
Towards Data Persistency for Fault-tolerance Using
MPI Semantics

José Gracia,∗ M. Wahaj Sethi,†∗ Nico Struckmann,∗ Rainer Keller‡
∗High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany

†e.solutions GmbH, Ingolstadt, Germany
‡University of Applied Sciences, HfT Stuttgart, Germany

Abstract—As the size and complexity of high-performance com-
puting hardware, as well as applications increase, the likelihood of
a hardware failure during the execution time of large distributed
applications is no longer negligible. On the other hand, frequent
checkpointing of full application state or even full compute node
memory is prohibitively expensive. Thus, application-level check-
pointing of only indispensable data and application state is the
only viable option to increase an application’s resiliency against
faults. Existing application-level checkpointing approaches, how-
ever, require the user to learn new programming interfaces, etc. In
this paper we present an approach to persist data and application
state, as for instance messages transfered between compute nodes,
which is seamlessly integrated into Message Passing Interface,
i.e., the de-facto standard for distributed parallel computing in
high-performance computing. The basic idea consists in allowing
the user to mark a given communicator as having special, i.e.,
persistent, meaning. All communication through this persistent
communicator is stored transparently by the system and available
for application restart even after a failure.

Keywords–Message Passing Interface; MPI, fault-tolerance;
application-level checkpointing; data persistency

I. INTRODUCTION

Numerical simulation on high-performance computing
(HPC) systems is an established methodology in a wide
range of fields not only in traditional computational sciences
as physics, chemistry, astrophysics, but also becoming more
and more important in biology, economic sciences, and even
humanities. The total execution time of an application is
rapidly approaching the mean time between failures of large
HPC systems. Commonly, only a small part of the system
will be affected by the hardware fault, but usually all of the
application will crash. Application developers can therefore no
longer ignore system faults and need to take fault-tolerance and
application resiliency into account as part of the application
logic. A necessary step is to store intermediate result as well as
the current internal state of the application to allow restarting
the application at a later time, which is commonly referred to
as checkpointing.

In practice, however, the sheer size of simulation data and
the limited I/O bandwidth prohibit dumping all intermedi-
ate results at high frequency [1]. Checkpoints are therefore
chosen to satisfy requirements of the scientific analysis of
the simulation data. However, most computational experi-
ments, i.e., simulations, are by definition sufficiently robust
to allow drawing similar or equal scientific conclusions if
initial or boundary conditions – and by extension intermediate

results – are changed slightly within use-case specific limits.
Application-level checkpointing of suitably aggregated inter-
mediate results is therefore being considered as a promising
technique to improve the resiliency of scientific applications at
relatively low cost of resources. The application developer or
end user, purposefully discards most of the intermediate data
and checkpoints only those data which are absolutely essential
for later reconstruction of a sane state. An example would be
to store mean values of given quantities, other suitable higher-
order moments of the distribution of the quantities, or leading
terms of a suitable expansions. Note however, that the nature
of the reconstruction data is fully application and even use-
case specific. The application at its restart will use this data
to reconstruct the state in the part of the application that was
lost to the failure, while keeping the full, precise data in the
reset of system which was not affected by the fault.

In this paper we present a method for persisting intermedi-
ate results and internal application state. Our proposed method
uses idioms and an interface borrowed from the Message
Passing Interface (MPI) [2], which is the most widely used
programming model for distributed parallel computing in HPC.
This allows users of MPI to integrate our method seamlessly
into existing applications at minimal development cost.

This paper is organized into a brief overview of related
work in Section II, followed by a our approach to data
persistency through MPI semantics in Section III, and finally
a short summary of this work in Section IV

II. RELATED WORK

SafetyNet [3] is an example of checkpointing at the hard-
ware level. It keeps multiple, globally consistent checkpoints
of the state of a shared memory multiprocessor. This approach
has the benefit of lower overhead of runtime but it as additional
power and monetary cost. Right now, this approach provides
checkpointing solution for a single node only.

In the kernel-level approach, the operating system is re-
sponsible for checkpointing, which is done in the kernel space
context. It uses internal kernel information to capture the pro-
cess state and further important information required for a pro-
cess restart. Berkeley Lab Checkpoint/Restart (BLCR) [4][5]
and Checkpoint/Restore In Userspace (CRIU) [6] are two
examples of this class. This approach provides a transparent
solution for checkpointing but files generated by this approach
are large and moving checkpoint files to stable storage takes
more time. Another problem associated with this approach

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

is that it requires considerable maintenance and development
effort as internals of process state, etc. vary greatly from one
OS to another and are prone to change over time.

Checkpointing at the user-level solves the problem of
high maintenance effort due to kernel diversity. In this case,
checkpointing is done in user-space. All relevant system calls
are trapped to track the state of a given process. However, due
to the overhead of intercepting system calls it takes more time
to complete. Similar to kernel-level, user-level checkpointing
needs to save complete process state. So, this approach also
suffers from the problem of large file size.

In contrast to the schemes mentioned above, which are
transparent to user, application-level checkpointing requires
explicit user action. The application developer provides hints
to the checkpointing framework. By means of these hints,
additional checkpoint code is added to the application. This
additional code saves required information and restarts the
application in case of failure. Application level checkpoint-
ing normally creates smaller size checkpoints as they have
knowledge about program state.

One such application-level checkpointing scheme is the
library Scalable Checkpoint/Restart (SCR) [7][8]. SCR stores
checkpoints temporarily in the memory of neighboring com-
pute nodes before writing them to stable storage. It also
includes a kind of scheduler which determines the exact check-
pointing time according to system health, resource utilization
and contention, and external triggers. SCR is designed to
interoperate with MPI. The application developer uses SCR
functions to mark important data which is then checkpointed
transparently in the background at a suitable point in time.
The drawback is that application developers have to learn yet
another programming interface and add additional, possibly
complex code, which is not related to their numerical algo-
rithm.

Previous extensions to MPI, such as FT-MPI [9] offered
the application programmer several possibilities to survive,
e.g., leave a hole in the communicator in case of process
failure. This particular MPI implementation has been adopted
in Open MPI [10]. The Message Passing Interface standard
in its current form, i.e., MPI-3 [2], does not provide fault-
tolerance. Typically, if a single process of a distributed appli-
cation fails due to, for instance, catastrophic failure of the given
compute node, all other processes involved will eventually
fail as well in an unrecoverable manner. Recently, several
proposals [11][12][13] have been put forward to mitigate the
issue by allowing an application to request notification about
process failures and by providing interfaces to repair vital
MPI communicators. The application, in principle, can use this
interface to return the MPI stack to a sane state and continue
operation. However, any data held by the failed process is lost.
Notably, this includes any messages that have been in flight at
the time of the failure.

III. PERSISTENT MPI COMMUNICATION

In this paper we present an approach that allows application
developers to persist, both, essential locally held data and
the content of essential messages between processes. Unlike
other models, we use idioms that are familiar to any MPI
developer. In fact, we add a single function which returns

Stable

Storage

P
0

P
1

P
0

P
1

Figure 1. Illustration of communication between two processes, P0 and P1,
through regular communicators (top) versus through persisten communicators
(bottom).

a MPI communicator with special semantic meaning. Then,
the programmer continues to use familiar send and receive
MPI calls or collective operations to store data and messages
persistently or to retrieve them during failure recovery.

A. Background

In MPI, any process is uniquely identified by its rank in
a given communicator. A communicator can be thought of a
ordered set of processes. At initialization time, MPI creates the
default communicator, MPI_COMM_WORLD, which includes all
processes of the application. New communicators can created
as subset of existing ones to allow logically grouping processes
as required by the application. Collective MPI operations,
as for instance a broadcast or scatter, take a communicator
as argument and necessarily require the participation of all
the processes of the given communicator. In addition, some
collective operation single out one processes which is identified
by its rank in the respective communicator. Also point-to-point
communication routines take a communicator as argument. In
send operations, the target of a message is passed as rank
relative to the given communicator argument. The destination
of receive operations is given analogously.

In addition, most MPI communication routines require the
specification of the so-called tag which allows the programmer
to classify different message contents. A tag may be thought of
as a P. O. Box or similar. Finally, MPI messages are delivered
in the same order they have been issued by the sender. Any
MPI message can thus be uniquely identified by the signature
tuple (comm, src, dst, tag) and a sequence number that
orders messages with the same signature. The signature is
composed of a communicator, comm, the rank of the message
source, src, the rank of the destination, dst, and the message
tag tag.

B. Persistent communicators and proposed idioms

The basic idea of our approach is very simple. The user
marks a communicator as having a special, i.e., persistent,
semantics. Any communication issued through a persistent
communicator is stored transparently by the MPI library and
is available for application restart even after failure (see

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

1 #define VALUE_TAG
2 const char mykey[] = "Run A, June 6 2015";
3 MPI_comm persistent;
4 int value = 3;
5
6 MPI_Comm_persist(MPI_COMM_SELF, info,
7 mykey, persistent);
8
9 if (failure())

10 MPI_Recv(&value, 1, MPI_INT, rank,
11 VALUE_TAG, persistent, &status);
12 else
13 MPI_Send(&value, 1, MPI_INT, rank,
14 VALUE_TAG, persistent);

Figure 2. Simple example of data persistency

Figure 1). In contrast to no-persistent communicators the
message is not immediately delivered. An MPI process may
thus persist any data and application state by sending it to
itself through a persistent communicator. In case of failure
the data is simply restored by posting a receive operation on
the persistent communicator. Moreover, a process may persist
data for any other process by sending a message targeted to
the other process through a persistent communicator.

A communicator is marked as persistent by calling the rou-
tine MPI_Comm_persist which has the following signature

int MPI_Comm_persist(MPI_Comm comm, char *key,
MPI_Info info, MPI_Comm *persistentcomm)

Here, persistentcomm is a pointer to memory which will
hold the newly created persistent communicator. It is derived
from the existing communicator comm and will consist of the
same processes, etc. A user-provided string key shall uniquely
identify this particular application run or instance in case part
of it needs to be restarted after a fault occurred. Essentially
this serves as a kind of session key. Finally, the info object
info may hold additional information for the MPI library, as
for instance hints where to store data temporarily, or the size
of the expected data volume.

A simple example how to persist data is shown in Figure 2.
On line 6, the persistent communicator persistent is derived
from MPI_COMM_SELF which is a pre-defined communicator
consisting of just the given process. The routine failure()
shall return TRUE if this process is being restarted after a fault.
If this is not the case, the application will persistently store the
content of the variable value by sending a message to itself on
line 13. If a fault occurred the application instead will restore
the content of the variable value by receiving it from itself
on line 10.

Our approach also allows to replay or log communication
between processes in the case of faults. The programmer
simply derives persistent communicators from all relevant
communicators and then mirrors every send operation done
on a non-persistent communicators with the persistent one.
Receive operations are posted on the persistent communicator
as necessary by the failed process only. The reduce the amount
of additional code one could also allow transparent persistency.
In this case a persistent communicator would persist data and
also actually deliver data as expected from a non-transparent

1#define SIZE VERY_LARGE
2#define SESSION 1001
3
4int rank, other;
5float data[SIZE], boundary, seed=321;
6int iter = 0;
7MPI_comm persistent, world;
8
9MPI_Init();
10world = MPI_COMM_WORLD;
11MPI_Comm_rank(world, &rank);
12if (rank==0)
13other = 1;
14else
15other = 0;
16MPI_Comm_persist(world, &info, SESSION,
17&persistent)
18
19if (failure()) {
20// retrieve seed and iter
21MPI_Recv(&seed, rank, SEEDTAG, persistent);
22MPI_Recv(&iter, rank, ITERTAG, persistent);
23}
24
25init_data(data, seed);
26
27if (failure()) {
28// retrieve boundary conditions
29MPI_Recv(data[SIZE-1], other, BNDTAG,
30persistent);
31}
32
33
34for (int i = iter; i<10, i++) {
35compute(data);
36
37boundary = data[0];
38MPI_Sendrecv(&boundary, other, BNDTAG,
39data[SIZE-1], other, BNDTAG,
40MPI_COMM_WORLD);
41// store boundary for recovery
42MPI_Send(&boundary, other, BNDTAG,
43persistent);
44
45seed = aggregate(data);
46printf("%i %i %f\n", rank, i, seed);
47
48// store state and aggregate for recovery
49MPI_Send(&seed, rank, SEEDTAG, persistent);
50MPI_Send(&i, rank, ITERTAG, persistent);
51}
52
53printf("Final: %i %f", rank, seed);
54MPI_Finalize();

Figure 3. A simple MPI program with persistency for 2 processes

one. For simplicity, we will not use this facility for the rest of
the paper and use persistent communication explicitly.

The core of a somewhat more elaborated example is shown
in Figure 3. For the sake of simplicity, we assume that the
application is executed with only two processes. This fictitious
algorithm evolves for several iterations a very large array of
data through a complex calculation compute (line 35). At
any given point in time, one can however aggregate the

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

data into a single value seed (line 45). In turn, seed can
be used to reconstruct the data array with sufficient accuracy
by calling init_data(seed) (line 25). The algorithm require
to exchange boundary conditions between processes. The first
element of the local array is send to the other process, where
it replaces the last element (line 38). The system shall provide
a function failure() which notifies fault conditions.

The state of the application is given by the iteration counter
i of the fore loop on line 34. This value is persisted by sending
a message to oneself (line 50) at the end of each iteration.
The algorithm requires the persistence of the seed, again by
a message to oneself on line 49. Finally, the exchange of
boundary conditions is logged on line 42.

In case of failure, the failed process is restarted and restores
its internal state (line 22), the aggregate (line 21) which is used
to reconstruct the data array (line 25). The same initialization
operation had been executed by the surviving process with
initial values at the original start of the application. The failed
process also retrieves the last boundary value received from
the other process (line 29). The it enters the main loop with
the correctly restored iteration counter and resumes normal
operation in parallel to the surviving process.

C. Implementation concerns

Our proposed persistent communicator semantics is rela-
tively easy to implement. As explained in III-A, any given
MPI message is uniquely identified by its signature and the
sequential ordering. In addition, the user has specified a
unique session key at the time of creation of the persistent
communicator. Together these are used to store any persistent
message content in a suitable stable storage. This could be
for instance the memory of one (or several for redundancy)
neighbor MPI processes, remote network filesystems, or any
data base. In fact, one could persist the data using the SCR
library and leave the details to is automatics. After the failure,
the application is restarter with the same session key and thus
allow to map messages to the state before the fault.

Incoming persistent messages with the same signature, and
thus different sequence number, shall overwrite the previously
stored one. However, one could also implement a stack of
user-defined depth and store a history of messages which are
retrieved in order of storage or in reverse. Such schemes could
be facilitated by additional parameters provided in the info
object at the time of creation of the persistent communicator.

IV. CONCLUSIONS

In this paper we have presented work in progress on the
a method to allow persisting of application data and internal
state for fault recovery. Unlike other methods, our approach
uses well known MPI semantics. The only addition to MPI is
a routine that allows to mark a communicator as persistent.
All messages to such a communicator are stored on a stable
storage for later usage during failure recovery. We have shown
basic idioms of storing and retrieving not only application data,
but also internal state of the application and to use message
logging to recover messages that have been exchanged with
other MPI processes just prior to the fault.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry
of Education and Research (BMBF) through the project FEToL
(Grant Number 01IH11011F).

REFERENCES

[1] Y. Ling, J. Mi, and X. Lin, “A variational calculus approach to optimal
checkpoint placement,” IEEE Trans. Computers, vol. 50, no. 7, 2001,
pp. 699–708.

[2] MPI Forum, “MPI: A Message-Passing Interface Standard. Version 3.0,”
September 21st 2012, available at: http://www.mpi-forum.org [retrieved:
May, 2015].

[3] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “Safetynet:
Improving the availability of shared memory multiprocessors with
global checkpoint/recovery,” SIGARCH Comput. Archit. News, vol. 30,
no. 2, May 2002, pp. 123–134.

[4] J. Duell, P. Hargrove, and E. Roman, “The Design and Implementation
of Berkeley Lab’s Linux Checkpoint/Restart,” Future Technologies
Group, white paper, 2003.

[5] J. Cornwell and A. Kongmunvattana, “Efficient system-level remote
checkpointing technique for blcr,” in Proceedings of the 2011 Eighth
International Conference on Information Technology: New Generations,
ser. ITNG ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 1002–1007.

[6] CRIU project, “Checkpoint/Restore In Userspace – CRIU,” 2015, avail-
able at: http://http://www.criu.org/Main Page/ [retrieved: May, 2015].

[7] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing sys-
tem,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–11.

[8] K. Mohror, A. Moody, and B. R. de Supinski, “Asynchronous check-
point migration with mrnet in the scalable checkpoint / restart library,”
in IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops, DSN 2012, Boston, MA, USA, June 25-28, 2012.
IEEE, 2012, pp. 1–6.

[9] G. E. Fagg et al., “Fault tolerant communication library and applications
for high performance,” in Los Alamos Computer Science Institute
Symposium, Santa Fe, NM, Oct. 2003, pp. 27–29.

[10] E. Gabriel et al., “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Proceedings of the 11th European
PVM/MPI Users’ Group Meeting, ser. LNCS, D. Kranzlmüller, P. Kac-
suk, and J. Dongarra, Eds., vol. 3241. Budapest, Hungary: Springer,
Sep. 2004, pp. 97–104.

[11] W. Bland, A. Bouteiller, T. Hérault, J. Hursey, G. Bosilca, and J. J.
Dongarra, “An evaluation of user-level failure mitigation support in
MPI,” in Recent Advances in the Message Passing Interface - 19th
European MPI Users’ Group Meeting, EuroMPI 2012, Vienna, Austria,
September 23-26, 2012. Proceedings, 2012, pp. 193–203.

[12] W. Bland, A. Bouteiller, T. Hérault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of MPI communication capability: Design and
rationale,” IJHPCA, vol. 27, no. 3, 2013, pp. 244–254.

[13] J. Hursey, R. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard,
and D. Solt, “Run-through stabilization: An mpi proposal for process
fault tolerance,” in Recent Advances in the Message Passing Interface,
ser. Lecture Notes in Computer Science, Y. Cotronis, A. Danalis,
D. Nikolopoulos, and J. Dongarra, Eds. Springer Berlin Heidelberg,
2011, vol. 6960, pp. 329–332.

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation

