
Reverse Engineering of Graphical User Interfaces
Work partially supported by FCT under contract PTDC/EIA/66767/2006

Inês Coimbra Morgado, Ana C. R. Paiva
Department of Informatics Engineering,

Faculty of Engineering, University of Porto,
Porto, Portugal

{ei07040, apaiva}@fe.up.pt

João Pascoal Faria
Department of Informatics Engineering,

Faculty of Engineering, University of Porto
INESC Porto

Porto, Portugal
jpf@fe.up.pt

Abstract—This paper describes a dynamic reverse engineering
approach and the correspondent tool, ReGUI, developed to
reduce the effort of obtaining visual and formal models of
both the structure and the behaviour of a software application’s
graphical user interface.

This paper describes the tool’s architecture, the exploration
process it follows, the outputs it generates and the rules used
to generate a Spec# model, which can be used in the context of
Model-Based Graphical User Interface Testing. The case study
presents the results obtained by applying the tool to the Microsoft
Notepad application.

Keywords—ReGUI, Reverse Engineering, GUI testing

I. INTRODUCTION

This research work is part of a wider ongoing project called
AMBER iTest. The main goal of this project is to “develop
a set of tools and techniques to automate specification based
Graphical User Interface (GUI) testing, solving the shortco-
mings found in previous work, and show their applicability
in industrial environments” [1]. Model-Based Testing (MBT)
can contribute to increase the systematisation and automation
of the testing process. However, the manual construction of a
formal model (required as input by MBT techniques) is a too
time consuming and error prone activity. The challenge to be
tackled in this research work is the automatic construction
of part of the software model using reverse engineering
techniques, easing the process of creating visual and formal
models. To build these models, both structural and behavioural
information are required. This information is extracted by the
ReGUI tool. The visual models help to quickly understand
the GUI. The formal model is written in Spec# [2] and it
is necessary to automatically generate test cases inside the
AMBER iTest project.

Once extracted, the formal model needs to be verified, com-
pleted and validated. This process is of the utmost importance
in order to ensure the model describes the intended behaviour.
In addition, the extracted model may reveal errors that must
be fixed. In that case, the model should be updated in order
to describe the intended behaviour and identify, later on, the
conformance errors with the application under test. If this
validation process is not performed, the extracted model may
describe the implemented behaviour, which may be different
from the intended behaviour, and be useless as a test oracle.
The validated model is then used by the Spec Explorer Tool

[3] to generate test cases. These tests are afterwards run over
the GUI of the application under test using the GUI Mapping
Tool [4].

This paper is divided as follows. Section II describes the
state of the art on reverse engineering and Section III presents
the developed tool, ReGUI, focusing on its architecture, func-
tioning and artifacts produced. Finally, Section IV presents a
case study and Section V presents some conclusions about this
research work, along with the limitations of the approach.

II. STATE OF THE ART

“Reverse engineering is the process of analysing a subject
system to create representations of the system at a higher level
of abstraction” [5]. This representation is usually presented as
a model, which can help to better understand an application,
can be used by a code generation process to change the
platform of legacy systems and can be used to check if
the system has the required properties. There are two types
of reverse engineering: static and dynamic, depending on
whether the model is extracted from the source code or from
the program in execution, respectively [6]. Both approaches
follow the same three main steps: collect the data, analyse it
and represent it in a legible way, and both allow obtaining
information about control and data flow [7].

A. Static Reverse Engineering

Static reverse engineering tries to extract information about
an application through its source code or through its byte code.
Static reverse engineering techniques may be useful during the
development of a software system as a way of ensuring the
correctness of the implementation or as a way of being aware
of the current stage of the development [8].

There are several studies on static reverse engineering [9],
[10], [11], [12], [13]. Bouillon et al. implemented a set of
derivation rules in ReversiXML [9] to enable model extraction
from web pages. Instead of extracting a single model it is
also possible to extract several models of different abstraction
levels or perspectives and it is even possible to obtain models
in different abstraction levels from a previously extracted
one. In order to support this, some graph grammars were
implemented in TransformiXML [9], [14].

Vanderdonckt et al. describe a reverse engineering process,
which enables the extraction of a model from a web appli-

293

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

cation, VAQUISTA [10]. This method was developed in order
to enable the automatic migration of the web application into
other platforms, such as pocket computers or mobile phones.

B. Dynamic Reverse Engineering

Dynamic approaches extract information from the Appli-
cation Under Analysis (AUA) in run-mode. Unlike static
techniques, dynamic approaches are able to extract information
about concurrent behaviour, code coverage and memory mana-
gement [6]. Initially, the data is collected by running the AUA
under a debugger or a profiler. There are several strategies to
analyse and represent this data [7].

Even though dynamic approaches are not as common as
static ones, there are still some important works, which need
to be mentioned.

Shehady et al. propose a reverse engineering method to
automate part of the interface testing activity. It extracts the
user interface’s model representing it as a Variable Finite
State Machine, which is later on transformed into a Finite
State Machine (FSM) for testing purposes [15]. On top of
the FSM, the Wp algorithm [16], which assumes the FSM
is fully specified, is applied. This algorithm generates tests,
which allow the identification of any discrepancies between
the FSM and a model specifying the expected output values.
The error diagnosis process is manual.

Chen and Subramaniam developed VESP (Visual Envi-
ronment for manipulating test SPecifications) that works on
GUI based applications in Java [17]. The VESP’s purpose
is to obtain a FSM representation of a GUI coded in Java.
Black box test cases [18] are generated from the FSM and
afterwards executed on the GUI of the AUA. One aspect that
differentiates this approach from more common processes is
that the graphical environment provided enables the tester to
modify the test specification by modifying the FSM itself,
without needing to know any internal representation details.

Atif Memon developed a framework, GUITAR, which ge-
nerates and runs test cases on a GUI, using both reverse
engineering and model-based testing techniques [19]. GUI
Ripper, a component of this framework, extracts a GUI model,
representing the structure of the GUI as a Forest (graph,
which relates the different windows to be opened in the
AUA) and the behaviour as an event flow graph (EFG, graph,
which relates the different events, which may take place in
the AUA) and as an integration tree (tree, which relates the
different components of the AUA) [20]. These are used by the
remaining framework tools to generate and run the tests.

C. Conclusions

Some information can only be extracted using a dynamic
reverse engineering approach, such as concurrency and mem-
ory management. Besides, when working with object oriented
programs, it is hard to understand the behaviour and even
which objects are instantiated through a static analysis, in
which case a dynamic approach may be useful [8].

Most of the dynamic approaches presented in this Section
generate a FSM model. However, such models lack data like

the navigation map (the set of windows that it is possible
to open and the actions needed to open such windows),
information about whether or not a window is modal and
dependencies among GUI elements.

GUITAR generates a GUI Forest, an EFG and an integration
tree. GUI forest represents all the windows of the application.
However, it does not describe the interaction steps required to
open such windows. In the EFG, two events e1 and e2 are
connected when e2 can occur after e1. However, this graph
does not describe when an event is initially disabled and when
an event makes another event possible. So, the behaviour that
test cases generated from such models may check during test
execution is somehow limited.

III. REGUI

The problem at hand in this research work is to diminish
the effort of producing visual and formal models of the GUI
of a software application for testing purposes. The approach
followed by this work is to extract the necessary information
from the application while it is running, i.e., dynamic reverse
engineering the AUA.

A. Architecture

Figure 1 depicts the architectural organisation of all the
components used by the ReGUI tool.

Fig. 1. Architecture of ReGUI

ReGUI uses UI Automation in order to interact with the
GUI. UI Automation [21] is the accessibility framework for
Microsoft Windows, available on all operating systems that
support Windows Presentation Foundation. This framework
represents all the applications opened in a computer as a
tree (a Tree Walker), whose root is the Desktop and whose
nodes are the applications opened at a certain moment. The
GUI elements are represented as nodes, which are children of
the application to which they belong. In the UI Automation
framework each of these elements is an Automation Element.

At the end of the execution, the ReGUI tool generates
six documents: one to represent the structure of the GUI
(ReGUITree.xml) and five others to represent its behaviour.

294

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Four of these files are GraphML [22] files: Navigation-
Graph.xml, which represents the navigation map of the GUI,
WindowGraph.xml, which represents the window graph, Disa-
bledGraph.xml, which represents the disabled graph, and De-
pendencyGraph.xml, which represents the dependency graph.
These files are used as inputs for NodeXL [23], which is a
template for Microsoft Excel, that enables the visualisation
of the graphs. There is another specification file, written in
Spec#, which is input of the test case generation within the
AMBER iTest project, and is a specification model read by a
MBT tool. These files are described in more detail in Section
III-D.

B. Front-End

The ReGUI front-end is shown in Figure 2. This tool is
based on the development of a previous one presented in
[24]. ReGUI Tool v2.0 is fully automatic and uses a different
approach from the previous version of the tool so the results
achieved, such as dependencies and graphs produced, are
different.

Fig. 2. ReGUI front-end

In order to start the extraction process, it is necessary to
identify the GUI to be analysed. In order to do so, it is
necessary to drag the Spy Tool symbol and drop it on top
of the GUI. Following, the user must press the button Play,
which will start the exploration process. The name of this
button changes to Playing during the execution and to Again
at the end. Finally, the user may press the Generate Spec#
Model button in order to generate the Spec# model. If, for
some reason, the user intends to run the ReGUI on the same
AUA once more, pressing the button Again (button Play at the
end of the execution) will restart the process.

C. Exploration Process

The exploration process is divided in two phases. The first
one navigates through every menu option in order to verify
which GUI elements are enabled and which are disabled in
the beginning of the execution, i.e., the initial state of the
GUI. The second phase also navigates through all the menus
but this time the ReGUI tool interacts with all the menus that
are enabled at that point. After interacting with each menu
item, the ReGUI tool verifies if any window opened, closing
it afterwards. Following, ReGUI opens all the menus again
in order to verify if any state changed, i.e., if an element
previously enabled became disabled or vice-versa.

During the development of the ReGUI tool, it was necessary
to face some challenges that are described next:

1) Identification of GUI elements: GUI elements may
have dynamic properties, i.e., properties which vary along
the execution, such as the automationId and the RuntimeI-
dProcess. During the exploration process, the identification
of an element is performed through an heuristic based on
different properties of the element. This heuristic assigns a
percentage of similarity to the different elements according
to the ressemblance between their properties. The properties
to be compared may be configurable at the beginning of
the execution. Nevertheless, there are properties that allow
to differentiate two GUI elements. For instance, when two
GUI elements have a different ControlType value, they are
undoubtedly different. These properties are very useful for the
identification.

2) Exploration order: In general, the extracted information
depends on the order by which the GUI is explored. Currently,
ReGUI follows a depth-first algorithm, i.e., all the options of
a menu are explored before exploring the next menu and the
exploration of each node’s children follows the order in which
they appear on the GUI. However, if the exploration followed a
different order, the dependencies extracted could be different.
An example of such may be found in Microsoft Notepad v6.1.
The menu item Select All requires the presence of text in the
main window in order to produce any results. Since, in the
beginning, there is no text in the main window, interacting
with this menu item does not have any effect. After interacting
with the Time/Date menu item, that writes the time and date
in the main window, the Select All menu item would produce
visible results (selecting the text and enabling the menu items
Cut, Copy and Delete and disabling the menu item Select All
itself).

3) Synchronisation: To automatically interact with a GUI,
it is necessary to wait for the interface to respond after each
action. One way to solve this problem is to add a waiting time
long enough to ensure the GUI is able to respond. However,
this would make the exploration process too slow. In order
to surpass this problem, ReGUI checks (with event handlers)
when any changes occurred in the UI Automation tree (which
reflects the state of the screen in each moment) and continues
after that. It is yet possible to assign a waiting time to any
action, in order to check if the correspondent result could
eventually take more time to occur. However, this approach
does not allow the detection of a sequence of timely spaced
events that are the result of the same action.

4) Closing a Window: During the execution it is necessary
to close windows that are eventually opened, in order to
continue with the exploration process. However, there is no
standard way of closing them. Windows usually have a top
right button for closing purposes but when this is not available
it is necessary to interact with another button, which would
close the window. The selection of such button is done
according to configurable guidelines.

D. Outputs

A tree (ReGUI tree) and four graphs are used internally to
store and represent the extracted information. Every node of

295

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

these four graphs corresponds to a node in the ReGUI tree.
The information stored in these structures is used to generate
the formal model in Spec#. The outputs are:

1) ReGUI Tree: The ReGUI tree merges all the UI Automa-
tion trees produced during the exploration process. Initially,
the ReGUI tree has only the elements visible at the beginning
of the exploration and, at the end, it has every element which
has become visible at some point of the exploration, such as
the content of the windows opened along the process and sub-
menu options.

2) Window Graph: The window graph shows which win-
dows may be opened in the application. Figure 5 is a visual
representation of this graph, in which each node is a window.
A window may be modal or modeless, being modal if it
does not allow interaction with other windows of the same
application while opened and modeless otherwise. An egde
between two nodes w1 and w2 means that it is possible to
open w2 by interacting with elements of w1.

3) Navigation Graph: The navigation graph represents the
nodes which are relevant to the navigation, i.e., this graph
stores information about which user actions must be performed
in order to open the different windows of the application. The
visual representation of this graph is depicted in Figure 6. A
solid edge between a window w1 (represented by a square)
and a GUI element e1 (represented by a circle or a triangle)
means e1 is inside of w1 whilst a dashed edge between two
GUI elements e1 and e2 means it will be possible to interact
with e2 after interacting with e1.

4) Disabled Graph: The disabled graph’s purpose is to
show which nodes are accessible but disabled in the the first
phase of exploration process described in Section III-C, i.e.,
which nodes are disabled (represented by a filled triangle) at
the beginning of the exploration. An example of this graph is
depicted in Figure 7.

5) Dependency Graph: A dependency between two ele-
ments A and B means that interacting with A modifies the
value of a property of B. After interacting with an element
ReGUI looks for any changes in the properties of the different
elements (dependencies), as described in section III-C.

Figure 8 is the visual representation of the dependency
graph obtained during the exploration process. A solid edge
between a window w1 and a node n1 means n1 is inside w1
and a dashed edge between two nodes n1 and n2 means there
is a dependency between n1 and n2.

6) Spec# file: The Spec# model is obtained by applying
the rules of Figure 3 to the navigation graph. Each window
generates a namespace and each edge generates a method
annotated with [Action]. Action methods in Spec# are methods
that will be used as steps within the following generated test
cases. Methods without annotations are only used internally.
An example of such model is shown in Figure 9.

IV. CASE STUDY

In this Section, the results of running the ReGUI tool on
Microsoft Notepad v6.1 are presented. For this execution, the
properties taken into consideration to compare the elements

Fig. 3. Rules for the Spec# generation

were the ControlType, the Name, the AcceleratorKey, the
AccessKey, the HelpText, the ProcessID and the position. In
order to sucessfully close the windows, ReGUI looked, in this
order, for buttons whose name was Cancel, No, Close, Ok,
Continue or X.

Figure 4 is a simplified representation of the ReGUI tree
after exploring the first menu, the menu File.

Fig. 4. Part of the ReGUI tree when exploring the menu item File

The visual representation of the window graph is repre-
sented in Figure 5. In this case, it is possible to conclude that
the window Open, which is modal, and the window Windows
Help and Support, which is modeless, may both be opened
from the main window of the AUA.

Figure 6 shows the visual representation of the navigation
graph. In this example, it is possible to depict that to open
the Save As window, it is necessary to interact with the menu
item File and then interact with the menu item Save or with the
menu item Save As. Clicking on the button Close, belonging
to the window Save As, this window is closed and the main

296

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Fig. 5. Visual representation of the window graph

window gets the focus again.

Fig. 6. Visual representation of the navigation graph

Analysing Figure 6 it is possible to verify the window Find
is not opened during the exploration process as it requires
previous insertion of text in the main window.

