
An Adaptive Load-balancer for Task-scheduling in
FastFlow

Md Moniruzzaman∗, Kamran Idrees∗, Michael Rossbory†, José Gracia∗
∗High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany

†Software Competence Center Hagenberg GmbH, Austria
moniruzzaman@hlrs.de, idrees@hlrs.de, Michael.Rossbory@scch.at, gracia@hlrs.de

Abstract—Balancing the computational load of multiple concur-
rent tasks on heterogeneous architectures is one of the critical
requirements for efficient usage of such systems. Load-imbalance
is inherently present if the computation load is distributed non-
uniformly across various tasks or if execution time for the same
kind of tasks varies from one class of processing element to the
other. Load-imbalance may however also arise from causes that
are beyond the control of the user, as for instance operating
system jitter, over-subscription of the available workers, interfer-
ence and resource contention by concurrent tasks, etc. Writing
a balanced parallel application requires careful analysis of the
problem and good understating of various hardware architectures
of the computing nodes. FastFlow is a C++ library that offers
high-level parallel pattern abstractions on the user side, and
lowers those onto efficiently implemented architecture specific
skeletons. The default FastFlow scheduler, however, assigns tasks
to workers in a round-robin fashion and is thus not well suited to
handle load-imbalance. In this paper, we present an adaptive load-
balancing task scheduler for FastFlow, a model for the expected
relative performance of our adaptive scheduler over the default
round-robin scheduler, and finally evaluate the quality of the
implementation with low-level as well as two specific application
benchmarks. We find that the adaptive load-balancer does not
introduce additional overheads if load-imbalances are not present,
and that our scheme is particularly efficient in mitigating the
effect of thread over-subscription. Finally, we show that the
proposed scheduler can lead to substantial performance gain for
real industrial applications.

Keywords–task scheduling; load balancing; heterogenous archi-
tecture; NUMA; FastFlow.

I. INTRODUCTION

The efficient utilisation of heterogeneous computing sys-
tems, in particular the balancing of application load on the
available processing elements or workers, is a non-trivial tasks.
One of the key factors for load-imbalance is the heterogeneity
of processing elements architecture – a GPGPU will be faster
than a CPU for certain workloads (and slower for others) [7].
Therefore, one has to consider the computing power at the time
of assigning work to a particular worker. Ideally, the faster
worker should not wait for the slower one in a heterogeneous
hardware environment.

A further, often underestimated source for load-imbalance
is variation of the execution time due to the very presence
of other concurrent tasks as for instance operating system
jitter, over-subscription of the available workers, interference
and resource contention by concurrent tasks, etc. A particular
example is inefficient access to memory and caches due to non-
uniform memory architectures (NUMA), which are common

already on multi-core systems.

The most obvious source for load-imbalance, however, is
that the task itself exhibits non-uniform task execution time.
The execution time of the task is not always the same, and
the exact time requirement by the task, even in the case of
homogeneous hardware environment, is not easy to determine.
For instance, root-finding algorithms to minimize complex
mathematical functions will converge much faster if the initial
guess is close to the final minimum, but might take much
longer if the initial guess is in an off region of the parameter
space. In this sense, the execution time of the tasks is non-
uniformly distributed.

If we consider the block of code in Figure 1, one easily
notices that the execution time of the task aTask varies
depending upon which section of if-then-else clause is being
executed. Now, the challenge is that we cannot determine the
execution time of a task prior to its execution. However, load-
imbalance would be obvious, if we blindly distribute a number
of tasks equally to different workers without having prior
knowledge of the required time to finish the task. Clearly, equal
task distribution to all workers is not an optimal solution in this
scenario because the non-uniform task execution time is caused
by the task itself and the underlying hardware architectures
as discussed earlier. This non-uniform execution behaviour is
one of the primary reasons of load-imbalance and non-optimal
solution [8]. In order to mitigate this situation, we need an
adaptive load-balancing task scheduler.

In this paper, we propose a novel idea for an adaptive, load-
balancing scheduler and realize it for FastFlow programming
model [1]. The details of the approach are described in the
Section II along with FastFlow’s existing task scheduler. Our
approach is evaluated by a series of benchmarks in Section III.
The benchmarks include not only synthetic ones, but also two
real world applications, namely a Molecular Dynamic code [5]
and a Material Optimization Process [10]. Finally, we draw our
conclusion in Section IV.

def aTask (c o n d i t i o n) {
i f (c o n d i t i o n)

l ongCa lcu la t i on ()
e lse

s h o r t C a l c u l a t i o n ()
}

Figure 1. An example of non-uniform task

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

Emitter

Worker

Worker

Worker

Worker

Collector

Figure 2. a FastFlow Farm pattern.

II. RELATED WORK AND OUR APPROACH

FastFlow is a C++ framework to write parallel programs
[1]. The framework consists of parallel programming patterns
such as farm, pipeline, map, etc, which are composed of
various so-called nodes. The farm pattern for instance, is
composed by an emitter node, several worker nodes, and
a collector node as shown in the Figure 2. Note that in
FastFlow, all nodes are implemented as individual OS threads.
For instance in the farm pattern, each of the various worker
nodes as well as the emitter and collector nodes, respectively,
are separate threads. The nodes have input and output queues
to connect to each other thus forming basic patterns. An emitter
node, with help of an embedded load balancer, distributes tasks
to the workers through their input queues. These workers, in
principle, do the job concurrently, and the collector collects
the results.

Task scheduling for parallel resources is an active area
of research [13],[14] . However, the default scheduling pol-
icy of the emitter’s embedded load-balancer is round-robin.
Therefore, we refer to this default scheduler as round-robin
scheduler (RRS). As argued in the introduction, we believe
that the round-robin scheduling policy is not suitable for non-
uniform tasks executing environment. Therefore, we propose
an new load-balancing scheme, namely adaptive round-robin
scheduler (ARRS). The pseudo-code of the ARRS is shown in
Figure 5; the basic working is explained in the following.

The basic idea of the ARRS is to respect the computing
capability of workers, i.e., faster workers will receive more
tasks than slower workers. We do so by keeping the height
of the input queues roughly at the same level. Whenever, a
task is ready for being emitted onto the workers, it is issued
to the worker with the smallest input queue length, i.e., with
the lowest queue level.

Determining the length of input queues in FastFlow, how-
ever, is a comparatively expensive operation. In fact, FastFlow
aims to take scheduling decisions within a few clock cycles.
Recording the queue level of all workers, would thus incur
a prohibitively expensive overhead. Instead, we do not record
queue levels at each task scheduling event, but only at one in
CHUNK_SIZE events, thus reducing the overhead by the same
factor.

In many applications, tasks are created in bursts, with
relatively few tasks emitted between bursts. Scheduling all
tasks, which are of unknown duration, could lead to a situation,
where the queue levels are balanced in terms of number
of tasks, but very unbalanced in terms of total duration

Worker 1

Worker 2

Worker 3

Worker 4

Figure 3. Queue length difference
at a certain point.

Worker 1

Worker 2

Worker 3

Worker 4

Figure 4. ARRS tries to balance
the queues of the workers.

of the tasks in the respective queues. In order to mitigate
this situation, we use a throttling technique. Tasks are not
necessarily scheduled as soon as they become available, instead
the scheduler defers scheduling decisions until at least one of
the input queues of the workers is nearly empty. Only then
we procede with scheduling a block of tasks before throttling
again. For simplicity, the size of scheduling block is set to
CHUNK_SIZE, i.e., the frequency of queue level recording.

As said earlier, continuously monitoring the length of the
queues is prohibitively expensive. Therefore, we inject a so
called fake-task into the queues of each worker towards the
end of the block-wise scheduling episode. As soon as the first
worker executes this fake-task, the throttling mechanism will
start the next block-wise scheduling episode. Our scheduler
is thus asynchronously driven by the length of the queues and
does not require further explicit synchronisation. Note, that the
queue of the fastest worker is not allowed to run fully empty.
The fake-tasks are placed in the worker queues as soon as only
a small number, NEAR_END, of tasks remain to be scheduled
in the curent scheduling episode. This parameter is set to a
small multiple of the number of workers.

Within a scheduling episode, incoming tasks are scheduled
onto the shorter queues in such a way that differences in queue
lengths, which have been precomputed at the time of queue
level recording, are leveled out, as illustrated in Figures 3
and 4. If the differences in queue length are smaller the
CHUNK_SIZE to begin with, the queue lengths will balance
well within the scheduling episode. The scheduler will then
revert to a round-robin policy for the rest of the scheduling
episode. Notably, ARRS will also revert to a round-robin
policy at the very start of the application.

The proposed adaptive round-robin scheduler is a drop-
in replacement for the default FastFlow round-robin scheduler
and fully transparent to the user. ARRS is required to perform
as well as RRS when there is no load-imbalance of tasks,
i.e., the overhead on ARRS over RRS needs to be small. The
efficiency of ARRS in the case of load-imbalance is determined
mostly by the value of the parameter CHUNK_SIZE, i.e.,
the frequency of queue level recording and the duration over
which it is assumed that relative queue levels do not change
significantly. The other parameter NEAR_END, which gives the
lead time of starting a scheduling episode over the emptying of
the queues has been found to have a negligible effect as long
as it is in the order of a few times the number of workers.

III. EVALUATION

The proposed load-balancer ARRS has been integrated into
FastFlow version 2.0.0 [6]. The same version of FastFlow
with RRS has been compared with the performance of ARRS.

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

def ine CHUNK SIZE 300
def ine NEAR END 4∗NUMBER OF WORKERS
i n t n scheduled = 0

def ar rsScheduler (the task) {
i f (n scheduled<CHUNK SIZE) {

/ / hand−out tasks

i f (queuesUnbalanced ()) {
scheduleLowestQueue (the task)

} else {
scheduleRoundRobin (the task)

}

i f (CHUNK SIZE−n scheduled==NEAR END) {
sendFakeTaskToAllWorkers ()

}

n scheduled++
r e t u r n t rue

} else {
/ / wa i t f o r queues to run empty
waitForFakeTask ()

recordQueueLevels ()
n scheduled = 0
r e t u r n f a l s e
}

}
}

Figure 5. Pseudo code of the scheduling algorithm

During the experiments no other user process was running on
the machine.

The evaluation steps are divided in to four categories.
Firstly, we measured the overhead of the scheduler by creating
a synthetic benchmark. Here, we want to see the possibility
of using ARRS regardless of task type (uniform or non-
uniform) as replacement for RRS. Secondly, we have defined
a performance model for heterogenous hardware which has
explicit non-uniform task execution behavior, and we com-
pared the performance of the scheduler with the model by
using a hardware simulation technique. Thirdly, we assessed
the scheduler with implicit producer of load-imbalance such as
NUMA and thread over-subscription. Finally, two real world
applications have been exercised with the scheduler. During
the experiment, the default CHUNK_SIZE was 300, if it is not
mentioned explicitly.

Throughout the paper, we will discuss the overhead and
benefit of ARRS over RRS in terms of the relative performance
(improvement), S, for a given benchmark. The experimental
relative performance is calculated as the ratio of average
execution times using RRS, tR, and ARRS, tA, respectively,
i.e.

S =
〈tR〉
〈tA〉

(1)

In all benchmarks, the averages have been calculated over at
least 10 runs. Error are estimated from the standard error of
mean over the samples. Error bars are shown in plots only if
they are relatively large.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

2 workers 4 workers 8 workers 16 workers

number of task (in K)

re
la

tiv
e

pe
rf

or
m

an
ce

Figure 6. Relative performance of ARRS over RRS with uniform tasks.

A. Evaluation environment

The experiments have been conducted on an Intel Nehalem
machine. This machine has two NUMA domain each with 4
cores. However, since hyper-threading was enabled, operating
systems see (8+8) 16 logical cores. Each core is equipped with
32KB L1 data cache and 256KB L2 cache. A 8MB L3 cache is
shared by all cores on a socket. Each socket has 6GB memory.
The two sockets are connected by a Quick Path Interconnect
(QPI) bus controller.

B. Overhead

The purpose of this section is to measure the scheduling
overhead by ARRS. To measure the overhead, a FastFlow
application with uniform task is devised. The uniform task
can be described as a task that requires, in principle, the same
amount of time every time it is executed by a worker.

The FastFlow application consist of a farm, i.e., emitter,
collector and workers. The experiment was exercised with 2, 4,
8 and 16 workers separately. The emitter of the farm distributes
tasks to the workers through a scheduler (RRS or ARRS). The
uniform task consists in calculating all prime numbers up to
75,00, which takes ∼ 0.28ms time to execute on this machine.

Figure 6 shows the relative performance of ARRS over
RRS as a function of number of scheduler tasks for this
FastFlow application running with 2, 4, 8 and 16 workers,
respectively. If the value of the relative performance, S, is 1,
both schedulers perform equally; if the value is higher than 1,
ARRS performs better than RRS. The error estimate for the
relative performance is shown at each point of the experiment
with error bars. The relative performance is on average always
larger than 1 for this benchmark. Therefore, we can conclude
there is no significant overhead of ARRS compared to RRS for
uniform task. In fact, the trend seems to indicate that ARRS
performs slightly better than RRS. This is most likely due to
the presence of OS jitter which causes slight imbalance of
tasks [3], which do affect the execution time of with RRS, but
are leveled out with ARRS.

C. Explicit load-imbalance of task execution

This section presents an idealized model for the relative
performance of ARRS over RRS in case of heterogeneous
architectures. The model is used to evaluate the efficiency of
the implementation. Let us consider that number of tasks to
schedule is n. All tasks are uniform, i.e., they take the same

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40
evaluation with chunk size 100

4 workers 4 workers potential 8 workers

8 workers potential 16 workers 16 workers potential

number of tasks (in K)

re
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

Figure 7. Performance comparison in hardware simulation with 1 faster
worker.

time to execute on given architecture. However, the execution
time on different architectures may differ. Let p be the number
of workers. All workers participate in the execution of tasks
and do nothing else. We assume there is no overhead by the
scheduler. Each worker i, with 1 ≤ i ≤ p, shows relative
speed si for the task to execute. The higher the value of si,
the faster a given worker executes. Without loss of generality,
assume worker i = 1 is the slowest worker.

The time to execute all n tasks by an ideal round-robin
scheduler is tR ∝ max(n

p si
) = n

p s1
, where the maximum is

taken over the group of workers, and the last equality is due
to the assumption that worker i = 1 is the slowest one.

In the case of an ideal adaptive round-robin scheduler, each
worker executes ni = nsi/

∑
p si out of n total tasks. Here,∑

p si can be considered as aggregated computing power of
the workers. If the work load is perfectly balanced, then the
time to execute all n tasks is given by tA ∝ ni/si = n/

∑
p si.

Finally, the expected potential relative performance, S,
of the ideal adaptive round-robin scheduler over the non-
loadbalancing round-robin scheduler is

S = tR/tA =

∑
p si

p s1
(2)

The main difference between the assumed ideal adaptive
round-robin scheduler and our ARRS is that the former takes
scheduling decisions for each incoming tasks, while ARRS
does so block-wise for CHUNK_SIZE tasks.

In the following, we simulate the effect of a heterogenous
system consisting of two types of workers and contrast the
experimental relative performance with the ideal model in
(2). We simulate heterogeneity by consistently decreasing
the execution time of tasks on exactly one specific worker.
Specifically, the tasks on slower workers calculate all prime
numbers up to 7500, the fast worker only up to 2000. In our
system, the execution times are ∼ 0.28ms and ∼ 0.048ms,
i.e., s1 = 1, sf ∼ 5.8.

The result of the simulation in terms of measured relative
performance (see (1)) as a function of total number of tasks is
shown in Figure 7. The experiment was conducted with 4, 8
and 16 workers, respectively, out of which one is considered to
be faster than the others. The plot also indicates the expected
relative performance calculated from the model (2). The data
demonstrates, that in general ARRS always schedules tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
variation of chunk size for 4 workers

chunk size = 100

chunk size = 200

chunk size = 300

chunk size = 400

potential

number of tasks (in K)

re
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

Figure 8. Performance comparison in hardware simulation with 1 faster
worker.

4 16 36 64 99 143 194 254 321 397 480 572 671 778 893 1016
0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

number of tasks (in K)

re
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

Figure 9. Relative performance improvement by ARRS over RRS by
mitigating NUMA effect.

more efficiently than RRS, as the relative performance is
always larger than unity.

Notably, at low number of tasks the relative performance
is rather low, but increases with increasing number of tasks
as it approaches the expected theoretical value (2) at larger
number of tasks. As anticipated the parameter CHUNK_SIZE
has an impact of the efficiency of our (non-ideal) ARRS.
Figure 8 shows the same benchmark as above with varying
CHUNK_SIZE. The plot shows clearly that the theoretical
curve is approached faster for smaller values of the parameter.
Our implementation of ARRS, unlike the ideal theoretical one,
schedules tasks in blocks. The first block, however, is sched-
uled in a round-robin fashion resulting in load-imbalanced
queues on heterogenous systems. The imbalance needs to
be corrected by successive scheduling event; however, the
magnitude of the initial load-imbalance increases with on the
block size and thus takes longer to correct for.

D. Implicit load-imbalance of task execution

There are many possible effects giving rise to an implicit
imbalanced situational to a parallel application. In this section,
we discuss 1) non-uniform memory architectures, 2) thread or
worker over-subscription, as implicit cause of load-imbalance.

1) NUMA effect: In a NUMA architecture, threads running
on cores which belong to one NUMA domain, suffer perfor-
mance penalties if they access data which resides in another
NUMA domain. This phenomenon may result in non-uniform
task execution times [11], particularly if data access patterns
do not allow to cache data efficiently.

We have implemented a benchmark consisting of only 2

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

20 workers

number of task (in K)

re
la

tiv
e

pe
rf

or
m

an
ce

Figure 10. Relative performance of ARRS over RRS with uniform tasks &
thread over-subscription.

workers, for simplicity. Both workers are pinned to different
NUMA domains using a tool called likwid [4]. Each time the
task is invoked, it accesses and updates a different small region
of memory in a cache in-efficient manner. All the data regions
used in the benchmark have been initialized by only one of the
workers and thus reside in its entirety in this worker’s NUMA
domain.

Figure 9 shows relative performance of ARRS over RRS
for this NUMA scenario. The figure shows very clearly that
NUMA effects have a significant impact on the performance,
which is mitigated by the ARRS scheduler. In fact, one can
estimate the ratio, s2/s1 = 2S−1 ≈ 3.4, of the execution time
of a task on both workers, respectively, from the maximum
of the relative performance, S ≈ 2.2, taken from the figure.
Again we observe a slow rise-up of the efficiency. Notably,
for very large number of tasks, the relative performance goes
down again. Here, the memory used by the benchmark is so
large, that it no longer fits into a single NUMA domain and
is thus distributed among both NUMA domains. This results
in overall less load-imbalance as both workers – not only one
as before – have to access data from remote domains.

2) Thread over-subscription: Typical FastFlow applica-
tions consist of dozens of FastFlow nodes organized in (possi-
bly nested) patterns as farm, pipeline, map, etc. Each of these
nodes is mapped to its own separate thread. Thus in general,
the number of threads of a FastFlow application is larger than
the number of processing elements, say cores, on the system
it executes on. Moreover, all of these threads compete for
their share of on-core-time at the same time. We refer to this
scenario as thread or worker over-subscription. The situation is
worsened by the fact that FastFlow workers are usually pinned
to specific processing elements.

We have exercised the same uniform-tasks benchmark code
as in Section III-B for 20 workers. In our system, 8 of these
workers share a core, while the remaining 12 are assigned to
a core exclusively. Figure 10 shows the experimental result of
this benchmark. Again, ARRS mitigates the effect of worker
over-subscription although the variation of the benchmark’s
execution time is relatively large (as evident from the error
bars), possibly due to the larger impact of OS jitter and other
factors when the system is under such increased stress.

E. Real world applications

1) Molecular Dynamics: We have tested ARRS with a
Molecular Dynamics simulation code called CMD [5]. Molec-

68 136 204 272
1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

number of tasks (in K) to 8 workers

re
la

tiv
e

 p
e

rf
o

rm
a

n
ce

Figure 11. CMD Speedup (with ARRS over RRS) versus number of
task/molecules.

2 4 8 16 20
0.99

1.04

1.09

1.14

1.19

number of workers for 68K tasks

re
la

tiv
e

pe
rf

or
m

an
ce

Figure 12. CMD Speedup (with ARRS over RRS) versus number of workers.

ular Dynamics (MD) is a simulation methodology used for
modeling of molecules in a large range of scientific fields as
material science, chemistry, theoretical physics, and biology.
The code spends most of its time in the calculation of the force
acting between any pairs of molecules or atoms [5]. This part
was parallelised with a FastFlow farm pattern [12] in such a
way, that a task consists of the force calculation for single pair
of molecules. The tasks takes the same (very short, ≈ 8 ms
for 68000 pair of molecules using 2 workers) amount of time
for each pair [9] and is thus considered uniform in the sense
used in this paper. We therefore do not expect any performance
improvement, but would rather aim to assert that the overhead
of ARRS is negligible also for this real application exhibiting
very short task duration.

We have run CMD on 8 workers with realistic parameters
similar to those that would be used in smallish MD production
runs. Figure 11 indeed shows that ARRS does not introduce
any measurable overhead over RRS. In fact, it performs
consistently better than RRS by a few percent.

While CMD, due to its simple structure, would in general
not be used under conditions of thread over-subscription, we
have nonetheless benchmarked it. Figure 12 illustrates the
relative performance for number of workers from 2 to 20.
The relative performance of ARRS over RRS increases slightly
with the number of workers up to 16. This increase likely stems
from load-imbalance originating in the higher likely-hood with
increasing thread count of adverse thread-synchronization. At
20 workers, the application is load-imbalanced as some of the
CPU cores need to serve two workers, while other only one.
This scenario is much more efficiently handled by ARRS than
by RRS.

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 workers 4 workers

number of tasks (in K)

re
la

tiv
e

pe
rf

or
m

an
ce

Figure 13. Material Optimization Process speed-up by ARRS over RRS.

2) Material Optimization Process: The purpose of this ap-
plication is to minimize the consumption of raw material in an
industrial production process, and thus, reduce the production
cost. The application is a complex mathematical optimization
process subject to multiple constraints. In essence, it maintains
a pool of given size of acceptable mathematical solutions.
Solutions are taken from the pool and passed on to one of
various different pipelines for further optimization. Each of
these optimization pipelines follows different strategies, all of
which take different time to finish. Solutions which potentially
improve on the optimization goal are returned to the pool for
further processing.

This application has been parallelized using a FastFlow
farm. Each of the farm’s workers follows a specific opti-
mization strategy resulting in varying execution time across
workers. The farm’s emitter issues solutions from the task
pool to the workers, while the collector replenishes the pool
with promising solutions. The application continues until a
desired optimal solution is found, the pool is empty, or
another termination criterion is triggered [10]. In this case the
application, running with 2 workers to compute 1000 task,
needs ≈ 70917 ms with RRS whereas ≈ 39865 ms with
ARRS. Figure 13 shows the relative performance of ARRS
over RRS as a function of the size of the solution pool, which
is a parameter that needs to be adapted by the user of the
application to find the best trade-off between long application
runtime and quality of the material optimization. While the
pool size is not directly proportional to the total number of
tasks executed by the application, in general the latter tends to
increase with the pool size. Clearly, ARRS outperforms RRS
for all values of the pool size. For realistic pool sizes ARRS
can be more than three times faster than RRS if two workers
are used.

IV. CONCLUSION

In this paper, we have presented an adaptive load-balancing
task-scheduler, ARRS, and applied it to the FastFlow pattern-
based parallel programming model. We have also presented
an idealized theoretical model for its performance. We have
benchmarked ARRS with the aim to assert 1) the overheads un-
der conditions where it will not shown performance improve-
ments by design, and 2) the efficiency of our implementation
in terms of the idealized model.

Our benchmarks support the conclusion that ARRS over-
heads are negligibly small and that our implementation can

reach the theoretically expected efficiency. However, the effi-
ciency of our implementation depends on the number of tasks
that are scheduled; it approaches the ideal value asymptotically
as the number of tasks increases. Careful analysis of our
implementation reveals that the cause for this behaviour is
an initial phase – whose length is given by the block size
parameter – of round-robin scheduling of tasks. This phase
leads to initial load-imbalances that need to be balanced out
over successive scheduling periods.

Nonetheless, our real world application benchmarks show
that the load-balancing scheduler leads to substantial perfor-
mance increases in all cases considered. For an industrial
relevant Material Optimization Problem, ARRS is up to three
times faster than the default scheduler. The proposed load-
balancer is well capable of dealing with non-uniformity of
tasks and heterogeneity of hardware. We also show that ARRS
may mitigate the performance impact of NUMA effects, load-
imbalances due to OS jitter, etc., and thread over-subscription.
We claim that ARRS is drop-in replacement for FastFlow’s
default scheduler that increases the speed of most applica-
tions, particularly on heterogenous systems, at no additional
development cost for the FastFlow user.

Future work will address the short-comings of our approach
– which are relevant only at (possibly intermittent) low number
of tasks – by shortening the initial round-robin phase and by
adapting the scheduler’s block size to the number of task that
are ready for scheduling.

ACKNOWLEDGEMENT

This work has been supported by the European Com-
mission Seventh Framework Programme through the projects
ParaPhrase: Parallel Patterns for Adaptive Heterogeneous
Multicore Systems (contract no.: 288570) and Polca: Pro-
gramming Large Scale Heterogeneous Infrastructures (contract
no.: 619686), and by the German Research Foundation (DFG)
through Priority Programme 1648 Software for Exascale Com-
puting (SPPEXA).

REFERENCES

[1] Aldinucci, Marco, Massimo Torquati, and Massimiliano Meneghin.
”FastFlow: Efficient parallel streaming applications on multi-core.”
arXiv preprint arXiv:0909.1187 (2009).

[2] Torquati, Massimo. ”Single-producer/single-consumer queues on shared
cache multi-core systems.” arXiv preprint arXiv:1012.1824 (2010).

[3] Vicente, Elder, and R. Matias. ”Exploratory study on the linux os
jitter.” In Computing System Engineering (SBESC), 2012 Brazilian
Symposium on, pp. 19-24. IEEE, 2012.

[4] Treibig, Jan, Georg Hager, and Gerhard Wellein. ”LIKWID:
Lightweight Performance Tools.” In Competence in High Performance
Computing 2010, pp. 165-175. Springer Berlin Heidelberg, 2012.

[5] Idrees, Kamran, Mathias Nachtmann, and Colin W. Glass. ”Evaluation
of FastFlow Technology for Real-World Application.” In Sustained Sim-
ulation Performance 2013, pp. 77-88. Springer International Publishing,
2013.

[6] FastFlow Source: http://sourceforge.net/projects/mc-
fastflow/files/fastflow-2.0.0.tar.bz2/download 2015.04.20

[7] Lee, Victor W., Changkyu Kim, Jatin Chhugani, Michael Deisher,
Daehyun Kim, Anthony D. Nguyen, Nadathur Satish et al. ”Debunking
the 100X GPU vs. CPU myth: an evaluation of throughput computing
on CPU and GPU.” In ACM SIGARCH Computer Architecture News,
vol. 38, no. 3, pp. 451-460. ACM, 2010.

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

[8] Goli, Mehdi, John McCall, Christopher Brown, Vladimir Janjic,
and Kevin Hammond. ”Mapping parallel programs to heterogeneous
CPU/GPU architectures using a monte carlo tree search.” In Evolu-
tionary Computation (CEC), 2013 IEEE Congress on, pp. 2932-2939.
IEEE, 2013.

[9] Niethammer, Christoph, Colin W. Glass, and José Gracia. ”Avoiding
serialization effects in data/dependency aware task parallel algorithms
for spatial decomposition.” In Parallel and Distributed Processing with
Applications (ISPA), 2012 IEEE 10th International Symposium on, pp.
743-748. IEEE, 2012.

[10] Rossbory, Michael, and Werner Reisner. ”Parallelization of Algorithms
for Linear Discrete Optimization Using ParaPhrase.” In DEXA Work-
shops, pp. 241-245. 2013.

[11] Thomadakis, Michael E. ”The architecture of the Nehalem processor
and Nehalem-EP SMP platforms.” Resource 3 (2011): 2.

[12] Brown, Christopher, Vladimir Janjic, Kevin Hammond, Holger Schoner,
Kamran Idrees, and Colin Glass. ”Agricultural reform: more efficient
farming using advanced parallel refactoring tools.” In Parallel, Dis-
tributed and Network-Based Processing (PDP), 2014 22nd Euromicro
International Conference on, pp. 36-43. IEEE, 2014.

[13] Thoman, Peter, Herbert Jordan, Simone Pellegrini, and Thomas
Fahringer. ”Automatic OpenMP loop scheduling: a combined compiler
and runtime approach.” In OpenMP in a Heterogeneous World, pp. 88-
101. Springer Berlin Heidelberg, 2012.

[14] Wang, Zheng, and Michael FP O’Boyle. ”Mapping parallelism to multi-
cores: a machine learning based approach.” In ACM Sigplan Notices,
vol. 44, no. 4, pp. 75-84. ACM, 2009.

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

