
A Metamodel for Representing Safety LifeCycle Development Process

Huaxi (Yulin) Zhang
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9, France

zhang@irit.fr

Brahim Hamid
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9, France

hamid@irit.fr

Damien Gouteux
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9, France

gouteux@irit.fr

Abstract—Metamodeling process supports the effort of cre-
ating flexible process models. The purpose of process models
is to document and communicate processes and to enhance the
reuse of processes. Thus, processes can be better taught and
executed. Results of using metamodel process are an increased
productivity of process engineers and an improved quality of
the models they produce. However, most useful metamodels are
activity-oriented, and the required concepts of safety lifecycle,
such as validation, can not be easily modeled through these
metamodels. In this paper, we propose a safety-oriented process
metamodel to support all the requirements of safety control. As
a proof of concept, we examine a process model that has several
safety lifecycle requirements: the IEC 61508 safety lifecycle V-
model standard.

Keywords-Safety lifecycle, Development process, Modeling,
Process metamodel

I. INTRODUCTION

Over the last two decades, the need for a formally defined
safety lifecycle process has emerged. This is because the
inevitable requirement for better processes eventually pushed
control systems to a level of complexity where sophisticated
electronics and programmable systems have became the
optimal solution for control and safety protection [1]. The
industrial processes trend to have following characters:

• Industrial processes are becoming more and more com-
plex.

• Increasing numbers of people and organizations are
involved.

• High cost in case of an unwanted spurious process trip.
• Large consequences in case the process gets out of

control.
With these emergent requirements, many safety lifecycles

have been proposed by different associations, like IEC (Inter-
national Electrotechnical Commission) or ISA (International
Society of Automation). These safety lifecycles are adopted
by different domains or enterprises with some modifications
to adapt different requirements (for example, domain specific
requirements). However, as the fundamental differences be-
tween traditional development process and safety lifecycle
are huge, such as different kinds of safety checks and
the safety relationships between these checks and phases,

to model these different safety lifecycles with traditional
used process metamodel is not simple and direct. Most
process metamodels such as SPEM (Software & Systems
Process Engineering Metamodel), UMA (Unified Method
Architecture), OPF (OPEN Process Framework), focus on
modeling the process model with activity-oriented viewpoint
to accommodate a large range of development processes.
Furthermore, no process metamodel is rich enough or ori-
ented to serve as the support of a safety lifecycle.

The goal of the paper is to present an ongoing work
devoted to extend exiting framework with support for safety
lifecycle development. That is, we propose a new safety
lifecycle development processes technique in order to make
easy their use in a building process of system/ software
applications with safety support. The proposed vision is to
use modeling techniques to obtain high level of abstractions
in order to avoid the cost of building a process for each
applications properties and/or for each domain. Reaching
this purpose requires to get (1) a common representation of
safety lifecycle process for several domains; (2) a process
flexible structure; (3) guidelines for domain specific imple-
mentation of the process and (4) guidelines to guarantee the
correctness of the process with regard to safety requirements.
Thus, we propose a PPFS metamodel which response all
these requirements which is developed under the European
project TERESA, oriented to different concerns, namely
safety lifecycle, pattern, repository, embedded system and
non-/extra- functional properties. In this paper, we just
concentrate on the aspect of safety lifecyle.

The remaining of this paper is organized as follows.
Section II defines the context of the safety lifecycle and
the problem definition is presented followed by a motivating
example. Section III discusses the state of the art of process
metamodels from the safety related viewpoint. Section IV
outlines the PPFS process metamodel. Section V presents
how the PPFS metamodel supports the safety lifecycle
with its safety-related concepts. Section VI illustrates the
PPFS metamodel by the IEC 61508 standard safety lifecycle
V-model. Section VII concludes and draws future work
directions.

550

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

II. PROBLEM STATEMENT

The main difficulty to overcome in the development of
critical embedded systems is how to avoid the cost of
building a process for properties of each application and/or
for each domain. One way to obtain high level of abstraction
is to make use of meta-modeling techniques. Informally,
a process has several views with regard to the considered
level of abstraction. This decomposition and separation of
uses illuminates how to create, to specialize processes. This
implies that a process is created at high level abstraction
and then it will be transformed into more specific one.
The common safety engineering meta-model will have to
recognize the need to separate expertise on applications. As
a result, individual application domains could have different
safety engineering processes, for example, a domain where
application engineers do not use model-driven engineering
should have a more decoupled interaction with the modeling
artifacts.

A. Safety Lifecycle: Definition and Concepts

The safety lifecycle can be defined as: an engineering
process designed to achieve a risk-based level of safety
with performance criteria that allow versatile technologies
and optimal design solutions [2]. The risk-based levels are
recognized as system integrity level (SIL). SIL measures
the confidence which can be attributed on the fact that
the integrity of the system functions conform with the
requirements.

Many safety lifecycles are proposed, such as IEC
61508 [3], IEC 61511 [4], and ANSI/ISA S84.01 [5]. The
differences between the safety lifecycle and normal devel-
opment process are only the integration of safety related
phases into process, but also the special concepts used to
verify whether the safety lifecycle and the SIL requirements
are correctly implemented and satisfied. Generally, there are
four types of checks used to validate the safety lifecycle [3]:

• Verification. Confirmation by examination and provi-
sion of objective evidence that the intended functions
have been correctly implemented and the requirements
have been satisfied. and assurance that the safety anal-
ysis remains valid for the system as implemented.

• Validation. The activity of demonstrating that the
safety-related system under consideration, before or
after installation, meets in all respects the safety re-
quirements specification for that safety-related system.

• Functional safety audit. Systematic and independent
examination to determine whether the procedures spe-
cific to the functional safety requirements comply with
the planned arrangements, are implemented effectively
and are suitable to achieve the specified objectives.

• Functional safety assessment. Investigation, based on
evidence, to judge the functional safety achieved by
one or more E/E/PE safety-related systems, other tech-

nology safety-related systems or external risk reduction
facilities.

Beyond these checks, the interaction and influences be-
tween the process phases should be considered. This means
the safety relationships between checks and phases within
one development process. To support these relationships,
four basic flows should be modeled: control flow, retrieve
flow, validation flow and verification flow. These flows
represent the interactions and influences between checks
and process phases. process, such as he verification flow,
validation flow, etc. Thus, the same time with four types of
checks, it also specify four types of flow relationships in
process.

B. Motivating Example

Safety lifecycles are practiced in different domains or
different enterprises with different kinds of versions [2]. The
domain specific requirements lead different safety lifecycles,
which are modified from the general or standard lifecycle
to adapt their specific requirements. For example, the IEC
(International Electrotechnical Commission) 61508 is today
globally recognized and considered as the basic standard to
evaluate the suppliers’ products. IEC 61508 [3] recommends
a V-model safety lifecycle, as shown in Fig. 1. How to
define this kind of safety lifecycle model, such as IEC 61508
V-model, is raised as a problem. Thus, in this paper, we use
IEC 61508 as a motivating example.

E/E/PES safety
requirements
specification

Software
architecture

Software safety
requirements
specification

Software system
design

Module
design

Module
testing

Validation
testing

CODING

Integration testing
(components, subsystems

and programmable
electronics)

Validation Validated
software

Output

Verification

Integration
testing
(module)

E/E/PES
architecture

Figure 5 — Software safety integrity and the development lifecycle (the V-model)

Figure 1. The V model of IEC 61508

Considering above modeling problem, we find that a
safety-related metamodel, which can be applied to model
these different lifecycle models, is stringently required. Thus
the claim of this paper is that a safety-related process
metamodel should capture the safety related process con-
cepts to facilitate the modeling of safety-related development
process. In other words, in order to model a safety lifecycle,
a process metamodel should model SIL, checkpoints and dif-
ferent flows between checks and phases. These concepts as
the minimum support and basic elements for safety-related

551

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

lifecycle, should be modeled by a process metamodel. State-
of -the-art of process metamodels have been analyzed from
this perspective, trying to answer the following questions:

• Do existing process metamodels support safety lifecy-
cles?

• If so, are these metamodels can capture all required
safety concepts mentioned above explicitly?

III. STATE OF THE ART OF PROCESS METAMODEL

Meta-process modeling supports the effort of creating
flexible process models. The purpose of process models is
to document and communicate processes and to enhance
the reuse of processes. Thus, processes can be better taught
and executed. Results of using meta-process models are an
increased productivity of process engineers and an improved
quality of the models they produce [6].

Process metamodels can be modeled from different
views: activity-oriented, product-oriented and decision-
oriented views [6], [7], [8]. Most process metamodels adopt
the activity-oriented views, such as SPEM, UMA and OPF.

The SPEM (Software & Systems Process Engineer-
ing Metamodel) was created by the Object Management
Group [9] as a de facto, high-level standard for processes
used in object-oriented software development. The scope
of SPEM is purposely limited to the minimal elements
necessary to define any software and systems development
process, without adding specific features for particular devel-
opment domains or disciplines. The goal is to accommodate
a large range of development methods and processes of
different styles, cultural backgrounds, levels of formalism,
lifecycle models, and communities. Thus, with SPEM, it is
not easily to model all the specific concepts required by
safety lifecycle.

The Unified Method Architecture (UMA) [10] has been
developed within IBM 1, which is mostly used in industry
to support the most important standards. The metamodel of
UMA is based on SPEM, thus it has the same weakness as
SPEM .

The OPEN Process Framework (OPF) is defined by
OPEN [11]. Generally, it is a componentized OO develop-
ment methodology underpinned by a full metamodel. The
drawback of OPF is just like above twos.

Thus, we can find that these metamodels are not designed
to support safety lifecycle. In some view, they permit to
model the safety related concepts. With the above mentioned
characters of safety lifecycle, we give a comparison between
these metamodels as shown in tables I and II. Table I eval-
uates how these metamodels support four kinds of checks
mentioned in the beginning and Table II compares these
metamodels from the special required relationships of safety
lifecycle. Tables I and II evaluate these metamodel from

1UMA has been developed in a collaborative effort by the architects of
the IBM Rational Unified Process (RUP).

the facility of use and the easiness of comprehension via
the mentioned safety concepts. The tables use four levels
to evaluate these metamodel from + to ++++. From these
tables, as SPEM is a general process metamodel, we can
find that it is difficult to use to model safety lifecycle.
UMA and OPF are better than SPEM, however they are
also not designed to orient and model safety lifecycle. We
can just adjust some of their concepts to represent the safety
audit and safety assessment in a more general way. For the
safety relationship, all these metamodels are in same level,
they do not have any specific concepts to model the safety
relationship, however we can still adjust their control flow
concepts to safety relationship. But the semantic information
of all these safety checkpoints and relationships are difficult
to reserve and illustrate in these metamodels.

Metamodel Validation Verification Safety
audit

Safety
assessment

SPEM + + + +
UMA ++ ++ ++ ++
OPF ++ ++ +++ +++

Table I
COMPARISON OF EXISTING PROCESS METAMODELS IN CHECKPOINTS

Metamodel Control
Flow

Retrieve
Flow

Validation
Flow

Verification
Flow

SPEM ++++ ++ ++ ++
UMA ++++ ++ ++ ++
OPF ++++ ++ ++ ++

Table II
COMPARISON OF EXISTING PROCESS METAMODELS IN ASSOCIATIONS

Except above mentioned process metamodels, there
are also other activity metamodels like OOSPICE [12],
SMSDM [13]. Beyonds these, the other types of process
metamodel such as decision based etc, do not orient to
safety critical system development neither. As far as we
know, the studied process metamodels unfortunately do not
support safety related development process explicitly or
facilitate the modeling of safety lifecycles. Beyonds these,
many safety critical systems use safety instrument systems
(SIS) to manage the safety lifecycle, however, these SIS
do not have any process metamodel. Some works like [14]
are proposed to model different standards and try to give
recommendations during the application development using
these standards. In conclusion, these existing metamodels are
(1) not explicitly or directly describing the safety concepts
as the first-classes and (2) not easily to use or comprehend,
such as the different flows cannot be differentiated with each
other. Thus, this analysis results in requirements for the
process metamodel presented in this paper with following
characteristics:

• Design with the viewpoint: safety-related.

552

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

• Support safety-related development process with its
necessary required concepts: SIL, checkpoints and
safety control relationships.

IV. OVERVIEW OF PPFS METAMODEL

To response the above requirements of metamodel, we
propose a metamodel called PPFS. This metamodel is de-
signed under the European project TERESA. It supports
several engineering concerns, namely: safety lifecycle, pat-
tern, repository, embedded system and non-/extra- functional
properties, as shown in Fig. 2. In our works, we deal
with a metamodel PPFS (Process-based Pattern Fundamental
Structure), which is designed to orient several engineer-
ing concerns, namely: safety lifecycle, pattern, repository,
embedded system and non-/extra- functional properties, as
shown in Fig. 2. In this paper, we concentrate on its safety
related concern.

MetaModel of Software/System development process 2615/11/2010

PPFS - Overview

PPFS

Pattern
integration

Embedded
system

Non/extra
functional
property

Safety
lifecycle

Repository

Figure 2. The characteristics of PPFS metamodel

The PPFS metamodel describes all the artifacts (and their
relations) required to capture all the facets of safety-life
cycle processes. It contains different packages depicted in
Fig. 3 which supply different capabilities. In order to com-
pare with other process metamodels, we give a simplified
version of metamodel with necessary elements to capture
safety-related concepts as shown in Fig. 4.

In this paper, we concentrate on presenting the safety-
related part of the PPFS metamodel.

V. SAFETY CONCERN OF PPFS METAMODEL

In this section, the safety-related concepts in PPFS will
be introduced, including SIL, the checks and safety relation-
ships.

Figure 3. Structure of PPFS Metamodel

A. SIL

SIL in the PPFS metamodel is modeled as enumeration
class with five levels from zero to four.

• SIL 4: the highest target and most onerous to achieve,
requiring state of the art techniques (usually avoided)

• SIL 3: less onerous than SIL 4 but still requiring the
use of sophisticated design techniques.

• SIL 2: requiring good design and operating practice to
a level not unlike ISO 9000.

• SIL 1: the minimum level but still implying good design
practice.

• SIL 0: referred to as “not-safety related” in terms of
compliance.

With these five levels, the SIL attribute of process class
can be set to SIL value to determine the process demand
rate, which is a measure of the integrity and the stability of
the process (see Fig. 4).

B. Checkpoint

Checkpoint is defined as an activity or phase which
presents the safety checks in different levels of process.
In other words, in the PPFS, safety checks are named
checkpoints. They are used to verify whether the safety
requirements are correctly implemented. To fulfill the re-
quirements presented in Section II, we specify four kinds of
checkpoints: validation, verification,safety audit and safety
assessment. The structure of checkpoint and related classes
is depicted in Fig. 5.

Furthermore, in order to facilitate the extension of the
metamodel, the different kinds of checkpoints are defined
as CheckpointKind. With this class, the checkpoint can be
easily extended by different required types. The relationship
is shown in Fig. 6.

In the following, we present four kinds of checkpoints
predefined in the PPFS metamodel.

1) Verification: The definition of validation is a confirma-
tion by examination and provision of objective evidence that
(i) the intended functions have been correctly implemented

553

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 4. The structure of PPFS from safety-related viewpoint

Figure 5. Structure of Checkpoint

Figure 6. The types of checkpoint

and (ii) the requirements have been satisfied and (iii) assur-
ance that the safety analysis remains valid for the system as
implemented.

2) Validation: The activity of demonstrating that the
safety-related system under consideration, before or after

installation, meets in all respects the safety requirements
specification for that safety-related system.

3) Safety audit: Safety audit defines a systematic and in-
dependent examination to determine whether the procedures
specific to the functional safety requirements comply with
the planned arrangements, are implemented effectively and
are suitable to achieve the specified objectives. Figure. 7
gives an example of safety audit, which serves as a check-
point and also a phase or activity.

Figure 7. The example of Safety audit

4) Safety assessment: Safety assessment is defined as an
investigation, based on evidence, to judge the functional
safety achieved by one or more E/E/PE safety-related sys-
tems, other technology safety-related systems or external
risk reduction facilities.

C. Safety Relationships

There are five kinds of safety relationships: internal verifi-
cation, external verification, validation and retrieve flow. We
precisely define different kinds of verification relationships
in the PPFS metamodel.

1) Control Flow: is a Flow element that presents the
continuation of one Work Breakdown Element to another
Work Breakdown Element. The control flow presents the

554

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 8. Structure of Flows

next work breakdown element after finishing the previous
one.

2) Internal Verification Flow: is a Flow element that
presents the internal verification relationship of one Work
Breakdown Element to another Work Breakdown Element.

Internal Verification Flow represents the internal verifi-
cation that we performed before start a new development
phase. These actions must be carried out in order to check
that the actions performed in the immediately previous phase
have been done in a proper way. These actions are performed
by a group independent to the design team and these actions
are restricted to the left branch of the Safety Life Cycle (V-
Model). These verification actions are shared between the
safety audit team (Safety Auditor) and the team in charge
of carried out the internal reviews.

3) External Verification Flow: is a Flow element that
presents the external verification relationship of one Work
Breakdown Element to another Work Breakdown Element.

External Verification Flow represents the normal verifi-
cation performed at the right branch of Safety Life Cycle
(V-Model). These actions are performed by the verification
team and they start at the end of the implementation phase.
The typical actions in this kind of verification are often listed
below:

• Static analysis - Code coverage/Syntactic analysis
• Unit Tests
• Integration Tests
• System Tests - Validation Tests

4) Validation Flow: is a Flow that represents the vali-
dation relationship between two Work Breakdown Element.
In safety lifecycle V-model, validation executes at the end
of the implementation phase in V-model to confirm that the
installed and commissioned SIFs meet the Safety Require-
ments Specification (SRS).

In our metamodel, although the validation concept comes
from the safety lifecycle, we still make it generalization.
That means validation can be concerned different perspec-
tive, not only just for safety, for example dependability
validation, security validation etc.

5) Retrieve Flow: is a Flow that represents the retrieve
relationship from checkpoints to phases or activities. The
retrieve action will be proceeded when the checkpoints don’t
pass the examination. The process will turn back to the
previous Work Breakdown Element to reexamine or redo
the works. Figure 9 shows an example of retrieve flow.

Figure 9. The example of retrieve flow

VI. AN ILLUSTRATION: IEC 61508 SAFETY LIFECYCLE

In this section, we try to illustrate the use of modeling
framework by modeling IEC 61508 standard safety lifecycle
V-model by the PPFS metamodel. Fig. 10 depicts the IEC
61508 V-model instantiated from the PPFS metamodel.
From this illustration, we can easily demonstrate that it
is more direct and precise using the PPFS metamodel to
define the different safety lifecycle models. As software
process covers the entire software development and contains
almost all the necessary information of the development,
thus it is difficult to present the entire process with all the
information in one model. Normally, we use one process
model to present the overall development in first level,
and then decompose the process with different sub-models
that correspond each phase of development. Fig. 10 is an
example of the first level model of process.

VII. CONCLUSION AND FUTURE WORKS

This paper presented and illustrated our proposed PPFS
metamodel from the safety-related viewpoint. Few process
metamodel are rich enough or oriented to serve as the
support of a safety lifecycle. Most process metamodels such
as SPEM [9], UMA [10], OPF [11], focus on modeling the
process model with activity-oriented viewpoint to accom-
modate a large range of development processes. As men-
tioned in Section III, a safety-oriented process metamodel
is required. The PPFS metamodel fulfills all the required
characteristics mentioned. It permits (1) to design process
model from the safety-related viewpoint, (2) to support
safety-related development process with SIL (safety integrity
level), checkpoints and safety control relationships, (3) to
facilitate modeling the domain specific safety lifecycle.

The PPFS metamodel presented in this paper is also
illustrated by a case study of IEC 61508 standard safety-

555

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 10. PPFS Metamodel instantiated by the IEC 61508 safety lifecycle.

lifecycle V-model. By this illustration, we can validate the
feasibility and effectiveness of the PPFS metamodel.

As future work, we plan to extend the meta-model to
refine the specifications of safety lifecycle in order to support
(i) design pattern solutions, (ii) repository and (iii) extra-
functional and non-functional properties.

Acknowledgements. This work is initiated in the context
of SEMCO framework. It is supported by the European FP7
TERESA project and by the French FUI 7 SIRSEC project.

REFERENCES

[1] D. J. Smith and K. G. L. Simpson, Functional Safety: A
straightforward guide to applying IEC 61508 and related
standards, 2nd ed. Elsevier: Butterworth Heinemann, 2004.

[2] Exida, “Iec 61508 overview report (version 2.0),” Tech. Rep.,
January 2006.

[3] I. S. . IEC 61508, Functional safety of electrical/ elec-
tronic/programmable electronic safetyrelated systems, Inter-
national Electrotechnical Commission Std., 2000.

[4] I. S. . IEC 61511, Functional safety - Safety instrumented
systems for the process industry sector, International Elec-
trotechnical Commission Std., 2003.

[5] A. S. S84.01, Application of Safety Instrumented Systems for
the Process Industry, International Society for Measurement
& Control Std., 1996.

[6] C. Rolland, “A comprehensive view of process engineering,”
in Proceedings of the 10th International Conference on
Advanced Information Systems Engineering. London, UK:
Springer-Verlag, 1998, pp. 1–24.

[7] C. Rolland, N. Prakash, and A. Benjamen, “A multi-
model view of process modelling,” Requirements Engineer-
ing, vol. 4, pp. 169–187, 1999.

[8] C. Hug, A. Front, D. Rieu, and B. Henderson-Sellers, “A
method to build information systems engineering process
metamodels,” J. Syst. Softw., vol. 82, pp. 1730–1742, October
2009.

[9] Software & Systems Process Engineering Meta-Model Spec-
ification, OMG, 2008.

[10] EPF. www.eclipse.org/epf.

[11] O. P. F. (OPF). http://www.opfro.org/.

[12] B. Henderson-Sellers and C. Gonzalez-Perez, “A comparison
of four process metamodels and the creation of a new generic
standard,” Information & Software Technology, vol. 47, no. 1,
pp. 49–65, 2005.

[13] Standard Metamodel for Software Development Methodolo-
gies., Standards Australia, 2004.

[14] L. Y. C. Cheung, P. W. H. Chung, and R. J.
Dawson, Managing process compliance. Hershey, PA,
USA: IGI Publishing, 2003, pp. 48–62. [Online]. Available:
http://portal.acm.org/citation.cfm?id=954321.954326

556

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