Figure 7 is the visual representation of the disabled graph,
obtained during the first step of the exploration process. In
this Figure, the set of menu items Paste, Undo, Cut, Delete,
Find Next, Find... and Copy are initially disabled. The menu
item Edit is represented only because it is the father of these
menu items.

Fig. 7. Visual representation of the disabled graph

Figure 8 shows the visual representation of the dependency
graph. When interacting with the menu item Time/Date, the

menu item Undo, which was initially disabled, as depicted in
Figure 7, becomes enabled. Thus, there is a dashed arrow from
Time/Date to Undo in the graph.

Fig. 8. Visual representation of the dependency graph

Finally, Figure 9 depicts a small sample of the generated
Spec# model. The rules applied to generate this Spec# model
are in comments. The first namespace corresponds to the main
window of the Notepad software application. The two methods
within this namespace describe the behaviour when interacting
with the menu item File and with the menu item Save. The
second namespace corresponds to the window Save As and its
method describes the interaction with the button Close inside
that window.

Fig. 9. Sample of the Spec# formal model generated

For this sample of the Spec# model, no modifications should
be necessary upon the manual verification.

V. CONCLUSIONS

The ReGUI tool is capable of extracting important infor-
mation about the behaviour of the AUA, such as navigational
information and which GUI elements become enabled or di-
sabled after interacting with another element. The exploration

297

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

process is fully automatic. The user just has to point out the
AUA.

ReGUI generates graphs, which are useful to quickly vi-
sualise the structure and behaviour of the AUA in order to
understand its functioning. Also, an important part of the
Spec# model is already generated by the tool.

When comparing with the GUITAR framework described in
Section II-B, it is possible to verify that there is a similarity
between the information stored in its GUI Forest and the
information stored in both the Window graph and the ReGUI
tree as the GUI Forest has information about which window
may be opened from another window, along with the structure
of each of those windows. The main advantage of the approach
described in this paper is that it collects important behavioural
information, such as dependencies, and the actions needed to
open the several windows of the AUA.

ReGUI has still some limitations. For instance, currently, it
only supports interaction through the invoke pattern [21] but
it may evolve to interact through other patterns. In addition, it
just tries to open windows from the main window and there are
still other dependencies that may be explored. Nevertheless,
these limitations could be overcome in a following version
of the tool. It is yet objective of the authors to analyse the
tools response to more complex systems in order to accurately
evaluate the quality of the extracted dependency model.

One of the main difficulties faced during the development of
ReGUI was the lack of GUI standards. For example, generally,
an opened window is, in the UI Automation tree, child of the
main application. However, there are some which are siblings
of the application. Furthermore, although each window should
have an element called system menu bar, which corresponds to
the top bar where you can usually find the minimise, maximise
and close buttons, some windows do not have that element.

This research work was developed on the context of a
project with testing purposes, the AMBER iTest. However,
once the model is generated and verified it is possible to use it
for other purposes. For instance, to use this model to generate
code in languages different from the original one, such as
transforming a C# application into a Java application or the
other way around.

REFERENCES

[1] S. E. Group, “Amber itest - an automated model-
based user interface testing environment,” October 2008,
http://paginas.fe.up.pt/s̃ofteng/wiki/doku.php?id=projects:
amber itest:start, last access on December 2010.

[2] M. Barnett, K. R. M. Leino, and W. Schulte, “The spec# programming
system: An overview,” in CASSIS International Workshop, March 2004.

[3] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, “Formal methods and testing,” R. M. Hierons, J. P.
Bowen, and M. Harman, Eds. Berlin, Heidelberg: Springer-Verlag,
2008, ch. Model-based testing of object-oriented reactive systems with
spec explorer, pp. 39–76.

[4] A. C. R. Paiva, J. C. P. Faria, N. Tillmann, and R. F. A. M. Vidal,
“A model-to-implementation mapping tool for automated model-based
gui testing,” in 7th International Conference on Formal Engineering
Methods, November 2005.

[5] E. J. Chikofsky and J. H. Cross II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Softw., vol. 7, pp. 13–17, January 1990.

