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Abstract –We present the notion of Systems of Systems, its 
drivers, and the challenges we face in conceptualizing, 
designing, implementing and validating them. In this work in 
progress we propose Multi-Agent Systems as a new 
paradigm, taken from Artificial Intelligence, which seems to 
fit the purpose. 
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I. SYSTEMS OF SYSTEMS 
Systems of Systems (SoS) have been defined as 

systems that describe the large-scale integration of many 
independent self-contained systems to satisfy global needs 
or multi-system requests. The main drivers behind the 
notion of SoS are various yet inter-related, namely, 

• The increasing number of interacting systems 
with strong connectivity in society and in industry 
–which underlies the so-called “embedded world 
meets the Internet world” view. 

• Emergent behavior with the need to balance 
cooperation and autonomy. 

• Growing overall complexity of systems. 
Such drivers are shown in the dimensions that define 

SoS, typically, the geographic distribution of the overall 
system, their operational and managerial independence, 
and their evolutionary development –a SoS evolves over 
time as the constituent systems are changed, added or 
removed— and emergent behavior –a SoS is not restricted 
to the capabilities of the constituent systems. 

Such dimensions can be recognized in several types of 
large systems as identified in Table 1: 

TABLE 1. TYPES OF SoS 

Type System System of Systems 
ICT powered Car, road Integrated Traffic 

Network 
Wind turbine, fossil Smart Grid 
Computer, routers Distributed IT 

System 
Biological Animal, plant Herd, forest 

Sociological Family, school, church Town, education, 
religion 

Environmental  Weather, river Eco-system 
Organizational  Company  SCM, stock market, 

economy 
Political  Town council Parliament, EU, UN 

 
 Other examples include water management, 

emergency response, smart grid, railways, satellites, 

distributed control systems, supply chain management, 
and inter-court law relationships –to name a few. 

One fundamental aspect in the analysis of SoS is to 
distinguish them from Composite Systems (CoS). 
[1][2][3][4] identified the following commonalities and 
differences: 

a) Both CoS and SoS are compositions of simpler 
objects, or systems. 

b) Both CoS and SoS are embedded in the 
environment of a larger system. 

c) The objects, or sub-systems in CoS do not have 
their independent goal, they are not autonomous and their 
behavior is subject to the rules of the interconnection 
topology. 

d) The interconnection rule in CoS is expressed as a 
graph topology. 

e) The subsystems in SoS may have their own goals 
and some of them may be autonomous, semi-autonomous, 
or organized as autonomous groupings of composite 
systems 

f) There may be a connection rule expressed as a graph 
topology for the information structures of the subsystems 
in a SoS. 

g) The SoS has associated with it a global game where 
every subsystem enters as an agent with their individual 
Operational Set, Goals. 

The comparison between SoS and traditional CoS 
illustrates the need for a paradigm shift in studying 
increasingly complex systems, and that such paradigm 
must focus on two main requirements 

1. Rather than controlling systems the aim is to find 
means of influencing systems towards agreed 
common goals. 

2. Develop approaches with incomplete models and 
dynamically evolving/changing requirements. 

It is worth noting that in a similar manner to 
composite systems, SoS can be the outcome of natural 
evolution or entirely man made or a hybrid of these. In 
this context, agreed common goals may be more related to 
the total emergent properties arising from the constituents 
and natural ecology as opposed to deterministic 
requirements imposed on the system. This is particularly 
relevant when dealing with SoS that need to show 
context/situational awareness and that must be dependable 
to guarantee security and safety. 

