already passed over two decades since paraconsis-
tent annotated logic and its logic programming have been
developed [3], [4]. Based on the original annotated logic
program, we have developed four kinds of paraconsistent
annotated logic program, ALPSN (Annotated Logic Pro-
gram with Strong Negation), VALPSN (Vector ALPSN),
EVALPSN (Extended VALPSN) that can deal with defeasi-
ble deontic and plausible reasonings, and bf (before-after)-
EVALPSN that can deal with before-after relation between
processes (time intervals) [9]. We note that “before-after”
is abbreviated as just “bf” hereafter. Those annotated logic
programs have been applied to various kinds of intelligent
control and safety verification such as pipeline valve control
based on safety verification [7] and real-time process order
control based on safety verification [10], and so on. More-
over, it has been shown that EVALPSN can be implemented
on microchips as electronic circuits, which implies that
EVALPSN is suitable for real-time control [8].

In this paper, we review the reasoning system for process
before-after relation in bf-EVALPSN [10] and show how to
apply it to the safety verification for process order with an
example. The before-after relation reasoning system based
on bf-EVALPSN consists of two groups of inference rules
called basic bf-inference rules and transitive bf-inference

rules, both of which can be represented in bf-EVALPSN.
In bf-EVALPSN, a special annotated literal, ����� ��� �� �

���� ��� �� called bf-literal whose non-negative integer vector
annotation ��� �� represents the before-after relation between
processes �	� and �	� at time � is introduced. The integer
components � and � of the vector annotation ��� �� represent
the after and before degrees between processes �	� and
�	�, respectively, and before-after relations between two
processes are represented in vector annotations.

In the bf-EVALPSN reasoning system, the basic bf-
inference rules are used for determining the vector anno-
tation of a bf-literal in real-time according to the start/finish
time information of two processes; on the other hand, the
transitive bf-inference rules are used for determining the
vector annotation of a bf-literal in real-time based on the
vector annotations of two related bf-literals as follows.
Suppose that there are three processes, �	�, �	� and �	�
starting in sequence, then the before-after relation between
processes �	� and �	� can be determined from the before-
after relation between processes �	� and �	�, and that
between processes �	� and �	�. Such process before-
after relation reasoning is also formalized as transitive bf-
inference rules in bf-EVALPSN. The transitive bf-inference
system can contribute to reduce the frequency of basic bf-
inference rules and it is a unique feature of our system.

This paper is organized as follows: first, EVALPSN is
reviewed briefly and bf-EVALPSN is defined in details;
next, it is shown how to reason before-after relations in bf-
EVALPSN with a simple example of process order control,
and basic bf-inference rules and transitive bf-inference rules
are introduced; furthermore, a simple practical process order
verification system is provided as an example; last, a related
work of treating before-after relation of time intervals in a
logical system and our future work are introduced.

II. EVALPSN

In this section, we review EVALPSN briefly [5]. Gener-
ally, a truth value called an annotation is explicitly attached
to each literal in annotated logic programs [3]. For example,
let � be a literal, � an annotation, then � � � is called

175Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �

�

�

�

�

�

�

�

(1, 0)

(2, 1)

(0, 1)

(1, 2)

(0, 0)

(0, 2) (2, 0)

(2, 2)

(1, 1)

�����

���
�����

���

���
�����

⊥

α

βγ

∗1

∗2

∗3

�

Figure 1. Lattice ����� and Lattice ��

an annotated literal. The set of annotations constitutes a
complete lattice. An annotation in EVALPSN has a form
of ���� ��� �� called an extended vector annotation. The first
component ��� �� is called a vector annotation and the set of
vector annotations constitutes the complete lattice,

���
� � � ��� ���� � � �
� � � � �
�

�� ��
 are integers �

in Fig. 1. The ordering(��) of ���
� is defined as : let
���� ���, ���� ��� � ���
�,

���� ��� �� ���� ��� iff �� � �� and �� � ��

For each extended vector annotated literal � � ���� ��� ��,
the integer � denotes the amount of positive information
to support the literal � and the integer � denotes that of
negative one. The second component � is an index of fact
and deontic notions such as obligation, and the set of the
second components constitutes the complete lattice,

�� � ��� �� �� �� 	�� 	�� 	��
�

The ordering (��) of �� is described by the Hasse’s diagram
in Fig. 1. The intuitive meaning of each member of �� is

� (unknown)� � (fact)� � (obligation)�

� (non-obligation)� 	� (fact and obligation)�

	� (obligation and non-obligation)�

	� (fact and non-obligation)�
 (inconsistency)

Then the complete lattice ���
� of extended vector anno-
tations is defined as the product ���
� � ��. The ordering
(��) of ���
� is defined: let ����� ���� ���, ����� ���� ��� � ��,

����� ���� ��� �� ����� ���� ��� iff

���� ��� �� ���� ��� and �� �� ��

There are two kinds of epistemic negation (�� and ��)
in EVALPSN, both of which are defined as mappings over
���
� and ��, respectively.

Definition 1 (epistemic negations �� and �� in EVALPSN)

������� ��� ��� � ���� ��� ���
� � ���

������� ������ � ���� ������ ������� ��� ��� � ���� ��� ���

������� ��� ��� � ���� ��� ��� ������� ��� ��� � ���� ��� ���

������� ��� 	��� � ���� ��� 	��� ������� ��� 	��� � ���� ��� 	���

������� ��� 	��� � ���� ��� 	��� ������� ���
�� � ���� ���
�

If we regard the epistemic negations as syntactical oper-
ations, the epistemic negations followed by literals can be
eliminated by the syntactical operations. For example,

���� � ���� ��� ��� � � � ���� ��� �� and

���� � ��	� ��� ��� � � � ��	� ��� ��

There is another negation called strong negation (�) in
EVALPSN, and it is treated as well as classical negation.
Definition 2 (strong negation �) (see [4]) Let � be any
formula and � be �� or ��.

� � ���� � � ��� � � � � ��� � � ��

Definition 3 (well extended vector annotated literal) Let �
be a literal.

� � ���� ��� �� and � � ���� ��� ��

are called well extended vector annotated literals, where
�� � � �	� �� � � � �
�, and � � � �� �� � �.
Definition 4 (EVALPSN) If ��� � � � � �� are weva-literals,

�� � � � � � ��� � ���� � � � � � � �� � ��

is called an EVALPSN clause. An EVALPSN is a finite set
of EVALPSN clauses.

Here we comment that if the annotations � and � repre-
sent fact and obligation, notions “fact”, “obligation”, “for-
biddance” and “permission” can be represented by extended
vector annotations, ���� ��� ��, ���� ��� ��, ������� ��, and
������� ��, respectively, in EVALPSN, where � is a non-
negative integer.

III. BEFORE-AFTER EVALPSN

In this section, we review bf-EVALPSN. The details
are found in [10] The reasoning system in bf-EVALPSN
consists of two kinds of inference rules called basic bf-
inference rule and transitive bf-inference rule, which will be
introduced with some simple examples of real-time process
order control in the following sections.

In bf-EVALPSN, a special annotated literal ����� ��� �� �
���� ��� �� called bf-literal whose non-negative integer vector
annotation ��� �� represents the before-after relation between
processes �	� and �	� at time � is introduced. The integer
components � and � of the vector annotation ��� �� represent
the after and before degrees between processes �	�����
and �	�����, respectively, and before-after relations are
represented paraconsistently in vector annotations.

176Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

�� ���

�� ���

Figure 2. Bf-relations Before(be)/After(af)

�

�� �����
�

�� �����

Figure 3. Bf-relations Disjoint Before (db)/After (da)

Definition 5(bf-EVALPSN)
An extended vector annotated literal ����� �� � �� � ���� ��� �� is
called a bf-EVALP literal or a bf-literal for short, where ��� ��
is a vector annotation and � � ��� �� ��. If an EVALPSN
clause contains bf-EVALP literals, it is called a bf-EVALPSN
clause or just a bf-EVALP clause if it contains no strong
negation. A bf-EVALPSN is a finite set of bf-EVALPSN
clauses.

We provide a paraconsistent before-after interpretation for
vector annotations representing bf-relations in bf-EVALPSN,
and such a vector annotation is called a bf-annotation.
Exactly speaking, bf-relation has fifteen meaningful kinds
according to bf-relations between each start/finish time of
two processes in bf-EVALPSN. Let us start from the most
basic bf-relations in bf-EVALPSN.
Before (be)/After (af)
are defined according to the bf-relation between each start
time of two processes. If one process has started before/after
another one starts, then the bf-relations between them are
defined as “before/after”, which are represented in Fig. 2.

We introduce other kinds of bf-relations as well as before
(be)/after (af). The original idea of the classification of
process before-after relations has introduced in [1].
Disjoint Before (db) /After (da)
are defined as there is a time lag between the earlier process
finish time and the later one start time, which are described
in Fig. 3.
Immediate Before (mb)/After (ma)
are defined as there is no time lag between the earlier process
finish time and the later one start time, which are described
in Fig. 4.
Joint Before (jb)/After (ja)
are defined as two processes overlap and the earlier pro-
cess had finished before the later one finished, which are
described in Fig. 5.
S-included Before (sb), S-included After (sa)

�

�� ��

���
�

�� �����

Figure 4. Bf-relations Immediate Before(mb)/After(ma)

�

�� �����

�

�� �����

Figure 5. Bf-relations, Joint Before/After

�
xs xfPri

�
ys yfPrj

Figure 6. Bf-relations S-included Before(sb)/After(sa)

are defined as one process had started before another one
started and they have finished at the same time, which are
described in Fig. 6.
Included Before (ib)/After (ia)
are defined as one process had started/finished before/after
another one started/finished, which are described in Fig. 7.
F-included Before (fb)/After (fa)
are defined as the two processes have started at the same time
and one process had finished before another one finished,
which are described in Fig. 8.
Paraconsistent Before-after (pba)
is defined as two processes have started at the same time
and also finished at the same time, which is described in
Fig. 9.

The epistemic negation over bf-annotations, be, af, db,
da, mb, ma, jb, ja, ib, ia, sb, sa, fb, fa, pba is defined
and the complete lattice of bf-annotations is shown in Fig.
10.
Definition 6 (Epistemic Negation �� for Bf-annotations)
The epistemic negation �� over the bf-annotations is ob-
viously defined as the following mappings :

������ � ��� ������ � ��� ������ � ���

������ � ��� ������ � ��� ������ � ���

������ � ��� ������ � ��� ������ � ���

������ � ��� ���	�� � 	�� ���	�� � 	��

������ � ��� ������ � ��� ���
��� �
��

�

�� �����

�

�� �����

Figure 7. Bf-relations Included Before (ib)/After (ia)

�
xs xfPri

�
ys yfPrj

Figure 8. Bf-relations F-included Before(fb)/After(fa)

177Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

�
xs xfPri

�
ys yfPrj

Figure 9. Bf-relation, Paraconsistent Before-after

Therefore, each bf-annotation can be translated into vector
annotatations as bf� ���
�, db� ��� 	��, mb� �	� 		�, jb�
��� 	��, sb� ��� ��, ib� �
�
�, fb� ��� ��, pba� ��� ��.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

�� afterbefore

�

knowledge

⊥12

�12

be af

db damb majb jasb saib iafb fapba

Figure 10. The Complete Lattice �������� of Bf-annotations

IV. REASONING SYSTEM IN BF-EVALPSN

In this section, we introduce the bf-relation reasoning
system in bf-EVALPSN, which consists of two kinds of
inference rules called basic bf-inference rules and transitive
bf-inference rules.

A. Basic Before-after Inference Rule

In order to represent basic bf-inference rules in bf-
EVALPSN, we newly introduce two literals:
������ ��, which is intuitively interpreted that process �	�

starts at time �, and
������ ��, which is intuitively interpreted that process �	�

finishes at time �,
which are used for expressing process start/finish informa-
tion and have one of the vector annotations, ��� ��, t�	� ��,
f��� 	�, �	� 	�, where annotations t and f can be intuitively
interpreted as “true” and “false”, respectively.

Here we introduce the first group of basic bf-inference
rules to be applied at the initial stage, which are called ��� ��-
rules.

(0,0)-rules
Suppose that no process has started yet and the vector
annotation of bf-literal ����� �� � �� is ��� ��, which shows
that there is no knowledge in terms of the bf-relation

between processes �	� and �	� .
��� ��-rule-1 If process �	� started before process �	� starts,
then the vector annotation ��� �� of bf-literal ��� �� �� � ��
should turn to bf-annotation be���
�.
��� ��-rule-2 If both processes �	� and �	� have started at
the same time, then the vector annotation ��� �� of bf-literal
����� �� � �� should turn to ��� ��.

Basic bf-inference rules ��� ��-rule-1 and 2 can be trans-
lated into the bf-EVALPSN clauses,

����� �� � �� � ���� ��� �� � ������ �� � ��� ��� � ����� � �� � ��� ��

� ����� �� � �� � ����
�� ��� (1)

����� �� � �� � ���� ��� �� � ������ �� � ��� �� � ����� � �� � ��� ��

� ����� �� � �� � ���� ��� ��
 (2)

Next, suppose that one of basic bf-inference rules ��� ��-
rule-1 and 2 has been applied, then the vector annotation of
bf-literal ����� �� � �� should be ���
� or ��� ��. Therefore, we
have the following two groups of basic bf-inference rules to
be applied after basic bf-inference rules ��� ��-rule, which
are called ���
�-rules and ��� ��-rules.

(0,8)-rules
Suppose that the vector annotation of bf-literal ��� �� �� � ��
is be���
�. Then we have the following bf-inference rules
to be applied after basic bf-inference rule ��� ��-rule-1.
���
�-rule-1 If process �	� has finished before process
�	� starts, and process �	� starts immediately after process
�	� finished, then the vector annotation ���
� of bf-literal
����� �� � �� should turn to mb�	� 		�.
���
�-rule-2 If process �	� has finished before process
�	� starts, and process �	� has not started immediately after
process �	� finished, then the vector annotation ���
� of bf-
literal ����� �� � �� should turn to db��� 	��.
���
�-rule-3 If process �	� starts before process �	�
finishes, then the vector annotation ���
� of bf-literal
����� �� � �� should turn to ���
� that is the greatest lower
bound of the bf-annotations, jb��� 	��, sb��� ��, ib�
�
�.
Basic bf-inference rules ���
�-rule-1,2 and 3 can be trans-
lated into the bf-EVALPSN clauses,

����� �� � �� � ����
�� �� � ������ �� � ��� �� � ����� � �� � ���

� ����� �� � �� � ��	� 		�� ��� (3)

����� �� � �� � ����
�� �� � ������ �� � ��� ��� � ����� � �� � ���

� ����� �� � �� � ���� 	��� ��� (4)

����� �� � �� � ����
�� ��� � ������ �� � ��� �� � ����� � �� � ��� ��

� ����� �� � �� � ����
�� ��
 (5)

(5,5)-rules
Suppose that the vector annotation of bf-literal ��� �� �� � ��
is ��� ��. Then we have the following bf-inference rules to
be applied after basic bf-inference rule ��� ��-rule-2.
��� ��-rule-1 If process �	� has finished before process
�	� finishes, then the vector annotation ��� �� of bf-literal
����� �� � �� should turn to sb��� ��.

178Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

��� ��-rule-2 If both processes �	� and �	� have finished
at the same time, then the vector annotation ��� �� of bf-
literal ����� �� � �� should turn to pba��� ��.
��� ��-rule-3 If process �	� has finished before process
�	� finishes, then the vector annotation ��� �� of bf-literal
����� �� � �� should turn to sa��� ��.

Basic bf-inference rules ��� ��-rules-1,2 and 3 can be
translated into the bf-EVALPSN clauses,

����� �� � �� � ���� ��� �� � ������ �� � ��� ��� � ����� � �� � ��� ��

� ����� �� � �� � ���� ��� ��� (6)

����� �� � �� � ���� ��� �� � ������ �� � ��� �� � ����� � �� � ��� ��

� ����� �� � �� � ���� ��� ��� (7)

����� �� � �� � ���� ��� ��� � ������ �� � ��� �� � ����� � �� � ��� ��

� ����� �� � �� � ���� ��� ��
 (8)

If one of basic bf-inference rules ��� ��-rule-1,2 and 3,
and ���
�-rule-1 and 2 has been applied, then complete bf-
relations such as jb��� 	��/ja�	�� �� should be inferred.
On the other hand, if basic bf-inference rule ���
�-rule-
3 has been applied, no complete bf-annotation could be
inferred. Therefore, a group of basic bf-inference rules called
���
�-rules should be considered after basic bf-inference
rule ���
�-rule-3.

(2,8)-rules
Suppose that the vector annotation of bf-literal ��� �� �� � ��
is ���
�. Then we have the following bf-inference rules to
be applied after basic bf-inference rule ���
�-rule-3.
���
�-rule-1 If process �	� finished before process �	�
finishes, then the vector annotation ���
� of bf-literal
����� �� � �� should turn to jb��� 	��.
���
�-rule-2 If both processes �	� and �	� have finished
at the same time, then the vector annotation ���
� of bf-
literal ����� �� � �� should turn to fb��� ��.
���
�-rule-3 If process �	� has finished before �	�
finishes, then the vector annotation ���
� of bf-literal
����� �� � �� should turn to ib�
�
�.

Basic bf-inference rules ���
�-rule-1,2 and 3 can be
translated into the bf-EVALPSN clauses,

����� �� � �� � ����
�� �� � ������ �� � ��� ��� � ����� � �� � ��� ��

� ����� �� � �� � ���� 	��� ��� (9)

����� �� � �� � ����
�� �� � ������ �� � ��� �� � ����� � �� � ��� ��

� ����� �� � �� � ���� ��� ��� (10)

����� �� � �� � ����
�� ��� � ������ �� � ��� �� � ����� � �� � ��� ��

� ����� �� � �� � ��
�
�� ��
 (11)

The application orders of all basic bf-inference rules are
summarized in Table I.

B. Transitive Before-after Inference Rule

Here we introduce another kind of bf-inference rules,
transitive bf-inference rule.

Table I
APPLICATION ORDERS OF BASIC BF-INFERENCE RULES

vector rule vector rule vector rule vector
rule-1 ��� ���
rule-2 ��� ���

rule-1 ��� �� rule-1 ��� ���
��� �� rule-3 ��� �� rule-2 ��� ��

rule-3 �	� ��
rule-1 �
� ��

rule-2 �
�
� rule-2 ��� ��
rule-3 ���
�

Suppose that there are three processes �	�,�	� and �		
starting sequentially, then we consider to reason the vector
annotation of bf-literal ����� �	� �� from those of bf-literals
����� �� � �� and ���� � �	� �� transitively. First of all, we will
show a simple example for forming transitive bf-inference
rules as introduction.
Example 1
Suppose that both processes �	� and �	� have already
started at time � but process �		 has not started yet as shown
in Fig. 11, then we have obtained the vector annotation
���
� of bf-literal ����� �� � �� by basic bf-inference rule
���
�-rule-3 and the vector annotation ���
� of bf-literal
���� � �	� �� by basic bf-inference rule ��� ��-rule-1. Then
obviously the vector annotation of bf-literal ��� �� �	� �� is
reasoned as bf-annotation be���
�. Thus, we may obtain the
following bf-EVALP clause as a transitive bf-inference rule,

����� �� � �� � ����
�� �� � ���� � �	� �� � ����
�� ��

� ����� �	� �� � ����
�� ��� � � ��� �� ��

���

�

� ��

���

Figure 11. Process Time Chart Ex-3

Here we list all transitive bf-inference rules. The details
of how to construct transitive bf-inference rules are in [10]
For simplicity, we represent a transitive bf-inference rule,

����� �� � �� � ��
��
��� �� � ���� � �	� �� � ��
��
��� ��

� ����� �	� �� � ��
��
��� ��

by only vector annotations and logical connectives, � and
�, as follows: �
��
�� � �
��
�� � �
��
�� in the list of
transitive bf-inference rules.

Transitive Bf-inference Rules

��� ��� �� � ��� �� � ��� ��

179Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

��� ���
� � ��� ��� ���
�

���� � ��� 	�� � ��� ��� ��� 	��

���� � �	� 		� � ���
�� ��� 	��

���� � �	� 		� � ��� ��� �	� 		�

���� � ���
� � ���
� � ���
�

���� �� � ��� 	�� � ���
�� ��� 	��

���� �� � �
�
� � ��� 	��� ���
� (12)

���� �� � ���
� � ���
� � ���
�

���� �� �� � ��� 	�� � ���
� � ��� 	��

���� �� �� � �
�
� � ��� 	��� ���
� (13)

���� �� �� � ���
� � �
�
�� �
�
�

���� �� �� � ��� �� � ��� 	��� ��� 	��

���� �� �� � ��� 	�� � �
�
� � ��� ��

���� �� �� 	 �
�
� � ��� ��� �
�
�

���� �� ��
 ��� �� � ��� ��� ��� ��

���� �� � ��� �� � ��� 	��� ��� 	��

���� �� � ��� 	�� � ���
�� �	� 		�

���� �� 	 �
�
� � �	� 		�� ���
� (14)

���� ��
 ��� �� � �	� 		�� �	� 		�

���� � ���
� � ��� �� � ���
�

���� �� � �
�
� � ��� �� � ���
� (15)

���� �� � ���
� � ��� �� � �
�
�

���� �� � ��� �� � ��� �� � ��� 	��

���� �� � ��� 	�� � ��� ��� ��� ��

��� ��� �� � ���
�� ���
�

���� � ��� �� � ���
� � ��� 	��

���� � ��� �� � ��� 	��� ���
� (16)

���� � ��� �� � ���
� � ���
�

���� �� � ��� �� � ���
� � ��� 	��

���� �� � ��� �� � ��� 	��� ���
� (17)

���� �� � ��� �� � �
�
� � �
�
�

���� �� � ��� �� � ��� �� � �
�
�

���� � ��� �� � ���
� � �	� 		�

���� � ��� �� � �	� 		�� ���
� (18)

��� ��� �� � ��� ��� ��� ��

���� � ��� �� � ��� �� � ��� �� (19)

���� � ��� �� � ��� �� � ��� ��

Note : the bottom vector annotation ��� �� in the list
of transitive bf-inference rules implies that any bf-EVALP
clause ���� � �	� �� � ��
���� �� satisfies it.

Here we indicate two important points in terms of transi-
tive bf-inference rules.
(I) The number chain 1-4-3 of transitive bf-inference rule
TR1-4-3 show the rule applicable order, that is to say, rule

TR1-4-3 should be applied after rule TR1-4 and rule TR1-4
should be applied after TR1, if they are applicable.
(II) Transitive bf-inference rules, TR1-4-2 (12), TR2-2
(16), TR1-4-3-2 (13), TR2-3-2 (17), TR1-4-6 (14), TR2-5
(18), TR1-5-1 (15), TR3-1 (19) have no following rule to
be applied at the following stage, even though they cannot
derive the final bf-relations. For example, suppose that rule
TR1-4-3-2 has been applied, then the vector annotation
���
� of the bf-literal ����� �	� �� just implies that the final
bf-relation between processes �	� and �		 is one of three
bf-annotations, jb��� 	��, sb��� �� and ib�
�
�. Therefore,
if one of the eight transitive bf-inference rules has been
applied, one of basic bf-inference rules ���
�-rule, ���
�-
rule or ��� ��-rule should be applied for deriving the final bf-
annotation. For instance, if rule TR1-4-3-2 has been applied,
basic bf-inference rule ���
�-rule should be applied at the
following stage.

V. APPLICATION OF BF-EVALPSN TO PIPELINE

PROCESS ORDER VERIFICATION

In this section, we present a simple example for applying
the bf-relation reasoning system in bf-EVALPSN to process
order verification.

�

�� ��

��

���

�

�� ��

��
�

��� �

�� ��

��

�

�� ��

��
�

��� �

��

�

���

���

��

�

Figure 12. Pipeline Network

PIPELINE-1

PIPELINE-2

�� �� �� �� ��

�
���

�
���

�
���

�
���

Figure 13. Pipeline Process Schedule

Example 2
We consider a simple brewery pipeline network in Fig. 12,
which consists of four tanks, ���,��,��,���; five pipes,

180Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

����,���,���,���,����; two valves, ���� ���. Two kinds
of pipeline cleaning processes by nitric acid and cold water,
respectively, are supposed to be processed after brewery
processes, and the following four processes in the brewery
pipeline network are scheduled according to the time chart
in Fig. 13:

� process �	� (brewery process 1), beer is transfered in
the pipeline,

�� � ��� � �� � ��� � ���

� process �	� (cleaning process 1), the pipeline,

�� � ��� � �� � ��� � �� � ����

is cleaned by nitric acid;
� process �	� (cleaning process 2), the pipeline,

�� � ��� � �� � ��� � �� � ���

is cleaned by cold water;
� process �	� (brewery process 2), beer is transfered in

the pipelines,

�� � ��� � �� � ��� � ���

�� � ��� � �� � ��� � �� � ��� � ��

with mixing beer at valve ��.

Moreover the pipeline system has four safety properties
��� � ��� � �� 	� �� �� to be strictly secured in terms of
process order.
SPR-0 process �	� must start before any other processes,
and process �	� must finish before process �	� finishes.
SPR-1 process �	� must start after process �	� starts.
SPR-2 process �	� must start immediately after process
�	� finishes.
SPR-3 process �	� must start immediately after processes
�	� and �	� finish.

Our safety verification system consists of the following
three steps:
STEP 1 in order to verify the safety of process order, the
safety properties should be translated into bf-EVALPSN and
stored.
STEP 2 the before-after relations between processes at
each time should also be translated into bf-EVALP clauses
and added to the stored bf-EVALPSN in the previous step.
STEP 3 the safety of starting a process is verified as bf-
EVALPSN logic programming at each time.

We introduce the above safety verification steps with the
pipeline process order. First of all, the safety properties are
translated. Safety property SPR-0 can be translated into

the bf-EVALPSN clauses,

� ����� ��� �� � ����
�� �� � ������ �� � ��� ��� (20)

� ����� ��� �� � ����
�� �� � ������ �� � ��� ��� (21)

� ����� ��� �� � ����
�� �� � ������ �� � ��� ��� (22)

������ �� � ��� �� � ������ �� � ��� �� � ������ �� � ��� ��

� ������ �� � ��� ��� (23)

� ������ �� � ��� �� � ������ �� � ��� ��� (24)

where bf-EVALPSN clauses (20),(21) and (22) declare that
if process �	� has not started before any other processes,
it should be forbidden to start processes �	��� � 	� �� ��;
the bf-EVALPSN clause (23) declares that if each process
�	��� � 	� �� �� is forbidden from starting, it should be
permitted to start process �	�; and the bf-EVALPSN clause
(24) declares that if there is no forbiddance from finishing
process �	�, it should be permitted to finish process �	�.

Safety property SPR-1 can be translated into the EVALP
-SN clauses,

� ������ �� � ��� �� � ������ �� � ��� ��� (25)

� ������ �� � ��� �� � ������ �� � ��� ��� (26)

where EVALPSN clauses (25) and (26) declare that if there
is no forbiddance from starting and finishing process �	 �,
respectively, it should be permitted to start and finish process
�	�.

Safety property SPR-2 can be translated into the bf-
EVALPSN clauses,

� ����� ��� �� � ��		� ��� �� � ������ �� � ��� ��� (27)

� ������ �� � ��� �� � ������ �� � ��� ��� (28)

� ����� ��� �� � ��	�� ��� �� � ������ �� � ��� ��� (29)

� ������ �� � ��� �� � ������ �� � ��� ��� (30)

where bf-EVALPSN clause (27) declares that if process
�	� has not finished before process �	� starts, it should
be forbidden to start process �	�; the vector annotation
�		� �� of bf-literal ����� ��� �� is the greatest lower bound
of the set ����	�� ��� ���		� 	��, which implies that process
�	� has finished before process �	� starts in either way;
EVALPSN clauses (28) and (30) declare that if there is
no forbiddance from starting and finishing process �	 �,
it should be permitted to start and finish process �	�,
respectively; and bf-EVALPSN clauses (29) declares that if
process �	� has not finished before process �	� finishes, it
should be forbidden to finish process �	�.

Safety property SPR-3 can be translated into the bf-
EVALPSN clauses,

� ����� ��� �� � ��		� ��� �� � ������ �� � ��� ��� (31)

� ����� ��� �� � ��		� ��� �� � ������ �� � ��� ��� (32)

� ����� ��� �� � ��		� ��� �� � ������ �� � ��� ��� (33)

� ������ �� � ��� �� � ������ �� � ��� ��� (34)

� ������ �� � ��� �� � ������ �� � ��� ��� (35)

181Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

where bf-EVALPSN clauses (31),(32) and (33) declare that
if none of processes �	��� � �� 	� �� has not finished, it
should be forbidden to start process �	�; and bf-EVALPSN
clauses (34) and (35) declare that if there is no forbiddance
from starting and finishing process �	�, it should be per-
mitted to start and finish process �	�, respectively.

Now we show how the process order verification in bf-
EVALPSN is carried out at time ��, � � � , time �� accord-
ing to the process schedule in Fig. 13. Five bf-relations
between processes �	�, �	�, �	� and �	�, which are repre-
sented by bf-literals, ����� ��� ��, ����� ��� ��, ����� ��� ��,
����� ��� �� and ����� ��� �� are verified based on safety
properties SPR-0, SPR-1, SPR-2 and SPR-3 in bf-EVALPSN.
Stage 0 (at time ��) no process has started at time ��, thus,
the bf-EVALP clauses,

����� ��� ��� � ���� ��� ��� (36)

����� ��� ��� � ���� ��� ��� (37)

����� ��� ��� � ���� ��� �� (38)

are obtained; also the bf-EVALP clauses,

����� ��� ��� � ���� ��� ��� (39)

����� ��� ��� � ���� ��� �� (40)

are obtained by rule TR0; then bf-EVALP clauses (36)
and (39) satisfy each body of bf-EVALPSN clauses (20),
(21) and (22), respectively, therefore, the forbiddance from
starting each process �	��� � 	� �� ��,

������ ��� � ��� ��� (41)

������ ��� � ��� ��� (42)

������ ��� � ��� �� (43)

are derived; moreover as bf-EVALP clauses (41), (42) and
(43) satisfy the body of bf-EVALP clause (23), the permis-
sion for starting process �	�,

������ ��� � ��� ��

is derived; therefore, process �	� is permitted to start.
Stage 1 (at time ��) process �	� has already started but
all other processes �	��� � 	� �� �� have not started yet; then
the bf-EVALP clauses,

����� ��� ��� � ����
�� ��� (44)

����� ��� ��� � ���� ��� ��� (45)

����� ��� ��� � ���� ��� �� (46)

are obtained, where bf-EVALP clause (44) is derived by
��� ��-rule-1; moreover the bf-EVALP clauses,

����� ��� ��� � ����
�� ��� (47)

����� ��� ��� � ����
�� �� (48)

are obtained by rule TR1; as bf-EVALP clause (44) does
not satisfy the body of bf-EVALPSN clause (20), the for-
biddance from starting process �	�,

������ ��� � ��� �� (49)

cannot be derived; then, as there is not the forbiddance (49),
the body of bf-EVALPSN clause (25) is satisfied, and the
permission for starting process �	�,

������ ��� � ��� ��

is derived; on the other hand, as bf-EVALP clauses (47) and
(48) satisfy the body of bf-EVALPSN clauses (27) and (31),
respectively, the forbiddance from starting both processes
�	� and �	�,

������ ��� � ��� ��� and ������ ��� � ��� ��

are derived; therefore, process �	� is permitted to start.
Stage 2 (at time ��) process �	� has just finished and
process �	� has not finished yet; then the bf-EVALP clauses,

����� ��� ��� � ��
�
�� ���

����� ��� ��� � ��	� 		�� ���

����� ��� ��� � ����
�� ��

are derived by ���
�-rule-3, ���
�-rule-2 and ��� ��-rule-1,
respectively; moreover the bf-EVALP clauses,

����� ��� ��� � ����
�� ��� (50)

����� ��� ��� � ���� 	��� �� (51)

are obtained by rules TR1-4-6 and TR1-2, respectively; then,
as bf-EVALP clauses (50), (50) and (50) do not satisfy the
body of bf-EVALPSN clause (27), the forbiddance from
starting process �	�,

������ ��� � ��� �� (52)

cannot be derived; as there is not the forbiddance (52),
it satisfies the body of bf-EVALPSN clause (28), and the
permission for starting process �	�,

������ ��� � ��� ��

is derived; on the other hand, as bf-EVALP clause (51) sat-
isfies the body of bf-EVALPSN clause (31), the forbiddance
from starting process �	�,

������ ��� � ��� ��

is derived; therefore, process �	� is permitted to start,
however, process �	� is still forbidden from starting.
Stage 3 (at time ��) process �	� has finished, process
�	� has not finished yet, and process �	� has not started
yet; then the bf-EVALP clauses,

����� ��� ��� � ��
�
�� ���

����� ��� ��� � ��	� 		�� �� and

����� ��� ��� � ����
�� ���

182Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

which have the same vector annotations as the previous stage
are obtained; moreover the bf-EVALP clauses,

����� ��� ��� � ���� 	��� ��� (53)

����� ��� ��� � ���� 	��� �� (54)

are obtained, where bf-EVALP clause (53) is derived by
���
�-rule-1; then bf-EVALP clause (53) satisfies the body
of bf-EVALP clause (33), and the forbiddance from starting
process �	�,

����� ��� � ��� ��

is derived; therefore, process �	� is still forbidden from
starting because process �	� has not finished yet at this
stage.
Stage 4 (at time ��) process �	� has just finished and
process �	� has not started yet; then the bf-EVALP clauses,

����� ��� ��� � ��
�
�� ��� (55)

����� ��� ��� � ��	� 		�� ��� (56)

����� ��� ��� � ��	� 		�� ��� (57)

����� ��� ��� � ���� 	��� ��� (58)

����� ��� ��� � ���� 	��� �� (59)

are obtained; the bf-EVALP clause (57) is derived by ���
�-
rule-2; moreover, as bf-EVALP clauses (55), (58) and (59)
do not satisfy the bodies of bf-EVALP clauses (31), (32) and
(33), the forbiddance from starting process �	�,

������ ��� � ��� �� (60)

cannot be derived; as there is not the forbiddance (60),
the body of bf-EVALPSN clause (34) is satisfied, and the
permission for starting process �	�,

������ ��� � ��� ��

is derived; therefore, process �	� is permitted to start
because processes �	�, �	� and �	� have finished.

VI. CONCLUSION

In this paper, we have introduced a logical reasoning
system for before-after relations between processes (time
intervals) based on a paraconsistent annotated logic program
bf-EVALPSN, which consists of two groups of inference
rules in bf-EVALPSN called basic and transitive bf-inference
rules.

As related work, an interval temporal logic has been pro-
posed for developing practical planning and natural language
understanding systems in Allen [1], [2]. In his logic, before-
after relations between two time intervals are represented in
special predicates and treated in a framework of first order
temporal logic. On the other hands, in our bf-EVALPSN
before-after reasoning system, before-after relations between
processes are regarded as paraconsistency and represented
more minutely in vector annotations of the special literal
����� �� � �� called bf-literal, and treated in the framework

of annotated logic programming. Moreover an efficient real-
time before-after relation reasoning mechanism called tran-
sitive bf-inference is implemented in our system. Therefore,
we would like to conclude that our bf-EVALPSN before-
after relation reasoning system is more suitable for dealing
with process order safety verification and control in real-
time, with considering its hardware implementation such as
on microchips.

Our system has a lot of applications though, our future
work focuses on its application to logical design for various
process order control systems based on the safety verifica-
tion.

REFERENCES

[1] Allen, J.F., “Towards a General Theory of Action and Time”,
Artificial Intelligence vol. 23, pp. 123–154, 1984.

[2] Allen, J.F. and Ferguson, G., “Actions and Events in Interval
Temporal Logic”, J.Logic and Computation vol. 4, pp. 531–
579, 1994.

[3] Blair, H.A. and Subrahmanian, V.S., “Paraconsistent Logic
Programming”, Theoretical Computer Science vol. 68, pp.
135–154, 1989.

[4] da Costa, N.C.A., Subrahmanian, V.S., and Vago, C., “The
Paraconsistent Logics P� ”, Zeitschrift für Mathematische
Logic und Grundlangen der Mathematik vol. 37, pp. 139–
148, 1989.

[5] Nakamatsu, K., Abe, J.M., and Suzuki, A., “Annotated
Semantics for Defeasible Deontic Reasoning”, Rough Sets
and Current Trends in Computing, LNAI vol. 2005, pp. 432–
440, 2001.

[6] Nakamatsu, K., Abe, J.M., and Akama, S., “An intelligent
safety verification based on a paraconsistent logic program”,
Proc. 9th Intl. Conf. Knowledge-Based Intelligent Informa-
tion and Engineering Systems(KES2005), LNAI vol. 3682,
pp. 708–715, 2005.

[7] Nakamatsu, K., “Pipeline Valve Control Based on EV-
ALPSN Safety Verification”, J.Advanced Computational In-
telligence and Intelligent Informatics vol. 10, pp. 647-656,
2006.

[8] Nakamatsu, K., Mita, Y., and Shibata, T., “An Intelligent
Action Control System Based on Extended Vector Anno-
tated Logic Program and its Hardware Implementation”,
J.Intelligent Automation and Soft Computing vol. 13, pp.
289–304, 2007.

[9] Nakamatsu, K. and Abe, J.M., “The development of Para-
consistent Annotated Logic Program”, Int’l J. Reasoning-
based Intelligent Systems vol. 1, pp. 92-112, 2009.

[10] Nakamatsu, K., Abe, J.M., and Akama, S., A Logical
Reasoning System of Process Before-after Relation Based
on a Paraconsistent Annotated Logic Program bf-EVALPSN,
Intl J. Knowledge-based and Intelligent Engineering Systems
vol. 15, pp. 145–163, 2011.

183Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