[6] T. Systä, “Dynamic reverse engineering of java software,” in Proceed-
ings of the Workshop on Object-Oriented Technology. London, UK:
Springer-Verlag, 1999, pp. 174–175.

[7] M. J. Pacione, M. Roper, and M. Wood, “A comparative evaluation
of dynamic visualisation tools,” in Proceedings of the 10th Working
Conference on Reverse Engineering, ser. WCRE ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 80–.

[8] T. Systä, “Static and dynamic reverse engineering techniques for java
software systems,” Ph.D. dissertation, Faculty of Economics and Admin-
istration of the University of Tampere, Kalevantie 4, FI-33014 University
of Tampere, Finland, 2010.

[9] L. Bouillon, Q. Limbourg, J. Vanderdonckt, and B. Michotte, “Reverse
engineering of web pages based on derivations and transformations,”
in Proc. of 3 rd Latin American Web Congress LA-Web2005 (Buenos
Aires, October 31-November 2, 2005), IEEE Computer Society Press,
Los Alamitos, 2005, 2005, pp. 3–13.

[10] J. Vanderdonckt, L. Bouillon, and N. Souchon, “Flexible reverse en-
gineering of web pages with vaquista,” in Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE’01), ser. WCRE
’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 241–
248.

[11] J. C. C. J. C. Silva and J. A. Saraiva, “Gui inspection from source code
analysis,” Electronic Communications of the EASST, 2010, to appear.

[12] Y. farn R. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wallach, “Ciao:
A graphical navigator for software and document repositories,” in In
International Conference on Software Maintenance. IEEE Computer
Society, 1995, pp. 66–75.

[13] M. P. Chase, S. M. Christey, D. R. Harris, and A. S. Yeh, “Manag-
ing recovered function and structure of legacy software components,”
in Proceedings of the Working Conference on Reverse Engineering
(WCRE’98), ser. WCRE ’98. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 79–.

[14] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. Lpez-
Jaquero, “Usixml: A language supporting multi-path development of
user interfaces.” in EHCI/DS-VIS, ser. Lecture Notes in Computer
Science, R. Bastide, P. A. Palanque, and J. Roth, Eds., vol. 3425.
Springer, 2004, pp. 200–220.

[15] R. K. Shehady and D. P. Siewiorek, “A method to automate user interface
testing using variable finite state machines,” in Proceedings of the 27th
International Symposium on Fault-Tolerant Computing (FTCS ’97), ser.
FTCS ’97. Washington, DC, USA: IEEE Computer Society, 1997, pp.
80–.

[16] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, “Test selection based on finite state models,” IEEE Trans.
Softw. Eng., vol. 17, pp. 591–603, June 1991.

[17] J. Chen and S. Subramaniam, “A gui environment to manipulate fsms
for testing gui-based applications in java,” in Proceedings of the 34th
Annual Hawaii International Conference on System Sciences (HICSS-
34)-Volume 9 - Volume 9. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 9061–.

[18] L. Williams, “Testing overview and black-box testing techniques,” 2006.
[19] D. R. Hackner and A. M. Memon, “Test case generator for guitar,” in

Companion of the 30th international conference on Software engineer-
ing, ser. ICSE Companion ’08. New York, NY, USA: ACM, 2008, pp.
959–960.

[20] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse
engineering of graphical user interfaces for testing,” in Proceedings of
The 10th Working Conference on Reverse Engineering, Nov. 2003.

[21] R. Haverty, “New accessibility model for microsoft windows and cross
platform development,” SIGACCESS Access. Comput., pp. 11–17, June
2005.

[22] U. Brandes, M. Eiglsperger, and J. Lerner, “Graphml primer,” April
2007, http://graphml.graphdrawing.org/primer/graphml-primer.html, last
access on July 2011.

[23] Microsoft, “Nodexl: Network overview, discovery and exploration for
excel,” March 2011, http://nodexl.codeplex.com/, last access on May
2011.

[24] A. M. P. Grilo, A. C. R. Paiva, and J. P. Faria, “Reverse engineering
of gui models for testing,” in 5a Conferencia Ibrica de Sistemas y
Tecnologias de la Informacin, July 2009.

298

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