Table 2 summarizes the change of paradigm from old-
classic approaches in systems theory to new-SoS 
according to various characteristics. 
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TABLE 2. PARADIGM SHIFT 

Characteristics Old-classic New-SoS 
Scope of system Fixed (known) Not known 

Specification Fixed  Changing  
Control Central  Distributed  

Evolution Version controlled  Uncoordinated  
Testing Test phases Continuous  
Faults Exceptional  Normal  

Technology Given and fixed Uncertain  
Emergence Controller  Accidental  

System development Process model Undefined  
 

Apart from economic, societal and educational factors, 
in this transition the following technological challenges 
have been highlighted:  

• Multidisciplinary approach (common language). 
• System modeling, simulation (and verification). 
• Emergent behavior. 
• Methods, architectures, platforms and theory. 
• Standards and requirements. 
Our contention is that Multi-Agent Systems (MAS), a 

computing paradigm for developing intelligent systems, 
can be a credible instrument in addressing some of these 
challenges. In the rest of the paper we describe the main 
characteristics of software agents and of MAS and 
rationalize why MAS technology can be used to develop 
SoS. It must be noticed that the multi-agent approach we 
propose is understood as a means of realizing the notions 
of intelligent object and of system play, deviations from 
standard notions of system composition introduced in 
[1][2]. 

II. SOFTWARE AGENTS 
Artificial Intelligence (AI) has evolved from the ideal 

of perfect automatic reasoning, typically in the form of 
axiomatic systems, which from a set of premises prove 
theorems by applying deductive rules, to building systems 
that display acceptable behavior. 

From Aristotle’s syllogisms, through Leibniz’s 
universal language, Babbage’s difference engine and 
Boole’s “laws of thought” to Turing’s notion of 
computability, an important effort has been invested in 
formalizing “intelligence” and in building (abstract and 
physical) machines to mechanize it. Early AI inherited the 
goal and the methods from this trend of research, and thus 
was devoted to develop theorem provers for mathematical 
reasoning. 

It became soon clear however that if we were to 
implement systems that exhibited intelligence in real-life 
situations a shift of paradigm was needed. Logical 
systems typically assume perfect knowledge of an 
unchanging set of truths. As a consequence, 
notwithstanding the success of some expert systems, the 
original AI promise –to develop systems that showed 
general intelligence– was not fulfilled, resulting in the so-
called AI Winter. Partly as a response to this situation, 
attention swung to “weak” AI. This new theory pivoted 
around the idea of “embeddedness”. Intelligence was not 
considered as thinking logically in closed domains, rather 
it was an emergent property of systems situated in open 
environments, environments that imposed constraints on 

the system. The concept of intelligence moved from 
thinking to acting, from perfect rationality to bounded 
rationally, from heavy-weight logical systems to networks 
of light-weight reactive systems.  

This alternative didn’t survive either. However 
interesting their results may be (for instance, in the 
simulation of swarm intelligence) relying exclusively on 
the emergent behavior of loosely coupled simple systems 
poses serious methodological problems.  

For the last couple of decades researchers have 
experienced the advent of new technologies such as the 
Internet. These demand personal, continuously running 
systems for which older notions of action –those resulting 
from either cumbersome symbolic reasoning or ever-
adaptive reflexes– may be insufficient. Indeed, many 
researchers believe that in the XXI century for AI systems 
to perform “intelligently” they must be able to behave in 
an autonomous, flexible manner in unpredictable, 
dynamic, typically social domains. In other words, they 
believe that the “new” AI should develop agents [5] [6].  

The concept of agent serves to represent the idea of a 
autonomous system that perceives the environment and 
acts on it. The agent has an internal state that represents 
their knowledge and their goal –typically, the 
maximization of their own utility function. Decisions on 
which actions to execute depend on the agent’s internal 
state and on the characteristics of the environment in 
which they are embedded. In the next section we explore 
the three main characteristics of agency. 

A. Autonomy 
By autonomy we mean the ability of the system to 

make their own decisions and execute tasks on the 
designer's behalf. The idea of delegating some 
responsibility to the system is essential in scenarios where 
it is difficult to control directly the behavior of our 
systems. For example, space missions increasingly depend 
on their unmanned spaceships and robots to make 
decisions on their own. 

