
Multi-Agent Systems: A new paradigm for Systems of Systems

Eduardo Alonso
Department of Computer Science

City University London
London, United Kingdom

e-mail: E.Alonso@city.ac.uk

Nicos Karcanias
Systems & Control Engineering Centre

City University London
London, United Kingdom

e-mail: N.Karcanias@city.ac.uk

Ali G. Hessami
Vega Systems Ltd.

London, United Kingdom
 e-mail: hessami@vegaglobalsystems.com

Abstract –We present the notion of Systems of Systems, its
drivers, and the challenges we face in conceptualizing,
designing, implementing and validating them. In this work in
progress we propose Multi-Agent Systems as a new
paradigm, taken from Artificial Intelligence, which seems to
fit the purpose.

Keywords-multi-agent systems; system of systems;
autonomous agents; dynamic adaptive systems

I. SYSTEMS OF SYSTEMS
Systems of Systems (SoS) have been defined as

systems that describe the large-scale integration of many
independent self-contained systems to satisfy global needs
or multi-system requests. The main drivers behind the
notion of SoS are various yet inter-related, namely,

• The increasing number of interacting systems
with strong connectivity in society and in industry
–which underlies the so-called “embedded world
meets the Internet world” view.

• Emergent behavior with the need to balance
cooperation and autonomy.

• Growing overall complexity of systems.
Such drivers are shown in the dimensions that define

SoS, typically, the geographic distribution of the overall
system, their operational and managerial independence,
and their evolutionary development –a SoS evolves over
time as the constituent systems are changed, added or
removed— and emergent behavior –a SoS is not restricted
to the capabilities of the constituent systems.

Such dimensions can be recognized in several types of
large systems as identified in Table 1:

TABLE 1. TYPES OF SoS

Type System System of Systems
ICT powered Car, road Integrated Traffic

Network
Wind turbine, fossil Smart Grid
Computer, routers Distributed IT

System
Biological Animal, plant Herd, forest

Sociological Family, school, church Town, education,
religion

Environmental Weather, river Eco-system
Organizational Company SCM, stock market,

economy
Political Town council Parliament, EU, UN

 Other examples include water management,

emergency response, smart grid, railways, satellites,

distributed control systems, supply chain management,
and inter-court law relationships –to name a few.

One fundamental aspect in the analysis of SoS is to
distinguish them from Composite Systems (CoS).
[1][2][3][4] identified the following commonalities and
differences:

a) Both CoS and SoS are compositions of simpler
objects, or systems.

b) Both CoS and SoS are embedded in the
environment of a larger system.

c) The objects, or sub-systems in CoS do not have
their independent goal, they are not autonomous and their
behavior is subject to the rules of the interconnection
topology.

d) The interconnection rule in CoS is expressed as a
graph topology.

e) The subsystems in SoS may have their own goals
and some of them may be autonomous, semi-autonomous,
or organized as autonomous groupings of composite
systems

f) There may be a connection rule expressed as a graph
topology for the information structures of the subsystems
in a SoS.

g) The SoS has associated with it a global game where
every subsystem enters as an agent with their individual
Operational Set, Goals.

The comparison between SoS and traditional CoS
illustrates the need for a paradigm shift in studying
increasingly complex systems, and that such paradigm
must focus on two main requirements

1. Rather than controlling systems the aim is to find
means of influencing systems towards agreed
common goals.

2. Develop approaches with incomplete models and
dynamically evolving/changing requirements.

It is worth noting that in a similar manner to
composite systems, SoS can be the outcome of natural
evolution or entirely man made or a hybrid of these. In
this context, agreed common goals may be more related to
the total emergent properties arising from the constituents
and natural ecology as opposed to deterministic
requirements imposed on the system. This is particularly
relevant when dealing with SoS that need to show
context/situational awareness and that must be dependable
to guarantee security and safety.

Table 2 summarizes the change of paradigm from old-
classic approaches in systems theory to new-SoS
according to various characteristics.

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

TABLE 2. PARADIGM SHIFT

Characteristics Old-classic New-SoS
Scope of system Fixed (known) Not known

Specification Fixed Changing
Control Central Distributed

Evolution Version controlled Uncoordinated
Testing Test phases Continuous
Faults Exceptional Normal

Technology Given and fixed Uncertain
Emergence Controller Accidental

System development Process model Undefined

Apart from economic, societal and educational factors,
in this transition the following technological challenges
have been highlighted:

• Multidisciplinary approach (common language).
• System modeling, simulation (and verification).
• Emergent behavior.
• Methods, architectures, platforms and theory.
• Standards and requirements.
Our contention is that Multi-Agent Systems (MAS), a

computing paradigm for developing intelligent systems,
can be a credible instrument in addressing some of these
challenges. In the rest of the paper we describe the main
characteristics of software agents and of MAS and
rationalize why MAS technology can be used to develop
SoS. It must be noticed that the multi-agent approach we
propose is understood as a means of realizing the notions
of intelligent object and of system play, deviations from
standard notions of system composition introduced in
[1][2].

II. SOFTWARE AGENTS
Artificial Intelligence (AI) has evolved from the ideal

of perfect automatic reasoning, typically in the form of
axiomatic systems, which from a set of premises prove
theorems by applying deductive rules, to building systems
that display acceptable behavior.

From Aristotle’s syllogisms, through Leibniz’s
universal language, Babbage’s difference engine and
Boole’s “laws of thought” to Turing’s notion of
computability, an important effort has been invested in
formalizing “intelligence” and in building (abstract and
physical) machines to mechanize it. Early AI inherited the
goal and the methods from this trend of research, and thus
was devoted to develop theorem provers for mathematical
reasoning.

It became soon clear however that if we were to
implement systems that exhibited intelligence in real-life
situations a shift of paradigm was needed. Logical
systems typically assume perfect knowledge of an
unchanging set of truths. As a consequence,
notwithstanding the success of some expert systems, the
original AI promise –to develop systems that showed
general intelligence– was not fulfilled, resulting in the so-
called AI Winter. Partly as a response to this situation,
attention swung to “weak” AI. This new theory pivoted
around the idea of “embeddedness”. Intelligence was not
considered as thinking logically in closed domains, rather
it was an emergent property of systems situated in open
environments, environments that imposed constraints on

the system. The concept of intelligence moved from
thinking to acting, from perfect rationality to bounded
rationally, from heavy-weight logical systems to networks
of light-weight reactive systems.

This alternative didn’t survive either. However
interesting their results may be (for instance, in the
simulation of swarm intelligence) relying exclusively on
the emergent behavior of loosely coupled simple systems
poses serious methodological problems.

For the last couple of decades researchers have
experienced the advent of new technologies such as the
Internet. These demand personal, continuously running
systems for which older notions of action –those resulting
from either cumbersome symbolic reasoning or ever-
adaptive reflexes– may be insufficient. Indeed, many
researchers believe that in the XXI century for AI systems
to perform “intelligently” they must be able to behave in
an autonomous, flexible manner in unpredictable,
dynamic, typically social domains. In other words, they
believe that the “new” AI should develop agents [5] [6].

The concept of agent serves to represent the idea of a
autonomous system that perceives the environment and
acts on it. The agent has an internal state that represents
their knowledge and their goal –typically, the
maximization of their own utility function. Decisions on
which actions to execute depend on the agent’s internal
state and on the characteristics of the environment in
which they are embedded. In the next section we explore
the three main characteristics of agency.

A. Autonomy
By autonomy we mean the ability of the system to

make their own decisions and execute tasks on the
designer's behalf. The idea of delegating some
responsibility to the system is essential in scenarios where
it is difficult to control directly the behavior of our
systems. For example, space missions increasingly depend
on their unmanned spaceships and robots to make
decisions on their own.

It is precisely their autonomy the characteristic that
uniquely defines agents. Traditionally, software systems
execute actions (so-called methods) automatically:
imagine that the Web application in your computer, the
user or client, requests to access the contents of a webpage
that is stored in another software system elsewhere, the
server or host. The server cannot deny access to the
content of the webpage; it must execute the “send”
method whenever it is requested to do so. On the contrary,
agents decide by themselves whether to execute their
methods according to their own goals. Paraphrasing [7],
“what traditional software systems do for free, agents do
for money”.

B. Adaptive behavior
Secondly, agents must be flexible. When designing

agent systems, it is impossible to foresee all the potential
situations they may encounter and specify their behavior
optimally in advance. For example, the components of
interaction in the Internet (agents, protocols, languages)
are not known a priori. Agents therefore have to learn
from and adapt to their environment. This task is even

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

more complex when Nature is not the only source of
uncertainty, when the agent is situated in a multi-agent
system (MAS) that contains other agents with potentially
different capabilities, goals, and beliefs.

In addition, an agent must have the competence to
display an action repertoire general enough to preserve its
autonomy in dynamic environments. Certainly, an agent
can hardly be called intelligent if it is not able to perform
well when situated in an environment different from (yet
in some way similar to) the one it was originally designed
for.

Indeed, there is no need to learn anything in static,
deterministic, fully observable domains where agents have
perfect knowledge of state-action transitions. Nonetheless,
intelligence and learning are tightly tied in environments
where systems must make decisions with partial or
uncertain information, that is, in domains where they must
learn without supervision and without the luxury of
having a complete model of the world –when facing the
so-called reinforcement learning problem [8], in which
the learner must discover which actions yield the most
reward by exploiting and exploring their relationship with
the environment.

C. MAS co-ordination
Agents also show social attitudes. In an environment

populated by heterogeneous entities, agents would need
the ability to recognize their opponents, and to form
alliances when it is profitable to do so. It is not a
coincidence that most agent-based platforms incorporate
multi-agent tools [9]. Indeed, it is claimed that agent-
oriented software engineering needs to be developed
precisely because there is no notion of organizational
structure in traditional software systems.

Generally speaking, the design and implementation of
MAS is an attractive platform for the convergence of
various AI technologies. That is the underlying
philosophy of competitions such as RoboCup
(http://www.robocup.org/) where teams of soccer agents
must display their individual and collective skills in real-
time. More importantly, multi-agent systems play several
roles in IT and telecoms: for clients, they provide
personalized, user-friendly interfaces; as middleware, they
have been used extensively to implement electronic
markets and electronic auctions.

The reasons for this happy marriage between MAS
and new technologies are various. When the domain
involves a number of distinct software systems that are
physically or logically distributed (in terms of their data,
expertise or resources), a multi-agent approach can often
provide an effective solution. Relatedly, when the domain
is large, sophisticated, or unpredictable, the overall
problem can indeed be partitioned into a number of
smaller and simpler components, which are easier to
develop and maintain, and which are specialized at
solving the constituent problems. That is, in most real-life
applications (single) agents can grow “too big” to work
well, and a divide and conquer strategy, where qualified
agents work in parallel, seems more sensible. Examples
include the geographical distribution of cameras in a

traffic network or the integrated approach required to
solve complex tasks, for instance collaboration between
experts (surgeons, anesthetists, nurses) in an operating
room.

To sum it up, it is widely accepted within the AI
community that the “new” AI is about designing and
implementing MAS capable of acting and learning in a
quick and efficient manner. This affects MAS co-
ordination and MAS learning.

Approaches to multi-agent behavior differ mainly in
regards to the degree of control that the designer should
have over individual agents and over the social
environment, i.e., over the interaction mechanisms [10].
In Distributed Problem Solving systems (DPS) a single
designer is able to control (or even explicitly design) each
individual agent in the domain –the task of solving a
problem is distributed among different agents, hence the
name. In MAS on the other hand, there are multiple
designers and each is able to design only its agent and has
no control over the internal design of other agents
[11][12].

The design of interaction protocols is also tightly
coupled to the issue of agents' incentives. When agents are
centrally designed they are assumed to have a common
general goal. As long as agents have to co-exist and
cooperate in a single system, there is some notion of
global utility that each agent is trying to maximize.
Agents form teams that jointly contribute towards the
overall goal. By contrast, in MAS each agent will be
individually motivated to achieve its own goal and to
maximize its own utility. As a result, no assumptions can
be made about agents working together cooperatively. On
the contrary, agents will collaborate only when they can
benefit from that cooperation.

Research in DPS considers how work involved in
solving a problem can be divided among several nodes so
as to enhance the system’s performance, that is, the aim is
to make independent nodes solve a global problem by
working together coherently, while maintaining low levels
of communication. MAS researchers are also concerned
with the coherence of interaction, but must build agents
without knowing how their opponents have been
designed. The central research issue in MAS is how to
have these autonomous agents identify common ground
for cooperation, and choose and perform coherent actions.

In MAS systems, agents typically make pair-wise
agreements through negotiation about how they will co-
ordinate, and there is no global control nor consistent
knowledge nor shared goals or success criteria. So, the
main purpose of this incentive contracting mechanism is
to “convince” agents to reach reasonable agreements and
do something in exchange for something else. In this case,
AI researchers have followed the studies on bargaining
with incomplete information developed in economics and
game theory.

Using such approach agents are considered players
that execute moves following a strategy. At the end of the
game each agent receives a pay-off or return. The
strategies the agents follow are typically modulated by
their attitude towards risk, that is, whether they are risk-

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

averse (in which case following a minimax strategy where
the agent tries to minimize the other’s profit may work) or
they tolerate risk. The strategies also vary according to the
nature of the interaction (one-shot or continuous;
simultaneous or sequential) and to the type of game itself,
for instance, if the agents engage in a zero-sum game
(where what one gains the other loses) or in a cooperative
game (where there may exist win-win solutions). In any
case, the interaction takes the form of a negotiation
protocol. Negotiation is defined as a process through
which in each temporal point one agent proposes an
agreement from the negotiation set and the other agent
either accepts the offer or does not. If the offer is
accepted, then the negotiation ends with the
implementation of the agreement. Otherwise, the second
agent has to make a counteroffer, or reject its opponent's
offer and abandon the process. So, the protocol specifies
when and how to exchange offers (i.e., which actions the
agents will execute or abstain from executing and when) –
for example, an Offer(x, y, δi, t1) means that the
negotiation process will start at time t1 with agent x
offering agent y a deal δi from the set of potential deals (δi
∈ Δ), typically of the from “I will do action 1 in exchange
for action 2” or {Do(x, a1), Do(y, a2)}; then, in the next
negotiation step, agent y will counteroffer with Accept(y,
δi, t2), in which case the negotiation episode ends with the
implementation of the agreement, δi; or with Reject(y, δi,
t2), so that negotiation fails; or, alternatively, agent y can
send a counteroffer, Offer(y, x, δj, t2), with say δj = {Do(x,
a3), Do(y, a2)}, “I would prefer you to execute action a3
rather than a1”, so that negotiation progresses to the next
stage in which the same routine applies.

As discussed above, intelligence implies a certain
degree of autonomy in decision-making that in turn
requires the ability to learn to make independent decisions
in dynamic, unpredictable domains such as those in which
agents co-exist.

The simplest way to extend single-agent learning
algorithms to multi-agent problems is just to make each
agent learn independently. Agents learn “as if they were
alone”. Communication or explicit co-ordination is not an
issue therefore –co-operation and competition are not
tasks to be solved but properties of the environment.
Likewise, agents do not have models of other agents’
mental states or try to build models of other agents’
behaviors. However simple this approach to multi-agent
learning may be, the assumption that agents can learn
efficient policies in a MAS setting independently of the
actions selected by other agents is implausible. Intuitively,
the most appealing alternative is to have the agents learn
Nash-equilibrium strategies [13][14][15].

IV. MAS TECHNOLOGY FOR SoS
We can conclude from the conceptual analysis

presented above that the paradigm shift demanded by SoS
requirements fits new trends in engineering computing
systems. In particular, the drivers and characteristics of
SoS as specified in section I are consistent with the
notions of autonomous agents and of multi-agent systems
as opposed to traditional objects and classes. Although

MAS development still relies on object-oriented tools and
techniques, it is a fact that agent-oriented engineering is
the way forward in the era of large, complex, loosely
connected software systems, that is, in the era of the
Internet –indeed, the Open Systems Interconnection (OSI)
protocol itself can be understood as a SoS. More
specifically, it can be argued that the difference between
CoS and SoS lies in the fact that the former are collections
of objects that coordinate their behavior via DPS, whereas
the latter are collections of agents that interact through
incentive mechanisms such as negotiation and
argumentation. In Table 3 we enumerate ontologies,
architectures, methodologies, languages, platforms,
infrastructures and validation tools that SoS can borrow
from MAS.

TABLE 3. AGENT-ORIENTED SOFTWARE ENGINEERING
(AOSE)

AOSE Standards, techniques and tools
Ontologies RDF Schema, OIL, DAML, OWL, SHOE
Architectures BDI, InteRRAP, Touring Machines
Methodologies Tropos, MAS-CommonKADS, PASSI,

Prometheus, Gaia, ADELFE, MESSAGE
Design languages Agent UML
Programming languages AOP: AGENT0, PLACA, Agent-K,

MetaM, April, MAIL, VIVA, GO!
BDI: AgentSpeak, Jason, AF-APL, JACK,

JADEX, 3APL
GOAL, Golog, FLUX, CLAIM

Communication languages KQML, FIPA, ARCOL, KIF, COOL
Coordination mechanisms MAP, Negotiation, Argumentation,

Auctions, Institutions
Tools and platforms ZEUS, JADE, agentTool, RETSINA,

JATLite, MADKIT, JAFMAS, Cougaar
Infrastructures Jini, Ontolingua ReTAX++, OilEd
Validation Deductive verification, model checking

