
On the Automation of Vulnerabilities Fixing for Web Application 
 

Kabir Umar, Abu Bakar Sultan, Hazura Zulzalil, Novia Admodisastro, and Mohd Taufik Abdullah 
Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia, UPM 
Serdang, Selangor, Malaysia 

emails: kbrumar@yahoo.com, {abakar, hazura, novia, taufik}@upm.edu.my 
 
 
Abstract -- Testing Web applications for detection and fixing of 
vulnerabilities has become an indispensable task in web 
applications’ development process. This task often consumes a 
lot of time, efforts and other resources. The research 
community have devoted considerable amount of efforts to 
address this problem by proposing many techniques for 
automated vulnerabilities detection and fix generation for web 
application. Many of these techniques can reliably detect 
vulnerabilities and generate fix(es), which can be applied to the 
web application’s code, by the developer, for possible fixing of 
the vulnerabilities. Hence, the actual code modifications that 
fix the vulnerabilities is not automated and has to be carried 
out manually. To the best of our knowledge, none of the 
existing automated techniques is able to do this, and hence the 
actual fixing of the vulnerabilities is left for the human 
developer to handle. In this paper, we propose a novel 
framework for automatic vulnerabilities fixing for web 
application.  We mimic evolutionary idea and employ 
Evolutionary Programming to evolve web applications whose 
fitness is evaluated based on their ability to survive test 
attacks.  The reliability of the resulting vulnerabilities-free web 
application can be further enhanced by co-evolving test sets 
with generations of web applications in which the fitness of test 
attack is evaluated based on its ability to break web 
applications. 

Keywords-Web application; Automated Vulnerabilities 
Fixing; Evolutionary Programming; SQL Injection. 

I. INTRODUCTION  
In recent years, web applications and services have 

gained utmost popularity and acceptance in various fields of 
human endeavor. Unfortunately, these applications are often 
deployed with varied degrees of vulnerabilities that are 
exploitable by hackers through many types of attacks, which 
can result in unauthorized and, often, harmful transactions 
with the application, as well as its’ underlying database 
[1][2][3]. The severe consequence of web application 
attacks is, perhaps, the reason why detection and fixing of 
these vulnerabilities has been among top priorities of both 
research communities, governments and industries [4][5].   

For more than a decade now, many techniques were 
proposed in the literature, by different researchers from 
around the globe, for automated detection and generation of 
fix for these vulnerabilities. Although many of the proposed 
techniques can reliably detect vulnerabilities in a subject 
web application and generate possible fix, unfortunately, the 
non-trivial task of actual modification of the source code of 

the web application for fixing the detected vulnerabilities 
has to be done manually by the human developer. To the 
best of our knowledge, none of the existing techniques 
proposed in the literature has achieved complete automation 
of vulnerabilities fixing, in which actual code modifications 
to fix vulnerabilities is done automatically. Additional draw 
back of the manual code modification by applying the auto-
generated fix is that, sometimes the resulting application 
may behave in an unexpected manner [6], thus compelling 
the developer to undo the changes and revert to the original 
application. Although in many cases applying the auto-
generated fix does fix the vulnerabilities, this can only be 
ascertained through conducting another testing of the 
modified application. In order words, there is no guarantee 
that applying the auto-generated fix to the application will 
surely fix the detected vulnerabilities, another testing has to 
be done. This creates an unnecessary additional cost 
overhead because software testing consumes time, efforts 
and other vital resources [7][8]. 

Producing very secure web application is an important 
goal of software engineering [7] because doing so will 
greatly reduce or completely prevent attacks on web 
application and therefore, prevent losses incurred by 
governments, organizations and individuals. In this paper, 
we propose a novel framework for complete automation of 
vulnerabilities fixing for web application. The framework 
will make the actual source code modifications necessary to 
fix vulnerabilities. We explore the widely applied ideas of 
evolutionary computing [9][10][11] and use Evolutionary 
Programming (EP) to evolve web applications whose fitness 
is evaluated based on their ability to defend themselves from 
test attacks and pass legitimate input tests. The actual source 
code modifications will be achieved through evolutionary 
operation of mutation. 

Furthermore, the reliability of the resulting 
vulnerabilities-free web application (V-freeWA) will be 
enhanced by co-evolving test sets along with generations of 
web applications. The test sets comprises test attacks whose 
fitness is evaluated based on its ability to break web 
applications and legitimate input test whose fitness is 
evaluated based on its ability to fail web applications. This 
creates competitive co-evolution between the population of 
programs and the population of test sets similar to what 
happens in nature between preys and predators, such as 
Antelopes and Tigers [11]. The main goal is to go beyond 
automated vulnerabilities detection and fix generation, and 

221Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

mailto:kbrumar@yahoo.com
mailto:hazura
mailto:novia4


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

have the actual task of code modification for vulnerabilities 
fixing fully automated. This challenging task is, perhaps, 
one of the long awaited automations in the field of software 
engineering. The remaining of this paper is organized as 
follows. Section II presents an overview of automated 
vulnerabilities detection and fix generation. Section III 
presents the proposed framework for automated 
vulnerabilities fixing. Section IV presents discussion, and 
Section V presents conclusion, future research work, as well 
as other possible research areas that can benefit from the 
framework.  

II. OVERVIEW OF AUTOMATED 
VULNERABILITIES DETECTION AND FIX 

GENERATION 
Many techniques were proposed in the literature for 

automated vulnerabilities detection and generation of 
possible fix(es) that can assist the developer to fix the 
vulnerable web application.  Regrettably, the domain of web 
application vulnerabilities is very broad, diverse and 
exploitable by hackers through many types of attacks, thus 
making the task of automating vulnerabilities detection and 
fixing very challenging. The performance of the proposed 
techniques, in terms of vulnerabilities detection 
effectiveness, varies significantly from one category of 
vulnerabilities to another.  While some of the techniques 
targeted specific category of vulnerabilities, others were 
proposed to handle considerably wide range of 
vulnerabilities, for example; Bau et al. [14] presented eight 
state-of-the-art black box vulnerabilities scanners that, on 
the average, each targets about six categories of 
vulnerabilities, namely, Cross Site Scripting (XSS), SQL 
Injection (SQLI), Cross Channel Scripting, Session 
Management, Cross Site Request Forgery (XSRF) and 
Information Leakage. Coincidentally, most of these 

vulnerabilities happen to be in the 2013 OWASP top 10 
most dangerous web application security risk. Details about 
OWASP Top 10 project can be found in [4].  

Interestingly, the techniques that addressed specific 
category of vulnerabilities also focus attention mostly 
within the OWASP Top 10 [4]; for example, [6][15][16] 
target SQL Injection (SQLI), [17][18] target Cross Site 
Scripting (XSS), [19] targets Buffer Overflow, [20] targets 
Configurations vulnerabilities, [21] targets Access Control 
vulnerabilities, [22] targets Session Management and 
Broken Authentication vulnerabilities, [23] targets Remote 
Code Execution, and [24] targets Logic vulnerabilities. 

Although these techniques employs different software 
testing methods [7][8], such as static analysis, dynamic 
analysis, black box testing, penetration testing, mutation 
testing, search based testing, etc, and demonstrated diversity 
in their performance and effectiveness in vulnerabilities 
detection and fix generation, yet they almost have one thing 
in common, that is: “they were proposed to automate 
vulnerabilities detection and (in some cases) generate 
possible fix(es) in order to assist the developer to fix the 
vulnerable web application (under test)”. To the best of our 
knowledge, none of these techniques does the actual task of 
vulnerabilities fixing automatically.  

III. AUTOMATED VULNERABILITIES FIXING 
The proposed framework is for automatic vulnerabilities 

fixing for web applications. In this section, we present an 
overview of the components of the framework, highlight 
how they interacts, and highlight how fitness is evaluated 
for programs and test.  

A. Components of the Framework 
The framework comprises five main components, 

namely, Static analyzer, fix-generator, and EP engine 
(StatFEP), Test Set Selector (TSS), Test Controller Server 

TSS 

Figure 1.  Framework for automated vulnerabilities fixing 

Pre-filled webpage Auto-submitted webpage 

Test Controller Client-
Side (TCCS) 

Dyn. Gen. Query 

attacks 
db 

Parse Tree Analyzer 
& Vulnerability Detector 

(PTAVD) 

TAL′  Test Controller Server-
Side (TCSS) 

TAL 
fitness 

db 

StatFEP 

V-free 
WACP Progs 

fitness 
db 

EP engine: 
• Mutation & reproduction 
• Fitness evaluation 

Fix 
generator 

gen progs 

WAuTCP or Formal 
specs 

TAL 

TAL  
generator 

CEP engine: 
• Reproduction 
• Fitness evaluation 

Static 
Analyzer 

TAL 
fitness 

db 

222Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



Side (TCSS), Test Controller Client Side (TCCS) and Parse 
Tree Analyzer and Vulnerability Detector (PTAVD). See 
Fig. 1 above. 

1) StatFEP: Comprises three sub-components, namely, 
Static Analyzer, Fix-generator and EP engine. The static 
analyzer receives current page of web application under test 
(WAuTCP) as input. It statically analyzes the webpage to 
determine all relevant database accessing points, sql 
generating statements, un-validated query-input variables, 
API method calls and parts of the webpage suitable for 
source code modification. The Fix-generator uses result of 
static analysis of WAuTCP and information from “attacks 
db” to generate smart fix(es) that targets likely 
vulnerabilities in WAuTCP.  The EP engine evolves 
population of WAuTCP as genetic programs (gen- progs) 
through single-parent reproduction and mutation operation. 
The mutation operation applies the auto-generated fix 
through source code modification guided by result of static 
analysis. In addition, the EP engine receives result of 
PTAVD to evaluate fitness of current individual program 
being tested and update “progs fitness db” accordingly. 
Lastly, this component monitors attainment of optimal 
solution and process stop condition.  

2) TSS: The input to this component is test sets’ search 
space TAL or system’s specifications of WAuT. TAL is union 
of set of test attacks TA and set of legitimate input tests TL. 
The CEP-engine of TSS uses customized EP to evolve 
population of test sets 𝑇𝐴𝐿′  from the search space TAL. 
Moreover, TSS uses result of PTAVD to evaluate fitness of 
individuals in 𝑇𝐴𝐿′  and update “TAL fitness db” accordingly. 

3) TCSS: This component receives current programs’ 
individual (webpage) being tested from StatFEP, pre-fill the 
webpage with input data from current tests’ individual in 
𝑇𝐴𝐿′  (received from TSS), and forward the pre-filled 
webpage to TCCS. In addition, the component receives 
form submission (http POST request) from TCCS, 
intercepts and forward dynamically generated sql queries to 
PTAVD for analysis 

4) TCCS: This component receives pre-filled webpage 
(current programs’ individual being tested) from TCSS and 
auto-submit the page using http POST. 

5) PTAVD: This component receives dynamically 
generated sql query from TCSS and performs syntax 
analysis for vulnerability detection by comparing syntax of 
current dynamic query with syntax of the same query 
generated using benign (verified legitimate) input from TAL. 
Moreover, the component feeds information to StatFEP and 
TSS for appropriate fitness evaluations, and updates 
“attacks db” accordingly.  

B. How it Works 
To apply the proposed framework, a human tester might 

have confirmed the presence of at least one vulnerability in 
the Web Application under Test (WAuT) by subjecting it to 
test attacks (TA) using appropriate testing method, such as 
applying tool for automated vulnerabilities detection.  
However, this is a very trivial and optional requirement. 
Nevertheless, since the framework is to auto-fix 
vulnerabilities, the presence of the vulnerabilities to fix 

could be confirmed first. Of course, if no vulnerabilities 
were detected in the WAuT, then there is no need to apply 
the framework.  

Considering the nature of database access in web 
application, the StatFEP receives input of a page of the web 
application under test (WAuTCP) at a time. The additional 
required input, received through TSS, is test sets TAL 
comprising of test attacks and legitimate input tests. In 
addition, the TSS can receive system’s specification of 
WAuT as input and generate TAL accordingly. The WAuTCP 
is statically analyzed and represented as genetic program 
[9][12][13]. EP engine evolves the genetic programs. The 
CEP engine of TSS evolves the test sets TAL′ . The evolved 
programs in each generation are subjected to tests in TAL′ , by 
TCSS in collaboration with TCCS.  During test execution, 
TCSS intercepts and forwards dynamic query to PTAVD for 
parse tree analysis, vulnerability detection, and functional 
correctness verification. Result of analysis is sent to EP 
engine for program’s fitness evaluation, sent to CEP engine 
for test’s fitness evaluation, and used to update “attacks db” 
accordingly. These fitness evaluations guide the evolution 
process to an optimal solution, i.e., V-freeWACP. 

At each generation of programs, the operation of 
mutation, selection and reproduction is performed. Mutation 
applies the auto-generated fix to evolved programs. The 
auto-fix is generated by the fix generator module of 
StatFEP, with reference to information in “attacks db” and 
results of WAuTCP static analysis. Tournament is used to 
select programs with lowest fitness as parents. Single parent 
reproduction is employed to produce offspring [12]. Parents 
and offspring are combined to produce next generation. The 
optimal solution is found if an individual program has 
fitness of zero. 

On the other hand, at each generation of test sets, only 
selection and reproduction is performed. Tournament is 
used to select test sets with highest fitness as parents. New 
test sets are randomly selected from test sets’ search space 
to serve as offspring. Parents and offspring are combined to 
produce next generation of test sets. 

C. Fitness Evaluation 
1) Fitness  of program: For easy reference in 

expressions, let WAuTCP be denoted by Por, individual 
genetic program be denoted by P, and population of 
programs, consisting of n individuals P1, P2, …, Pn, be 
denoted by Ppop. 

Fitness of P is evaluated based on semantic difference 
and syntax difference [9][28]. Semantic difference is a 
measure of how vulnerable, and how functionally incorrect, 
P is. Thus, we minimize semantic difference to ensure 
invulnerable and correct solution. On the other hand, syntax 
difference is a measure of how much P differs from Por 
syntactically and structurally. Thus, we minimize syntax 
difference to ensure solution that respects the structure of 
Por. 
Definition 1: Given Qd as the intercepted dynamic query 
generated by running P with a test set 𝑡 𝜖 TAL′ , Qb  as the 
same query generated from benign input, Syn(Q) as the 
syntax tree of query Q, and TAL′ (𝑃) as the set of assertions 

223Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



(consisting of pairs (𝑄𝑑 ,𝑄𝑏)) after execution of P on all test 
sets 𝑡 𝜖 TAL′ , the semantic difference of P is defined as 
follows: 
 
𝑓𝑠𝑒𝑚(𝑃) =  ∑ 𝑎𝑠𝑡𝑃𝑇(𝑄𝑑 ,𝑄𝑏)(𝑄𝑑 ,𝑄𝑏) 𝜖 TAL

′ (𝑃)          (1) 
 

Where,     𝑎𝑠𝑡𝑃𝑇(𝑄𝑑 ,𝑄𝑏) = �0 𝑆𝑦𝑛(𝑄𝑑) = 𝑆𝑦𝑛(𝑄𝑏) 
1 𝑆𝑦𝑛(𝑄𝑑) ≠ 𝑆𝑦𝑛(𝑄𝑏) 

  
Definition II: Given 𝑁(Por) as the number of nodes in 
syntax tree of Por, 𝑁(𝑃) as the number of nodes in syntax 
tree of P, and 𝛿 as the allowable safe nodes difference, the 
syntax difference of P is defined as follows:  
 
𝑓𝑠𝑦𝑛(𝑃) 

= �
𝑁(𝑃) −  𝑁(𝑃𝑜𝑟) −  𝛿 𝑖𝑓 𝑁(𝑃) > 𝑁(𝑃𝑜𝑟) +  𝛿
𝑁(𝑃𝑜𝑟) −  𝑁(𝑃) −  𝛿 𝑖𝑓 𝑁(𝑃) < 𝑁(𝑃𝑜𝑟) −  𝛿
0                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

       (2) 

 
Equations 1 and 2 are combined to define the fitness 

function of P. The goal is to minimize the fitness function.  
 
𝑓(𝑃) = 𝑓𝑠𝑒𝑚(𝑃) + 𝑓𝑠𝑦𝑛(𝑃)          (3) 
 

2) Test sets fitness function: The test sets 𝑇𝐴𝐿′  is consist 
of test attacks and legitimate input tests. The fitness of test 
attack is evaluated based on its ability to break P, while the 
fitness of legitimate input test is evaluated based on its 
ability to fail P. We define an expression that evaluates the 
fitness of any test set 𝑡 𝜖 𝑇𝐴𝐿′ , where t can be a test attack or 
legitimate input test. The goal is to maximize fitness of t. 
 
Definition II1: Given 𝑄𝑃𝑖(𝑡) as the intercepted dynamic 
query generated by running Pi with test set 𝑡 𝜖 TAL′ , Qb  as 
the same query generated from benign input, Syn(Q) as the 
syntax tree of query Q, and 𝑃𝑝𝑜𝑝(𝑡) as the set of assertions 
(consisting of pairs �𝑄𝑃𝑖(𝑡),𝑄𝑏�) after execution of all 
individuals 𝑃𝑖  𝜖 𝑃𝑝𝑜𝑝 with test set 𝑡 𝜖 TAL′ , the fitness of t is 
defined as follows: 
 
𝑓(𝑡) =  ∑ 𝑎𝑠𝑡𝑃𝑇�𝑄𝑃𝑖(𝑡),𝑄𝑏�𝑃𝑖 𝜖 𝑃𝑝𝑜𝑝            (4) 
 

Where, 𝑎𝑠𝑡𝑃𝑇�𝑄𝑃𝑖(𝑡),𝑄𝑏� = �
0 𝑆𝑦𝑛(𝑄𝑃𝑖(𝑡)) = 𝑆𝑦𝑛(𝑄𝑏)
1 𝑆𝑦𝑛(𝑄𝑃𝑖(𝑡)) ≠ 𝑆𝑦𝑛(𝑄𝑏)

  

IV. DISCUSSION 
The fitness of program is evaluated based on its ability 

to defend attacks and pass legitimate inputs. The 
evolutionary operation of mutation is applied to make actual 
source code modifications. For simplicity, we seed the 
population of first generation of the genetic programs with 
many duplicate copies of WAuTCP. This is because we 
assume that WAuTCP is both structurally, semantically and 
syntactically near V-freeWACP, considering the famous 
assumption that, software developers do not write programs 

at random [25]. The problem that we may encounter with 
this kind of seeding is lack of diversity in the first 
generation [12]. However, we can easily resolve this 
problem and achieve the required diversity by randomly 
applying the evolutionary operation of mutation to all 
members of the first generation.  

 Though our framework seems simple, unfortunately, the 
task of evolving vulnerabilities-free program is not an easy 
one. For instance, as a result of mutation operations the EP 
may evolve a too short program or too large program 
compared to the WAuTCP. This situation is not always 
trivial. Moreover, since we assumed that WAuTCP is 
structurally and syntactically near the optimal solution, we 
don’t want to have a solution that is too different 
(structurally and syntactically) from WAuTCP, because it 
might not be easily understood and maintained by the 
developer. This problem is handled by adding program size 
parameter to our fitness function (equation 2). We penalize 
too short or too large program, thereby minimizing 
structural and syntactic difference between WAuTCP and the 
optimal solution.  

Another problem that may be induced by EP mutation is 
degradation of functional properties of the WAuTCP due to 
effects of source code modifications. This could, invariably, 
impair the correctness of resulting solution. Fortunately, the 
formulation of our semantic difference (equation 1) and 
composition of test sets TAL can effectively take care of the 
situation. During program’s fitness evaluation, the test 
attacks in TAL tries to expose residual vulnerabilities, while 
the legitimate test inputs in TAL tries to re-affirm functional 
correctness. This way, the correctness of resulting optimal 
solution is guaranteed. 

An important factor that directly affects the reliability of 
the optimal solution produced by the framework is the 
quality of the test sets TAL in terms of effectiveness and 
precision in revealing all residual vulnerabilities in, and re-
affirming functional correctness of, WAuTCP. The 
emergence of V-freeWACP that is able to defend all test 
attacks and pass all legitimate input tests in TAL may not 
guarantee 100% vulnerabilities-free and functionally correct 
web application. This is true if the quality of the test sets 
TAL is poor. One way we can tackle this problem and 
improve the quality of the test is to have large set of TAL 
comprising of many diverse tests that target wide range of 
possible vulnerabilities and functional correctness. 
Obviously, this approach is very likely to reveal all 
vulnerabilities in WAuTCP, while maintaining its functional 
correctness. Unfortunately, using large set of TAL will 
induce very high computational cost of fitness evaluation.  

A more feasible approach is to employ a co-evolutionary 
mechanism in which population (of reasonable number) of 
test sets TAL′  (consisting of test attacks and legitimate input 
tests) is co-evolved along with every generation of the 
programs. To achieve this, the TSS component of the 
framework adopted the very large set TAL as a test sets’ 
search space from which generations of TAL′  are evolved 
using customized EP (CEP engine module).  At each 
generation of test sets TAL′ , fitness of individual test attack is 
evaluated based on its ability to break programs while 

224Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



fitness of legitimate input test is evaluated based on its 
ability to fail programs. A test attack that breaks more 
programs is ranked more fit. A legitimate input test that fails 
more programs is ranked more fit. Fitness of both test attack 
and legitimate input test is evaluated using the same fitness 
function (equation 4). The idea is that, when test attack 
breaks a program, then the program is vulnerable, and when 
legitimate input test fails a program, then the program is 
functionally incorrect. Thus, we seek to maximize the 
fitness function of TAL′ . This approach will create 
competitive co-evolution between population of programs 
and population of test sets similar to what happens in nature 
between preys and predators, such as Antelopes and Tigers, 
in which an Antelope (prey) is rewarded for its ability to 
escape Tiger’s hunt (predator), whereas a Tiger (predator) is 
rewarded for its ability to catch an Antelope (prey). In our 
co-evolutionary scenario, the programs are the preys while 
the test sets TAL′  are the predators. Thus, an evolved program 
is rewarded for defending against tests’ hunting while a test 
is rewarded for being able to break or fail programs. As the 
co-evolutionary process go through generations, the 
population of test sets will go (hunting) after population of 
programs, while the population of programs try to survive 
by means of fitness, reproduction and mutation.  

Although the co-evolutionary process can lead to 
emergence of highly reliable V-freeWACP, along the way, 
the process may suffer from problem of mediocre stable 
state and loss of gradient [26], which can occur when both 
population of preys and predators seem to positively evolve 
at each generation in an infinite circular pattern without any 
real improvement. This happens if the fitness evaluation of 
members of the co-evolving populations (programs and 
tests) is done without remembering what happened in 
previous generations. Fortunately, we can adopt Archives 
technique [26] to handle this problem. At each generation 
some individuals of programs and tests are stored into “prog 
fitness db” and “TAL fitness db” respectively. The fitness of 
current generation is then based on interaction with the old 
individuals in the Archive, thus enabling the co-
evolutionary process to remember history of past 
generations.  

V. CONCLUSION AND FUTURE WORK 
In addressing the problem of resolving web application’s 

attacks and exploitations, this paper proposed a novel 
framework for automating vulnerabilities fixing for web 
application. The current techniques proposed in the 
literature are only capable of automating vulnerabilities 
detection and fix-generation while leaving the task of actual 
vulnerabilities fixing predominantly manual. We combine 
ideas of software testing, parse tree analysis, and 
evolutionary computing in a novel framework to achieve 
complete automation of the task. We have also shown how 
reliability of the resulting vulnerabilities-free web 
application can be further enhanced through co-evolution. 
The novel framework incorporates functional testing to 
guarantee correctness of the resulting optimal solution. As 
we progresses in this on-going research, we are optimistic in 
revealing and reporting very useful contributions toward 

automating vulnerabilities fixing, as well as advances in the 
field of software engineering.  

Obviously, research on complete automation of 
vulnerabilities fixing for web application is at very 
preliminary stage for two reasons. First, to the best of our 
knowledge, this paper is the first to address the task. 
Second, the domain of web application’s vulnerabilities is 
very large, broad and diverse [1][2][4][5]. Hence, there is 
room for a lots of future research activities. At the moment, 
we are planning the following: 

A. Because the domain of web application vulnerabilities is 
very large, broad and diverse, we intend to scope our 
research to case study of SQL Injection vulnerabilities 
(SQLIVs). Our scope is so chosen for obvious reasons. 
First, SQLI has been the world’s most serious web 
application security risk since 2004, as shown by OWASP 
Top 10 project reports of 2004, 2007, 2010, and 2013 [4] 
and CWE/SANS Top 25 Most Dangerous Software Errors 
[5]. Second, we are quite optimistic that applying the 
framework to successfully automate fixing SQLIVs, 
through well planned and documented experiment, should 
be sufficient to suggest the applicability of the framework 
for fixing other web application vulnerabilities related to 
source code. 

B. We are planning to build our first prototype 
implementation of the framework in Java programming 
language to auto-fix vulnerabilities in web application 
designed in Java Server Pages (JSP) with MySQL as the 
backend database. The choice of JSP with MySQL backend 
is due to the fact that, most web applications are built in 
JSP, and MySQL database is, perhaps, the most widely used 
database server for the web. 

Our novel framework can be applied (with slight 
modifications where necessary) to other research areas.  

A. The framework can be used to automate fixing 
vulnerabilities in other non-web based database systems, 
such as Java database applications, which are equally liable 
to SQL injection attacks [27]. 

B. The framework can be adapted to automate Networks 
Vulnerabilities fixing through simulation. The idea is to 
have real network under test (NuT) simulated and evolved 
through generations. Fitness is then evaluated by subjecting 
the simulated networks to test attacks TA. 

Finally, we hope that our novel framework can benefit 
research community and lead to further research activities.  

AKNOWLEDGEMENT 
We acknowledge efforts and contributions of various 
authors whose work has benefited our research. We also 
acknowledge that this research received support from the 
Fundamental Research Grant Scheme 
(FRGS/2/2013/ICT01/UPM/02/8) awarded by Malaysian 
Ministry of Education to the Faculty of Computer Science 
and Information Technology at Universiti Putra Malaysia. 

225Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



REFERENCES 
[1] D. Watson and U. K. H. Project, “Web application attacks,” Journal of 

Network Security, vol. 2007, iss. 10, Oct.  2007, pp. 10–14, 
doi:10.1016/S1353-4858(07)70094-6. 

[2] D. Gollmann, “Securing web applications,” Information Security 
Technical Report, ELSEVIER, vol. 13, no. 1, Jan. 2008, pp. 1–9, 
doi:10.1016/j.istr.2008.02.002. 

[3] A. Garg and S. Singh, “A review on web application security 
vulnerabilities,” International Journal of Advanced Research in 
Computer Science and Software Engineering, (IJARCSSE), vol. 3, no. 
1, 2003, pp. 222–226. 

[4] OWASP, "OWASP top 10 project,"  
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
, [retrieved: May 2014]. 

[5] CWE, “CWE-SANS top 25 most dangerous software errors,” Common 
Weakness Enumeration, Http://cwe.mitre.org/ top25/. (http://cwe.mitre. 
Org/top25/), [retrieved: May 2014]. 

[6] J. M. Chen and C. L. Wu, "An automated vulnerability scanner for 
injection attack based on injection point," Proc. IEEE International 
Computer Symposium, IEEE Press, Tainan, Dec. 2010, pp. 113-118, 
doi:10.1109/COMPSYM.2010.5685537. 

[7] L. Luo, "Software testing techniques," Class Report for 17-939A, 
Institute for Software Research International, Carnegie Mellon 
University, USA. (http://mcahelpline.com/tutorials/testing/testing.pdf). 

[8] J. Irena, “Software testing methods and techniques,” The IPSI BgD 
Transactions on Internet Research, 2008, internetjournals.net. 

[9] A. Arcuri, "Evolutionary repair of faulty software," Journal of Applied 
Soft Computing, ELSEVIER, vol. 11, iss. 4, June. 2011, pp. 3494–
3514, doi:10.1016/j.asoc.2011.01.023. 

[10] A. Arcuri, "On search based software evolution," Proc. IEEE 1st 
International Symposium on Search Based Software Engineering, IEEE 
Press, Windsor, May. 2009, pp. 39–42, doi:10.1109/SSBSE.2009.12. 

[11] A. Arcuri, "On the automation of fixing software  bugs," Proc. ACM 
30th  International Conference on Software Engineering, ACM, 
Leipzig, Germany, May. 2008, pp. 1003-1006, 
doi:10.1145/1370175.1370223. 

[12] A. Abraham, "Evolutionary computation: from Genetic Algorithms to 
Genetic Programming," in Genetic Systems Programming: Theory and 
Experiences, Ecological Studies 185, N. Nedjah and A. Abraham, 
Springer, 2005, pp. 1-20. 

[13] R. G. S. ASTHANA, "Evolutionary Algorithms and Neural Networks," 
in Soft Computing and Intelligent Systems: Theory and Applications, A 
volume in Academic Press Series in Engineering, N. K. Sinha, M. M. 
Gupta and L. A. Zadeh, ELSEVIER Inc, 2000, pp. 111-136. 

[14] J. Bau, E. Bursztein, D. Gupta and J. Mitchell, "State of the art: 
automated black-box web application vulnerability testing,"  Proc. 
IEEE Symp. Security and Privacy (SP), IEEE Press, Oakland, CA, 
May. 2010, pp. 332-345, doi:10.1109/SP.2010.27. 

[15] F. Dysart and M. Sherriff, "Automated fix generator for SQL injection 
attacks," Proc. IEEE 19th International Symposium on Software 
Reliability Engineering, (ISSRE), IEEE Press, Seattle, WA, Nov. 2008, 
pp. 311-312, doi:10.1109/ISSRE.2008.44. 

[16] Z. Djuric, “A black-box testing tool for detecting SQL injection 
vulnerabilities,” Proc. IEEE Second International Conference on 
Informatics and Applications, (ICIA), IEEE Press, Lodz, Sept. 2013, 
pp. 216-221, doi:10.1109/ICoIA.2013.6650259. 

[17] B. Qu, B. Liang, S. Jiang and C. Ye, "Design of automatic vulnerability 
detection system for web application program," Proc. IEEE 4th 
International Conference on Software Engineering and Service Science, 
(ICSESS), IEEE Press, Beijing, May. 2013, pp. 89-92, 
doi:10.1109/ICSESS.2013.6615262. 

[18] G. Wassermann and Z. Su, "Static detection of Cross-Site Scripting 
vulnerabilities," Proc. ACM/IEEE 30th International Conference on 
Software Engineering, (ICSE), ACM/IEEE, Leipzig, May. 2008, pp. 
171-180, doi:10.1145/1368088.1368112. 

[19] A. Smirnov and T. Chiueh, "Automatic patch generation for Buffer 

Overflow attacks," Proc. IEEE Third International Symposium on 
Information Assurance and Security, (IAS), IEEE Press, Manchester, 
Aug. 2007, pp. 165-170, doi:10.1109/IAS.2007.87. 

[20] B. Eshete, A. Villafiorita, K. Weldemariam and M. Zulkernine, 
"Confeagle: Automated analysis of Configuration vulnerabilities in web 
applications," Proc. IEEE 7th International Conference on Software 
Security and Reliability, (SERE), IEEE Press, Gaithersburg, MD, June. 
2013, pp. 188-197, doi:10.1109/SERE.2013.30. 

[21] F. Gauthier and E. Merlo, "Fast detection of Access Control 
vulnerabilities in PHP applications," Proc. IEEE 19th Working 
Conference on Reverse Engineering, (WCRE), IEEE Press, Kingston, 
ON, Oct. 2012, pp. 247-256, doi:10.1109/WCRE.2012.34. 

[22] D. Huluka and O. Popov, "Root cause analysis of Session Management 
and Broken Authentication vulnerabilities," IEEE World Congress on 
Internet Security, IEEE Press, Guelph, ON, June. 2012, pp. 82-86. 

[23] Y. Zheng and X. Zhang, "Path sensitive static analysis of web 
applications for remote code execution vulnerability detection," Proc. 
IEEE 35th International Conference on Software Engineering, (ICSE), 
IEEE Press, San Francisco, CA, May. 2013, pp. 652-661, 
doi:10.1109/ICSE.2013.6606611. 

[24] V. Felmetsger, L. Cavedon, C. Kruegel and G. Vigna, "Toward 
automated detection of logic vulnerabilities in web applications," Proc. 
ACM 19th USENIX conference on Security, ACM, Berkeley, CA, 
USA, 2010, pp. 10-10. 

[25] R. A. DeMillo, R. J. Lipton and F. Sayward, "Hints on test data 
selection: help for the practicing programmer," Computer, vol. 11, iss. 
4, IEEE Press, 2006, pp. 34–41, doi:10.1109/C-M.1978.218136. 

[26] C. D. Rosin and R. K. Belew, "New methods for competitive 
coevolution," in Evolutionary Computation, vol. 5, iss. 1, MIT Press 
Cambridge, MA, USA, 1997, pp. 1-29. 

[27] C. Zhou and P. Frankl, "JDAMA Java database application mutation 
analyser," ACM Journal of Software Testing, Verification & 
Reliability, vol. 21, iss. 3, Sept. 2011, pp. 241-263, 
doi:10.1002/stvr.462. 

[28] W. B. Langdon, M. Harman and Y. Jia, “Efficient multi-objective 
higher order mutation testing with genetic programming,” ELSEVIER 
Journal of Systems and Software, vol. 83, iss. 12, Dec. 2010, pp. 2416–
2430, doi:10.1016/j.jss.2010.07.027. 

 

226Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://cwe.mitre.org/
http://www.sciencedirect.com/science/journal/01641212/83/12

	I. Introduction
	II. OVERVIEW OF AUTOMATED VULNERABILITIES DETECTION AND FIX GENERATION
	III. AUTOMATED VULNERABILITIES FIXING
	A. Components of the Framework
	1) StatFEP: Comprises three sub-components, namely, Static Analyzer, Fix-generator and EP engine. The static analyzer receives current page of web application under test (WAuTCP) as input. It statically analyzes the webpage to determine all relevant d...
	2) TSS: The input to this component is test sets’ search space TAL or system’s specifications of WAuT. TAL is union of set of test attacks TA and set of legitimate input tests TL. The CEP-engine of TSS uses customized EP to evolve population of test s...
	3) TCSS: This component receives current programs’ individual (webpage) being tested from StatFEP, pre-fill the webpage with input data from current tests’ individual in ,𝑇-𝐴𝐿-′. (received from TSS), and forward the pre-filled webpage to TCCS. In a...
	4) TCCS: This component receives pre-filled webpage (current programs’ individual being tested) from TCSS and auto-submit the page using http POST.
	5) PTAVD: This component receives dynamically generated sql query from TCSS and performs syntax analysis for vulnerability detection by comparing syntax of current dynamic query with syntax of the same query generated using benign (verified legitimate...

	B. How it Works
	C. Fitness Evaluation
	1) Fitness  of program: For easy reference in expressions, let WAuTCP be denoted by Por, individual genetic program be denoted by P, and population of programs, consisting of n individuals P1, P2, …, Pn, be denoted by Ppop.
	2) Test sets fitness function: The test sets ,𝑇-𝐴𝐿-′. is consist of test attacks and legitimate input tests. The fitness of test attack is evaluated based on its ability to break P, while the fitness of legitimate input test is evaluated based on i...


	IV. Discussion
	V. CONCLUSION AND FUTURE WORK
	AKNOWLEDGEMENT

	REFERENCES