It is precisely their autonomy the characteristic that 
uniquely defines agents. Traditionally, software systems 
execute actions (so-called methods) automatically: 
imagine that the Web application in your computer, the 
user or client, requests to access the contents of a webpage 
that is stored in another software system elsewhere, the 
server or host. The server cannot deny access to the 
content of the webpage; it must execute the “send” 
method whenever it is requested to do so. On the contrary, 
agents decide by themselves whether to execute their 
methods according to their own goals. Paraphrasing [7], 
“what traditional software systems do for free, agents do 
for money”. 

B. Adaptive behavior 
Secondly, agents must be flexible. When designing 

agent systems, it is impossible to foresee all the potential 
situations they may encounter and specify their behavior 
optimally in advance. For example, the components of 
interaction in the Internet (agents, protocols, languages) 
are not known a priori. Agents therefore have to learn 
from and adapt to their environment. This task is even 

9Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems



more complex when Nature is not the only source of 
uncertainty, when the agent is situated in a multi-agent 
system (MAS) that contains other agents with potentially 
different capabilities, goals, and beliefs.  

In addition, an agent must have the competence to 
display an action repertoire general enough to preserve its 
autonomy in dynamic environments.  Certainly, an agent 
can hardly be called intelligent if it is not able to perform 
well when situated in an environment different from (yet 
in some way similar to) the one it was originally designed 
for. 

Indeed, there is no need to learn anything in static, 
deterministic, fully observable domains where agents have 
perfect knowledge of state-action transitions. Nonetheless, 
intelligence and learning are tightly tied in environments 
where systems must make decisions with partial or 
uncertain information, that is, in domains where they must 
learn without supervision and without the luxury of 
having a complete model of the world –when facing the 
so-called reinforcement learning problem [8], in which 
the learner must discover which actions yield the most 
reward by exploiting and exploring their relationship with 
the environment.  

C. MAS co-ordination 
Agents also show social attitudes. In an environment 

populated by heterogeneous entities, agents would need 
the ability to recognize their opponents, and to form 
alliances when it is profitable to do so. It is not a 
coincidence that most agent-based platforms incorporate 
multi-agent tools [9]. Indeed, it is claimed that agent-
oriented software engineering needs to be developed 
precisely because there is no notion of organizational 
structure in traditional software systems.  

Generally speaking, the design and implementation of 
MAS is an attractive platform for the convergence of 
various AI technologies. That is the underlying 
philosophy of competitions such as RoboCup 
(http://www.robocup.org/) where teams of soccer agents 
must display their individual and collective skills in real-
time. More importantly, multi-agent systems play several 
roles in IT and telecoms: for clients, they provide 
personalized, user-friendly interfaces; as middleware, they 
have been used extensively to implement electronic 
markets and electronic auctions. 

The reasons for this happy marriage between MAS 
and new technologies are various. When the domain 
involves a number of distinct software systems that are 
physically or logically distributed (in terms of their data, 
expertise or resources), a multi-agent approach can often 
provide an effective solution. Relatedly, when the domain 
is large, sophisticated, or unpredictable, the overall 
problem can indeed be partitioned into a number of 
smaller and simpler components, which are easier to 
develop and maintain, and which are specialized at 
solving the constituent problems. That is, in most real-life 
applications (single) agents can grow “too big” to work 
well, and a divide and conquer strategy, where qualified 
agents work in parallel, seems more sensible. Examples 
include the geographical distribution of cameras in a 

traffic network or the integrated approach required to 
solve complex tasks, for instance collaboration between 
experts (surgeons, anesthetists, nurses) in an operating 
room. 

To sum it up, it is widely accepted within the AI 
community that the “new” AI is about designing and 
implementing MAS capable of acting and learning in a 
quick and efficient manner. This affects MAS co-
ordination and MAS learning. 

Approaches to multi-agent behavior differ mainly in 
regards to the degree of control that the designer should 
have over individual agents and over the social 
environment, i.e., over the interaction mechanisms [10]. 
In Distributed Problem Solving systems (DPS) a single 
designer is able to control (or even explicitly design) each 
individual agent in the domain –the task of solving a 
problem is distributed among different agents, hence the 
name. In MAS on the other hand, there are multiple 
designers and each is able to design only its agent and has 
no control over the internal design of other agents 
[11][12].  