In particular, perhaps the most defining characteristic
of MAS is the fact that communication is understood and
formalized in terms of the internal states of the agents
involved. In fact, communication is understood as
(speech) acts, as actions that agents execute in order to
achieve their goals not as mere message passing. In
addition, since the agent at the other end is also
autonomous, the sender needs to consider the receiver’s
internal state (not just its “position” in a mailing queue)
and its own intentions. For instance, unlike in object-
oriented approaches, when sending a request, the sender x
holds the goal of a receiver y achieving a particular
proposition P, that is, of making P true. Moreover, as ix
wants the receiver to really try to achieve P the
preconditions also require that y intends along a run that P
be eventually true. Finally, the rational effect to be
achieved is that there is a run in which P eventually holds.
Formally,

[x, request(y, P)]
FP: G(x, (I(y, FP)))
RE: FP

Typically, Agent Communication Languages (ACLs)

come with a complete set of speech acts, including

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

“inform”, “confirm” “agree”, “promise”, “disconfirm”,
“refuse”, “declare”, and of course, “request”.

Of course, agents and MAS are a particular type of
SoS. Agents and MAS are software SoS. A general theory
of SoS must be more comprehensive and accommodate
the characteristics of other types of systems,
characteristics that cannot be reduced to conglomerates of
computing devices and the way they inter-operate. Our
contention is nevertheless that MAS can play the same
role in developing SoS as objects and classes played in
conceptualizing, formalizing and implementing CoS. In
addition, and more importantly, the individual systems
MASs consist of are autonomous and adaptive –the two
defining properties of the systems in a SoS. In fact, MAS
emerge recursively and hierarchically as a result of the
free interaction of such systems and multi-agent systems –
as SoS do.

REFERENCES
[1] N. Karcanias and A.G. Hessami, 2010. Complexity and the

notion of Systems of Systems: Part (I) General Systems and
Complexity. Proc. of the 2010 World Automation Congress
International Symposium on Intelligent Automation and
Control (ISIAC) 19-23 September 2010, Kobe Japan.

[2] N. Karcanias and A.G. Hessami, 2010. Complexity and the
notion of Systems of Systems: Part (II) Defining the notion
of Systems of Systems. Proc. of the 2010 World
Automation Congress International Symposium on
Intelligent Automation and Control (ISIAC) 19-23
September 2010, Kobe Japan.

[3] N. Karcanias and A.G. Hessami, 2011. System of Systems
Emergence: Part (I) Principles and Framework. Proc. of the
ICETET 2011, 4th Internationa Cnference on Emerging
Trends in Engineering and Technology, SV129, November
18-20, Port Louis, Mauritius.

[4] N. Karcanias and A.G. Hessami, 2011. System of Systems
Emergence: Part (II) Synergetics Effects and Emergence.
Proc. of the ICETET 2011, 4th Internationa Cnference on
Emerging Trends in Engineering and Technology, SV129,
November 18-20, Port Louis, Mauritius.

[5] E. Alonso, 2002. AI and Agents: State of the Art, AI
Magazine, 23 (3), 529–551.

[6] E. Alonso, 2012. Actions and Agents. In K. Frankish and
W. Ramsey (Eds.), The Cambridge Handbook of Artificial
Intelligence, Chapter 5. Cambridge, England: Cambridge
University Press.

[7] N. Jennings and M. Wooldridge, (eds.), 1998. Agent
Technology: Foundations, Applications, and Markets.
Berlin: Springer-Verlag.

[8] E. Alonso, M. d'Inverno, D. Kudenko, M. Luck and J.
Noble, 2001. Learning in Multi-Agent Systems,
Knowledge Engineering Review 16 (3), 277-284.

[9] M. Luck, P. McBurney, O. Shehory and S. Willmott (eds.),
2005. Agent Technology: Computing as Interaction (A
Roadmap for Agent Based Computing). AgentLink III.

[10] M. Wooldridge, 2009. An Introduction to MultiAgent
Systems, 2nd edition. Chichester, England: John Wiley &
Sons.

[11] A. H. Bond and L. Gasser, Less (eds.), 1988. Readings in
Distributed Artificial Intelligence. San Mateo, CA: Morgan
Kaufmann Publishers.

[12] E. H. Durfee, 1988. Coordination for Distributed Problem Solvers.
Boston: MA: Kluwer Academic.

[13] L. P. Kaelbling, M. Littman and A. Moore, 1996. Reinforcement
Learning: A Survey, Journal of Artificial Intelligence Research 4:
237-285.

[14] G. Weiss, (ed.), 1999. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. Cambridge, MA: The MIT
Press.

[15] G. Weiss and P. Dillenbourg, 1999. What is ‘multi’ in multiagent
learning?, in Pierre Dillenbourg (ed.), Collaborative learning.
Cognitive and computational approaches (pp. 64–80), Oxford:
Pergamon Press.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems

