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Abstract—Collective operations strongly affect the performance
of many MPI applications, as they involve large numbers, or
frequently all, of the processes communicating with each other.
One critical issue for the performance of collective operations
is load imbalance, which causes processes to enter collective
operations at different times. The influence of such late-arrivals
is not well understood at the moment. Earlier work showed
that even small system noise can have a tremendous effect
on the collective performance. Thus, although algorithms are
optimized for large process counts, they do not seem to tolerate
noise or consider delay of involved processes and even a small
perturbation from a single process can already have a negative
effect on the overall collective execution. In this work, we show
a first detailed study about the effect of late arrivals onto
the collective performance in MPI. For the evaluation a new,
specialized benchmark was designed and a new metric, which
we call delay overlap benefit, was used. Our results show, that
there is already some potential tolerance to late arrivals - but
there is also a lot of room for future optimizations.
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I. INTRODUCTION

Collective operations strongly affect the performance of
many Message Passing Interface (MPI) applications, as they
involve large numbers, usually all, of the processes communi-
cating with each other. One critical issue for the performance
of collective operations is load imbalance, which causes pro-
cesses to enter collective operations at different times. The
influence of such delayed processes is not well understood at
the moment. Earlier work showed that even small system noise
can have a tremendous effect on the collective performance
[1] [2]. So, though algorithms are optimized for large process
counts [3], they do not seem to tolerate noise or consider delay
of involved processes and thus even a small perturbation from a
single process can already have a negative effect on the overall
collective execution.

The MPI 3.0 standard introduced non-blocking collective
operations which give the opportunity to speed up applications
by allowing overlap of communication with computation [4],
reducing the synchronisation costs of delayed processes as well
as the effects of system noise. Many MPI programs are written
using non-blocking point-to-point communication operations
and application developers are familiar with managing this
process using request and status objects. Extending this to

include collectives allows programmers to straightforwardly
improve application scalability.

In contrast to the already existing blocking collectives, the
non-blocking counterparts require the MPI implementations to
progress the communication task in parallel to computations.
This is a non-trivial task, even if the network hardware
provides support for offloading network operations from the
CPU, e.g., message buffers may have to be refilled for large
messages or more complex collective operations need multiple
communication steps. The Cray XE6 and XC30 platforms
feature a special “asynchronous process engine” for this, which
uses spare hyperthreads (XC30) or dedicated CPU cores (XE6)
for the required operations [5].

This work analyses and emphasizes the effect of late arrivals
on collective operation in MPI for large number of processes.
Therefore, a benchmark and metric for evaluation and de-
tection of effects caused by late arrivals are introduced. The
obtained results point to potential for improving performance
by solving the issue of late arrivals.

This work is structured as follows. Section II, describes the
testing methodology and the micro benchmark suite, which we
designed specifically to study the impact of late arrivals, i.e.
delay, on collective performance. At the begin of section III,
we define a metric to quantify the amount of tolerated delay.
Then results for different, application relevant collective oper-
ations are presented and evaluated on basis of absolute times
as well as the delay overlap metric.

II. METHODOLOGY AND BENCHMARK DESCRIPTION

To study collective operations with respect to late arrivals,
a micro benchmark suite was designed. This requires the use
of a global clock, which is chosen to be the one of process
with MPI rank 0. For this purpose the micro benchmark suite
determines the clock offsets between process zero and all other
processes. Based on the global time, the benchmark performs
the following tasks:
• Measures start and end times of all involved MPI pro-

cesses.
• Determines earliest start and latest end time over all

involved MPI processes.
The design of the benchmark suite allows for easy extendibility
and addition of new benchmarks. The following MPI collective
operations are included at the moment: Barrier, Ibarrier, Bcast,
Ibcast, Reduce, Ireduce, Allreduce, Iallreduce, Alltoall and
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Ialltoall. Within this work, results for blocking and non-
blocking barrier, allreduce and alltoall operations are reported.
Each benchmark is run with different number of processes and
different data sizes. Each benchmark is run initially for several
times before the real measurement is performed, to warm up
the network, CPUs, etc. Then, the times for the real benchmark
runs are recorded.

A. Clock offset determination
The local clocks of different processors report different

times as they are not perfectly synchronized. They may even
run at slightly different speeds [6] [7], which we do not
take into account. This simplification is acceptable because
the benchmark runs only for a relatively short time and a
verification shows, that there is no significant change in the
time differences over it’s runtime. To compare the measured
times, the error between the clocks has to be taken into
account [8]. For the collective benchmarks, we consider the
clock offset σ defined as the constant difference between the
locally measured time t and the time measured at the remote
processor t′ at the time point when the benchmark is started

t′ = t+ σ . (1)

A modified ping pong experiment is used to determine the
clock offset following Cristian’s algorithm [9]: A root process
sends a request to another process, which answers with his
current local time. We improve the accuracy by adding another
timer allowing to determine the timer delay, which is the time
required to obtain the current time itself. From this experiment
the ping pong latency λp and timer delay ∆, are obtained, see
Figure 1.

∆ λp ∆ ∆

t0 t1 t2ping po
ng

∆ ∆ ∆ ∆

t′0 t′r t′1 t′2

Figure 1. Modified ping pong experiment to determine ping pong latency λp,
timer delay ∆ and clock offset on the basis of the remote time t′r , which is
assumed to be taken at the mid of the ping pong.

To obtain the clock offset σ between local clock t and
remote clock t′ defined in (1), the time t′r, which is assumed to
be at the mid of the ping pong, is measured. The clock offset
is then given by

σ = t′r − t0 − (λp + ∆)/2 , (2)

where the timer delay ∆ is obtained via

∆ = t2 − t1 . (3)

To verify the correctness and to obtain an estimate for the
error in the obtained clock offsets intra node times can be

compared, which should not vary much. As can be seen in
Table I, the clock offsets between rank 0 and all processes
residing on one node are the same with a standard deviation
of not more than ±2 µs in 100 measurements. In contrast, the
clocks of different nodes vary by more than 10 ms between
each other.

Table I. DETERMINED AVERAGE CLOCK OFFSET σ̄ AND STANDARD
DEVIATION σσ FOR A BENCHMARK RUN WITH 12 PROCESSES AND 4

PROCESSES PER NODE BASED ON A SET OF 100 MEASUREMENTS.
(RESULTS OBTAINED ON HERMIT SYSTEM AT HLRS, SEE SECTION III)

rank σ̄ [s] σσ [s]

0 +0.000000 0.000000
1 +0.000000 0.000000
2 +0.000000 0.000000
3 +0.000000 0.000000
4 −0.017258 0.000002
5 −0.017258 0.000001
6 −0.017258 0.000001
7 −0.017258 0.000002
8 −0.011140 0.000002
9 −0.011140 0.000002
10 −0.011140 0.000002
11 −0.011140 0.000002

B. Initial synchronization
A synchronization of all processes is done at the beginning

of each benchmark run using a barrier. The synchronization
is not perfect as can be seen in Figure 2 and the processes
finish the barrier at slightly different times. The time difference
between the processes at the exit of the barrier is in the
order of 4 µs for 32 processes and the observed exit time
pattern may be the result of a tree algorithm [10]. But so far,
there is no better way of synchronization. Measuring the time
differences and trying to improve the sync using delays with
an accuracy of 1 µs for faster processes, resulted in even worse
synchronization.

Figure 2. Vampirtrace image of synchronization barrier (red) before the
benchmark is executed on Cray XE6 (32 PEs on 2 nodes). The processes
leave the barrier in a time shifted front as can be seen by the timer calls
enclosing the benchmarking loop (blue). Results are collected afterwards with
an MPI Gather operation (green).

For each measurement the process id (integer) as well as
its start and end time (double) are stored, which requires
S = 20N Bytes of storage. The stored times are times
corrected on the basis of the clock offset determined before.
If not mentioned explicitly global times for the collective
operations are reported, which is the time between the start
time of the first process entering and the end time of the last
process finishing the collective.
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C. Delaying of single process
Load imbalances in programs cause some processes to enter

collectives later than the rest. To study the influence of such
late-arrivals on the overall collective time, the benchmark suite
allows to delay one processes by a given amount of time,
see Figure 3. The delay is implemented based on the POSIX
gettimeofday function, providing a microsecond accuracy.

delay collective

ta tb
collective

collective

Figure 3. Processes are except one synchronized at time ta and enter the
collective. The one delayed process enters the collective at time tb = ta + δ.

III. RESULTS

The influence of different delay times and the number
of processes is studied. Blocking collectives and their non-
blocking counterparts are compared side by side. Beside the
actual collective times the benefit b of internal overlap of the
delay with communication within the collectives itself will be
examined:

b =
t0 + δ − tδ

tδ
, (4)

with t0 being the collective time for no delay and tδ the
collective time for delay δ. A positive benefit is found when
there is overlap potential within the collective operation. A
negative value means, that the delay even results in additional
cost compared to a synchronized collective which is started
after waiting delay time.

In the following, results for different collective operations
on the Hermit system at HLRS are reported. Hermit is a Cray
XE6 system with 3552 dual-socket compute nodes and a total
of 113 664 cores, which are connected via the Gemini 3D Torus
network. The native Cray MPI implementation optimized for
this system in combination with the GNU compiler was used
for all tests.

All benchmarks were run during normal operation mode
of the system so that other jobs on the system influenced
the process placement and network usage. Benchmark runs
were performed up to a maximum of 16 384 processes and
were grouped into jobs with the same processor count. We
report the found minimum values for the global times within
100 measurements. This is responsible for some outlying data
points, even if multiple measurements were performed to
reduce this effect. Obtaining the accurate minimum time for an
operation under workload conditions is not always possible—
especially for the longer benchmark runs using more processes,
which get easily disturbed by other jobs.

For all measurements the MPI process with rank 0 was
delayed. Most tree based algorithms—usually using rank 0 as
tree root—should be badly affected by this choice, if they do
not switch over using another process as the tree root.

A. Barrier
The first collective studied is the barrier. As the barrier

is used for synchronization within the benchmark suite, the
understanding of this operation is essential. While the time
for MPI_Barrier is measured straightforward, the time
for MPI_Ibarrier includes the time for the corresponding
MPI_Wait.

A wide variety of different barrier algorithms exists [10].
Depending on the algorithm and the hardware support used
within the implementation, different algorithms may profit
differently. On the one hand, for example the Central Counter
barrier may hide the delay of a late arrival easily by concept, or
the Binomial Spanning Tree Barrier could intelligently assign
the delayed process to a node, which is involved in later
communication steps. On the other hand, for example the
Dissemination Barrier requires a ring like communication in
each step—which will not tolerate a late arrival.

The results in Figure 4 show a nearly logarithmic scaling
of the blocking and non-blocking barrier operation up to
approximately 2048 processes. For higher process counts, the
behaviour seems to have a linear scaling. But we note here
that a single cabinet of the Hermit system has 96 nodes with a
total of 3072 cores. Jobs exceeding this number of processes
are more likely to be spread around the system and therefore
affected by network contention caused by other applications.
So, finding the minimum time for the barrier operation with
our benchmark may not have provided the correct result in this
case.

The delay benefit as defined in (4) of the MPI_Barrier
and MPI_Ibarrier for different delay times, where the
delayed rank was always rank 0, is shown in Figure 5. As
the benefit is mostly positive the implemented blocking and
non-blocking barrier algorithm already seem to tolerate smaller
delays. The non-blocking version MPI_Ibarrier seems to
perform slightly better than the blocking variant here. Figure 5
shows an change in behaviour at 1024 processes: While at the
beginning smaller delays have a higher overlap benefit, for
more processes a larger benefit can be seen for longer delays.
It is unclear if at this point an algorithm switch occurs within
the MPI implementation.

B. Allreduce
An important collective to aggregate data of multiple

processes into a single value is the allreduce operation. It
may be used to determine, e.g., global energies in molec-
ular simulations, time step lengths in finite element based
programs or residues in linear solvers. While the time for
MPI_Allreduce is measured straightforward, the time for
MPI_Iallreduce includes the time for the corresponding
MPI_Wait.

Again, the influence of delaying the process with rank 0
for different number of processes is studied. Results for 8 B
messages and a delay of 50 µs are presented in Figure 6. We see
perfect logarithmic scaling up to 1024 processes, adding less
than 5 µs when doubling the number of processes. For larger
process counts the scaling is worse and adds up to 100 µs when
doubling the number of processes. The behaviour for larger
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Figure 4. MPI Barrier and MPI Ibarrier global times for different delay
times.

message sizes is similar. It is unclear how the synchronization
barrier influences the behaviour, as we showed earlier that the
processes do not exit from it perfectly at the same time and it
does not scale well for larger process counts according to our
benchmark results, too, see Figures 2 and 4.

We have to mention a data outlier for the non-delayed
Allreduce/Iallreduce benchmark runs with 4096 processes—
which were grouped within one job. The job collecting these
data was likely disturbed by other jobs and seems not to have
been able to find an accurate value for the minimum collective
time.

The delay benefit of the blocking and non-blocking allreduce
operations presented in Figure 7 shows slight overlap for
smaller number of processes. For more than 1024 processors
the delay has a negative effect onto the overall performance.
The message size does not have an influence on the delay
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Figure 5. Delay benefit of the MPI_Bbarrier and MPI_Ibarrier as
defined in (4) for different delay times.
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Figure 6. MPI_Allreduce (circles) and MPI_Iallreduce (squares)
global times for 8 B message size and a delay time of 50 µs (blue) together
with perfectly synchronized reference data (black).

benefit for the chosen values. The peak for 4096 processes
is caused by too high values for the perfectly synchronized
collectives time t0.

C. Alltoall
The alltoall operation is another important collective pattern

used in many parallel codes to distribute data in an application.
It is the most time consuming collective operation but it may
benefit a lot from intelligent algorithms, taking into account

63Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-416-9

INFOCOMP 2015 : The Fifth International Conference on Advanced Communications and Computation



101 102 103 104

−20

0

20

40

60

# processes

de
la

y
ov

er
la

p
be

ne
fit
/
%

allreduce delay overlap

Allreduce 8 B Iallreduce 8 B

Allreduce 128 B Iallreduce 128 B

Allreduce 1024 B Iallreduce 1024 B
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delayed processes.
The same meassurements as that for the allreduce operation

were performed. Results in Figure 8 show a nearly perfect
linear scaling for the alltoall algorithm up to the maximum of
16 384 processes used during the benchmarks. The message
size has a strong influence on the execution time of the alltoall
collective but does not affect the overall scaling behaviour.
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Figure 8. MPI_Alltoall (circles) and MPI_Ialltoall (squares) global
times for 8 B message size and a delay time of 50 µs (blue) together with
perfectly synchronized reference data (black).

The results for the delay benefit for the alltoall collective,
presented in Figure 9, show zero effect for small messages
and an inconclusive behaviour for larger messages which may
be caused by the fact, that our benchmark does not find the
minimum time as already mentioned before. So we find slight
decreases as well as huge gains in performance.
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Figure 9. Delay benefit for the alltoall collective for different message sizes
at a delay time of 50 µs.

IV. CONCLUSION AND OUTLOOK

In this paper, we have evaluated the impact of late arrivals,
i.e. a delayed process, on the performance of the collective
operations MPI_(I)Barrier, MPI_(I)Allreduce and
MPI_(I)Alltoall on Cray XE6. The results show that
blocking and non-blocking collective barriers can tolerate
small delays, i.e. hide a part of the load imbalance within
an application. The collectives MPI_(I)Allreduce tolerate
small delays for up to 1024 processes but is badly affected for
larger processes counts. The MPI_(I)Alltoall operations
tolerate small delays well for up to 1024 processes and the
delays have no negative effects for large processes counts.
The alltoall operation can profit a lot in some cases for larger
message sizes, while we see no negative effects for small
messages.

We have shown that the overlap availability of non-blocking
collectives and benefit of the overlapping depends on the type
of the collective operations, size of the communicator and the
amount of data to be communicated.

This work shows that the state of the art implementation of
the relatively new MPI 3.0 non-blocking collective specifica-
tion in Cray MPI is mostly head up or better than their blocking
counterparts. We expect new algorithms and hardware with
better overlapping capabilities and communication offloading
support in the future. Our preliminary work in this area shows
already some potential to hide small delays of single processes
for barrier, allreduce and alltoall operations. The techniques
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for overlapping communication may also improve collective
operations in the case of system noise.

For the future studies about other important collectives like
bcast are planed as well as detailed analysis of delaying other
processes than rank 0. Studies are planed to evaluate other MPI
library implementations. Here open source implementations
can provide insights into the algorithms as well as the cross
over points between them for different message sizes and
process counts, allowing better understanding of the results.
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