The design of interaction protocols is also tightly 
coupled to the issue of agents' incentives. When agents are 
centrally designed they are assumed to have a common 
general goal. As long as agents have to co-exist and 
cooperate in a single system, there is some notion of 
global utility that each agent is trying to maximize. 
Agents form teams that jointly contribute towards the 
overall goal. By contrast, in MAS each agent will be 
individually motivated to achieve its own goal and to 
maximize its own utility. As a result, no assumptions can 
be made about agents working together cooperatively. On 
the contrary, agents will collaborate only when they can 
benefit from that cooperation. 

Research in DPS considers how work involved in 
solving a problem can be divided among several nodes so 
as to enhance the system’s performance, that is, the aim is 
to make independent nodes solve a global problem by 
working together coherently, while maintaining low levels 
of communication. MAS researchers are also concerned 
with the coherence of interaction, but must build agents 
without knowing how their opponents have been 
designed. The central research issue in MAS is how to 
have these autonomous agents identify common ground 
for cooperation, and choose and perform coherent actions. 

In MAS systems, agents typically make pair-wise 
agreements through negotiation about how they will co-
ordinate, and there is no global control nor consistent 
knowledge nor shared goals or success criteria. So, the 
main purpose of this incentive contracting mechanism is 
to “convince” agents to reach reasonable agreements and 
do something in exchange for something else. In this case, 
AI researchers have followed the studies on bargaining 
with incomplete information developed in economics and 
game theory.  

Using such approach agents are considered players 
that execute moves following a strategy. At the end of the 
game each agent receives a pay-off or return. The 
strategies the agents follow are typically modulated by 
their attitude towards risk, that is, whether they are risk-
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averse (in which case following a minimax strategy where 
the agent tries to minimize the other’s profit may work) or 
they tolerate risk. The strategies also vary according to the 
nature of the interaction (one-shot or continuous; 
simultaneous or sequential) and to the type of game itself, 
for instance, if the agents engage in a zero-sum game 
(where what one gains the other loses) or in a cooperative 
game (where there may exist win-win solutions). In any 
case, the interaction takes the form of a negotiation 
protocol. Negotiation is defined as a process through 
which in each temporal point one agent proposes an 
agreement from the negotiation set and the other agent 
either accepts the offer or does not. If the offer is 
accepted, then the negotiation ends with the 
implementation of the agreement. Otherwise, the second 
agent has to make a counteroffer, or reject its opponent's 
offer and abandon the process. So, the protocol specifies 
when and how to exchange offers (i.e., which actions the 
agents will execute or abstain from executing and when) –
for example, an Offer(x, y, δi, t1) means that the 
negotiation process will start at time t1 with agent x 
offering agent y a deal δi from the set of potential deals (δi 
∈ Δ), typically of the from “I will do action 1 in exchange 
for action 2” or {Do(x, a1), Do(y, a2)}; then, in the next 
negotiation step, agent y will counteroffer with Accept(y, 
δi, t2), in which case the negotiation episode ends with the 
implementation of the agreement, δi; or with Reject(y, δi, 
t2), so that negotiation fails; or, alternatively, agent y can 
send a counteroffer, Offer(y, x, δj, t2), with say δj = {Do(x, 
a3), Do(y, a2)}, “I would prefer you to execute action a3 
rather than a1”, so that negotiation progresses to the next 
stage in which the same routine applies.  

As discussed above, intelligence implies a certain 
degree of autonomy in decision-making that in turn 
requires the ability to learn to make independent decisions 
in dynamic, unpredictable domains such as those in which 
agents co-exist.  

The simplest way to extend single-agent learning 
algorithms to multi-agent problems is just to make each 
agent learn independently. Agents learn “as if they were 
alone”. Communication or explicit co-ordination is not an 
issue therefore –co-operation and competition are not 
tasks to be solved but properties of the environment. 
Likewise, agents do not have models of other agents’ 
mental states or try to build models of other agents’ 
behaviors. However simple this approach to multi-agent 
learning may be, the assumption that agents can learn 
efficient policies in a MAS setting independently of the 
actions selected by other agents is implausible. Intuitively, 
the most appealing alternative is to have the agents learn 
Nash-equilibrium strategies [13][14][15].  

IV. MAS TECHNOLOGY FOR SoS 
We can conclude from the conceptual analysis 

presented above that the paradigm shift demanded by SoS 
requirements fits new trends in engineering computing 
systems. In particular, the drivers and characteristics of 
SoS as specified in section I are consistent with the 
notions of autonomous agents and of multi-agent systems 
as opposed to traditional objects and classes. Although 

MAS development still relies on object-oriented tools and 
techniques, it is a fact that agent-oriented engineering is 
the way forward in the era of large, complex, loosely 
connected software systems, that is, in the era of the 
Internet –indeed, the Open Systems Interconnection (OSI) 
protocol itself can be understood as a SoS. More 
specifically, it can be argued that the difference between 
CoS and SoS lies in the fact that the former are collections 
of objects that coordinate their behavior via DPS, whereas 
the latter are collections of agents that interact through 
incentive mechanisms such as negotiation and 
argumentation. In Table 3 we enumerate ontologies, 
architectures, methodologies, languages, platforms, 
infrastructures and validation tools that SoS can borrow 
from MAS. 

TABLE 3. AGENT-ORIENTED SOFTWARE ENGINEERING 
(AOSE) 

AOSE Standards, techniques and tools 
Ontologies RDF Schema, OIL, DAML, OWL, SHOE 
Architectures BDI, InteRRAP, Touring Machines 
Methodologies Tropos, MAS-CommonKADS, PASSI, 

Prometheus, Gaia, ADELFE, MESSAGE 
Design languages Agent UML 
Programming languages AOP: AGENT0, PLACA, Agent-K, 

MetaM, April, MAIL, VIVA, GO! 
BDI: AgentSpeak, Jason, AF-APL, JACK, 

JADEX, 3APL 
GOAL, Golog, FLUX, CLAIM 

Communication languages KQML, FIPA, ARCOL, KIF, COOL 
Coordination mechanisms MAP, Negotiation, Argumentation, 

Auctions, Institutions 
Tools and platforms ZEUS, JADE, agentTool, RETSINA, 

JATLite, MADKIT, JAFMAS, Cougaar 
Infrastructures  Jini, Ontolingua ReTAX++, OilEd 
Validation Deductive verification, model checking 
 

In particular, perhaps the most defining characteristic 
of MAS is the fact that communication is understood and 
formalized in terms of the internal states of the agents 
involved. In fact, communication is understood as 
(speech) acts, as actions that agents execute in order to 
achieve their goals not as mere message passing. In 
addition, since the agent at the other end is also 
autonomous, the sender needs to consider the receiver’s 
internal state (not just its “position” in a mailing queue) 
and its own intentions. For instance, unlike in object-
oriented approaches, when sending a request, the sender x 
holds the goal of a receiver y achieving a particular 
proposition P, that is, of making P true. Moreover, as ix 
wants the receiver to really try to achieve P the 
preconditions also require that y intends along a run that P 
be eventually true. Finally, the rational effect to be 
achieved is that there is a run in which P eventually holds. 
Formally, 

 
[x, request(y, P)] 
FP: G(x, (I(y, FP))) 
RE: FP 

 
Typically, Agent Communication Languages (ACLs) 

come with a complete set of speech acts, including 
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“inform”, “confirm” “agree”, “promise”, “disconfirm”, 
“refuse”, “declare”, and of course, “request”. 

Of course, agents and MAS are a particular type of 
SoS. Agents and MAS are software SoS. A general theory 
of SoS must be more comprehensive and accommodate 
the characteristics of other types of systems, 
characteristics that cannot be reduced to conglomerates of 
computing devices and the way they inter-operate. Our 
contention is nevertheless that MAS can play the same 
role in developing SoS as objects and classes played in 
conceptualizing, formalizing and implementing CoS. In 
addition, and more importantly, the individual systems 
MASs consist of are autonomous and adaptive –the two 
defining properties of the systems in a SoS. In fact, MAS 
emerge recursively and hierarchically as a result of the 
free interaction of such systems and multi-agent systems –
as SoS do. 

REFERENCES 
[1] N. Karcanias and A.G. Hessami, 2010. Complexity and the 

notion of Systems of Systems: Part (I) General Systems and 
Complexity. Proc. of the 2010 World Automation Congress 
International Symposium on Intelligent Automation and 
Control (ISIAC) 19-23 September 2010, Kobe Japan. 

[2] N. Karcanias and A.G. Hessami, 2010. Complexity and the 
notion of Systems of Systems: Part (II) Defining the notion 
of Systems of Systems. Proc. of the 2010 World 
Automation Congress International Symposium on 
Intelligent Automation and Control (ISIAC) 19-23 
September 2010, Kobe Japan. 

[3] N. Karcanias and A.G. Hessami, 2011. System of Systems 
Emergence: Part (I) Principles and Framework. Proc. of the 
ICETET 2011, 4th Internationa Cnference on Emerging 
Trends in Engineering and Technology, SV129, November 
18-20, Port Louis, Mauritius.   

[4] N. Karcanias and A.G. Hessami, 2011. System of Systems 
Emergence: Part (II) Synergetics Effects and Emergence. 
Proc. of the ICETET 2011, 4th Internationa Cnference on 
Emerging Trends in Engineering and Technology, SV129, 
November 18-20, Port Louis, Mauritius.  

[5] E. Alonso, 2002. AI and Agents: State of the Art, AI 
Magazine, 23 (3), 529–551. 

[6] E. Alonso, 2012. Actions and Agents. In K. Frankish and 
W. Ramsey (Eds.), The Cambridge Handbook of Artificial 
Intelligence, Chapter 5. Cambridge, England: Cambridge 
University Press. 

[7] N. Jennings and M. Wooldridge, (eds.), 1998. Agent 
Technology: Foundations, Applications, and Markets. 
Berlin: Springer-Verlag. 

[8] E. Alonso, M.  d'Inverno, D. Kudenko, M. Luck and J. 
Noble,  2001. Learning in Multi-Agent Systems, 
Knowledge Engineering Review 16 (3), 277-284. 

[9] M. Luck, P. McBurney, O. Shehory and S. Willmott (eds.), 
2005. Agent Technology: Computing as Interaction (A 
Roadmap for Agent Based Computing). AgentLink III. 

[10] M. Wooldridge, 2009. An Introduction to MultiAgent 
Systems, 2nd edition. Chichester, England: John Wiley & 
Sons.  

[11] A. H. Bond and L. Gasser, Less (eds.), 1988. Readings in 
Distributed Artificial Intelligence. San Mateo, CA: Morgan 
Kaufmann Publishers. 

[12] E. H. Durfee, 1988. Coordination for Distributed Problem Solvers. 
Boston: MA: Kluwer Academic. 

[13] L. P. Kaelbling, M. Littman and A. Moore, 1996. Reinforcement 
Learning: A Survey, Journal of Artificial Intelligence Research 4: 
237-285. 

[14] G. Weiss, (ed.), 1999. Multiagent Systems: A Modern Approach to 
Distributed Artificial Intelligence. Cambridge, MA: The MIT 
Press. 

[15] G. Weiss and P. Dillenbourg, 1999. What is ‘multi’ in multiagent 
learning?, in Pierre Dillenbourg (ed.), Collaborative learning. 
Cognitive and computational approaches (pp. 64–80), Oxford: 
Pergamon Press. 
 

12Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-246-2

ICONS 2013 : The Eighth International Conference on Systems


